|
||||
|
Екатерина - специалист по продаже а/м КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) | 2 220 000 |
43118-6033-24 (дв.740.55-300 л.с.) | 2 300 000 |
65117-029 (дв.740.30-260 л.с.) | 2 200 000 |
65117-6010-62 (дв.740.62-280 л.с.) | 2 350 000 |
44108 (дв.740.30-260 л.с.) | 2 160 000 |
44108-6030-24 (дв.740.55,рест.) | 2 200 000 |
65116-010-62 (дв.740.62-280 л.с.) | 1 880 000 |
6460 (дв.740.50-360 л.с.) | 2 180 000 |
45143-011-15 (дв.740.13-260л.с) | 2 180 000 |
65115 (дв.740.62-280 л.с.,рест.) | 2 190 000 |
65115 (дв.740.62-280 л.с.,3-х стор) | 2 295 000 |
6520 (дв.740.51-320 л.с.) | 2 610 000 |
6520 (дв.740.51-320 л.с.,сп.место) | 2 700 000 |
6522-027 (дв.740.51-320 л.с.,6х6) | 3 190 000 |
Нужны самосвалы? Обратите внимание на Ford-65513-02. |
Контактная информация.
г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».
тел/факс (8552) 388373.
Схема проезда
1. Строение металлов
Металлы и их сплавы – основной материал в машиностроении. Они обладают многими ценными свойствами, обусловленными в основном их внутренним строением. Мягкий и пластичный металл или сплав можно сделать твердым, хрупким, и наоборот. Для того чтобы сознательно изменять свойства металлов, необходимо знать основы их кристаллического строения. Как известно, все тела состоят из большого количества атомов, которые удерживаются силами сцепления, совершая колебания большой частоты возле точек равновесия. Поскольку атомы разных металлов различны, каждый металл имеет свои определенные свойства. Эти свойства зависят от расположения атомов между собой, характера их связей, от расстояния между ними. Если изменить расстояние между атомами или порядок их расположения, изменятся и свойства металла. В аморфных телах – смоле, стекле, канифоли и т. п. – атомы расположены беспорядочно. В металлах они находятся в определенном геометрическом порядке, образуя кристаллы, поэтому металлы являются кристаллическими телами. Металлы различаются не только порядком расположения атомов, но и кристаллической решеткой, которая представляет собой воображаемую пространственную сетку, состоящую из элементарных ячеек, в узлах которой находятся атомы.
Различают следующие кристаллические решетки металлов с плотной упаковкой атомов: кубическую объемно—центрированную, кубическую гранецентрированную и гексагональную. В ячейке кубической объемно—центрированной решетки атомы расположены в вершинах и центре куба. Такая ячейка содержит девять атомов (хром, вольфрам, ванадий, молибден, литий, а при определенных температурах – железо и другие металлы).
В ячейке кубической гранецентрированной решетки атомы находятся в вершинах куба и на пересечении диагоналей каждой плоскости. Такая ячейка имеет 14 атомов (свинец, никель, медь, золото, серебро, пластина, железо при определенных температурах и другие металлы).
В ячейке гексагональной кристаллической решетки атомы располагаются в вершинах и в центре шестигранных оснований призмы, а три атома – в средней ее плоскости, при этом такая ячейка содержит 17 атомов (магний, цинк, кадмий, осмий, бериллий и другие металлы).
При определенных условиях некоторые металлы – железо, титан, цирконий, стронций, кобальт, кальций и другие могут перестраиваться из одного вида кристаллической решетки в другой, например из кубической объемно—центрированной – в гранецентрированную и даже гексагональную. Элементарная ячейка отображает только один элемент, или одну ячейку, кристаллической решетки.
Вся кристаллическая решетка в реальном металле состоит из большого числа многократно повторяющихся элементарных ячеек. Большое значение имеет расстояние между атомами ячейки кристаллической решетки или между параллельными атомными плоскостями, образующими элементарную ячейку. Чем больше это расстояние, тем менее прочен металл. Расстояние между ними измеряется в ангстремах – 1 А = = 10 –8 см или в нанометрах – 1 А = 0,1 нм.
Из практики известно, что железо прочнее меди, а медь прочнее алюминия.
Поделитесь на страничкеСледующая глава >
tech.wikireading.ru
Cтраница 1
Структура металла также в известной степени определяет его устойчивость против коррозии. Сплавы с однородной ( гомогенной) структурой устойчивее, чем неоднородные по структуре. Например, сплавы, содержащие две твердые фазы ( кристаллиты двух различных составов) ржавеют быстрее, чем сплавы, представляющие однородные твердые растворы. Устойчивость нержавеющих сталей против коррозии определяется их однородной структурой, в свою очередь обеспечивающей прочность и однородность поверхностной пленки окисей. [2]
Структура металла является решающим фактором для определения его свойств. Из сказанного выше следует, что при напылении всегда образуется только скопление сравнительно слабо связанных между собой отдельных частиц. Препятствием для более тесного соединения служит то обстоятельство, что во время процесса напыления они покрываются окисной пленкой. [3]
Структура металлов и сплавов имеет непосредственное отношение к их коррозионному поведению. Следует отметить, что, как правило, гетерогенные сплавы менее стойки в коррозионном отношении по сравнению с гомогенными в одинаковых условиях. Это обусловлено различием отдельных фаз сплава как по электрохимическим свойствам, так и по способности образовывать поверхностные защитные пленки. [4]
Структура металла, видимая невооруженным глазом или при небольших увеличениях ( при помощи лупы), называется макроструктурой. [5]
Структура металлов и сплавов зависит от химического состава, способа обработки и выплавки. Для определения структуры изготовляют микрошлиф, поверхность которого рассматривают под микроскопом. Такой метод исследования внутреннего строения называют металлографическим анализом металлов и сплавов. К способам контроля и исследования металлов и сплавов относят макро - и микроанализ, рентгеноскопию и другие виды анализов. [7]
Структура металла, образующаяся в процессе кристаллизации, зависит от характера этого процесса. Кристаллизация сплава начинается у поверхности слитка ( рис. 2), соприкасающейся с формой. Кристаллы образуются вокруг центров кристаллизации. Такими центрами являются группы элементарных кристаллических решеток, мельчайшие шлаковые и неметаллические включения. [8]
Структура металла вдоль линии реза отлична от структуры основного металла. В малоуглеродистых сталях в зоне перегрева наблюдается рост зерна, а у кромок реза видманштет-това структура. Участки более удаленные от линии реза, но расположенные в зоне термического влияния, приобретают сравнительно мелкозернистое строение, подобно структуре нормализованной стали. При резке малоуглеродистой стали структурные изменения, как правило, не оказывают существенного влияния на качество металла. [10]
Структура металла - перлитовая с достаточным количеством графита. Увеличение содержания углерода за счет снижения содержания кремния также благоприятно влияет на снижение взноса. [11]
Структура металла оказывает на скорость коррозии различное влияние. При отсутствии заметного пассивирования анодных составляющих в металле новая катодная структурная составляющая повышает скорость коррозионного процесса с водородной деполяризацией. [13]
Структура металла оказывает различное влияние на скорость коррозии. Укрупнение зерна не влияет на скорость общей коррозии, но часто усиливает межкристаллитную коррозию. [14]
Структура металла может подвергнуться модификации также под действием противозадирных присадок. Так, Виноградов и Морозова [51], исследуя сернистые масла на четырехшарико-вой машине трения, установили, что на трущихся поверхностях образуются очень твердые, не поддающиеся травлению слон толщиной 20 - 30 мк, причиной появления которых является диффузия в металл отдельных соединений, содержащихся в масле, а также обогащение поверхностных слоев металла углеродом, поскольку углеводородные масла в этом случае играют роль карбюризатора. [15]
Страницы: 1 2 3 4
www.ngpedia.ru
МИКРОСТРУКТУРА МЕТАЛЛОВ.
Металлы состоят из совокупности атомов, упорядоченно расположенных в кристаллической структуре. Несмотря на то, что мы рассматривали процесс кристаллизации, как образование единичных кристаллов, металлы обычно не образуют единого кристалла при твердении (переходе из состояния, называемого расплавом), вместо этого они образуют структуру, состоящую из множества мелких кристаллов.
Это происходит потому, что внутри расплавленного металла рассеяно множество ядер или центров кристаллизации. Такие ядра могут образовываться при существенной потере тепловой энергии четырьмя атомами. Благодаря этому четыре атома способны образовать элементарную ячейку. Эти элементарные ячейки растут по мере того, как все большее количество атомов достигает низкого энергетического уровня и начинает присоединяться к ним, в результате чего и происходит образование кристалла. Этот процесс известен под названием гомогенной кристаллизации. Для того чтобы вырастить единый кристалл металла из всего имеющегося расплава, потребуется сложное специальное оборудование.
Чаще всего твердение инициируется присутствием примесей в расплаве металла. После того, как температура опустится ниже точки плавления, атомы металла станут осаждаться на этих примесях, и начнется образование кристаллов. Этот процесс известен под названием гетерогенной кристаллизации. Кристаллы (иначе называемые зернами) будут продолжать свой рост до тех пор, пока весь металл не затвердеет. Во время своего роста они начинают сталкиваться друг с другом, образуя границы между кристаллами, где атомы расположены беспорядочно. Эти границы, называемые границами зерен, обычно и являются дефектной областью кристаллической структуры металла.
На Рис. 1.5.1 схематически изображен процесс твердения металла. Малый размер зерен обусловливает положительные свойства металла, благодаря повышению его предела текучести, однако в данный момент мы не будем рассматривать причины, по которым это происходит. Одним из способов получения мелкозернистых структур является быстрое твердение расплава, которое используют при литье стоматологических золотых сплавов в литейные формы, разогретые до более низких температур по сравнению с температурой плавления сплава. Альтернативным способом получения мелкозернистых структур является обеспечение множества центров кристаллизации. Это можно получить добавкой иридия к стоматологическим литейным сплавам на основе золота. Иридий создает множество центров кристаллизации и, тем самым, позволяет ограничить рост зерен.
Детальное изучение структуры металлов, а именно, размеров кристаллов, их формы и состава, исключительно важно для выяснения их свойств и технологии получения. Некоторые представления о структуре металлов может дать изучение металлических поверхностей под электронным микроскопом в отраженном свете.
Свет отражается от полированной металлической поверхности, и характер отражения будет зависеть от наличия на ней неровностей, приводящих к его рассеянию .
Химическое воздействие на полированную поверхность металла (называемое травлением) также приведет к изменению характера отражения света. Соответствующие химические реактивы воздействуют на определенные области, находящиеся на поверхности металла в зоне повышенного механического напряжения, т.е. на границы зерен, в которых упаковка атомов не полностью упорядочена. Травление приводит к образованию канавок, рассеивающих свет, которые выгладят более темными линиями. Этот эффект схематически изображен на Рис. 1.5.2 для металла с выраженной однородной структурой зерен. Все зерна обладают приблизительно одинаковыми размерами и формой; такая структура зерен называется равноосной. Примером металла с такой структурой зерен служит доэвтектоидная гипоэвтектоидная нержавеющая сталь, поверхность которой после травления представлена на Рис. 1.5.3. Возможны и другие формы и размеры зерен, и очень часто они зависят от вида технологической обработки, используемого при твердении расплава. Например, если расплавленный металл заливать в форму с квадратным или круглым сечением, температура которой будет ниже, чем у расплава, структура затвердевшего металла будет выглядеть так, как показано на Рис. 1.5.4, т.е. кристаллы растут от стенок формы к центру.
Многие металлы легко деформируются, особенно, если они находятся в элементарном (т.е. чистом) состоянии. Это позволяет придавать им любую желаемую форму ударами молота, путем проката, прессования или протяжки. Крупные отливки, известные под названием слитков, могут быть превращены в изделия любой требуемой формы, например, в крыло автомобиля, остов лодки или проволоку.
Металл, форма которого была изменена путем деформации, называется кованым. Если бы стали изучать под оптическим микроскопом микроструктуру металлической проволоки, то она выглядела бы так, как показано на рисунке Рис. 1.5.5. Зерна вытянуты в направлении протяжки и образуют слоистую структуру. Таким образом, изучая микроскопическую структуру металла, можно получить о нем много информации.
dentaltechnic.info
В технике под металлами понимают материалы, обладающие целым комплексом специфических физических, химических, технологических, эксплуатационных и механических свойств.
Физические свойстваотражают поведение материалов в различных тепловых, электромагнитных и гравитационных полях. К наиболее характерным физическим свойствам металлов следует отнести металлический блеск, высокую электро- и теплопроводность, способность испускать электроны при нагреве, а также сравнительно высокую плотность большинства металлов.
Химические свойстваотражают способность материалов взаимодействовать с другими веществами. С точки зрения химических свойств металлы это химические элементы, расположенные в левой части таблицы Менделеева. Атомы этих элементов содержат на внешней электронной оболочке небольшое число электронов, слабо связанных с ядром. Вступая в химические взаимодействия с неметаллами, атомы металлов легко отдают им свои внешние валентные электроны и становятся положительно заряженными ионами.
Технологические свойстваотражают способность материалов подвергаться тому или иному виду обработки. К наиболее характерным технологическим свойствам металлов следует отнести их относительно хорошую деформируемость (в частности, штампуемость и ковкость), а также хорошую свариваемость и возможность получать изделия методом литья.
Эксплуатационные свойства характеризуют поведение материалов в реальных условиях эксплуатации. Среди эксплуатационных свойств металлов можно выделить их неплохую износостойкость.
Механические свойстваотражают способность материалов сопротивляться деформации и разрушению под воздействием различного рода нагрузок. К наиболее характерным механическим свойствам металлов относят их достаточно высокую пластичность и вязкость, а также твёрдость и прочность.
Физические и химические свойства металлов наиболее подробно изучаются в рамках дисциплин «Физика» и «Химия». Материаловедение большее внимание уделяет механическим и технологическим свойствам материалов.
Все металлы делят на две большие группы: на чёрные металлы и цветные металлы.
Чёрные металлы отличаются специфическим темно-серым цветом, высокой температурой плавления и относительно высокой твёрдостью. Цветные металлы имеют характерную белую, желтую или красную окраску, и отличаются от чёрных металлов большей пластичностью, меньшей твёрдостью и невысокой температурой плавления.
Чёрные металлы, в свою очередь, подразделяют на 5 групп:
1. Металлы группы железа – Fe, Cо, Ni и Mn.
Fe составляет основу самых распространённых в промышленности сплавов – сталей и чугунов. Остальные металлы этой группы применяются либо в качестве добавок к железоуглеродистым сплавам, либо в качестве основы для соответствующих сплавов (кобальтовых, никелевых и т.п.).
2. Тугоплавкие металлы – Ti, V, Cr, Mo, W и др.
Металлы этой группы имеют температуру плавления выше, чем у железа, т.е. более 1539°С. Их обычно используют в качестве добавок к легированным сталям, либо в качестве основы для специальных сплавов (например, титановых или хромовых). Вольфрам в чистом виде используют для изготовления нитей накала электроламп.
3. Урановые металлы или актиноиды – Ac, Th и т.д. Применяются, как правило, для изготовления сплавов, используемых в атомной энергетике.
4. Редкоземельные металлы или лантаноиды – La, Ce и т.д. Эти металлы обычно встречаются в смешанном виде и имеют близкие свойства. Их используют для изготовления специальных сплавов, обладающих особыми физическими и иными свойствами.
5. Щелочные металлы – Li, Na, K и т.д. Отличаются высокой химической активностью и поэтому в свободном виде не используются.
Цветные металлы подразделяют на 3 группы:
1. Легкие металлы – Al, Mg, Be. Обладают сравнительно низкой плотностью. Al из-за своей высокой электропроводности широко применяется для изготовления электропроводов. Кроме того, Al используют для получения алюминиевых сплавов, широко применяемых в машиностроении.
2. Благородные металлы – Ag, Au, Pt и т.д. в том числе Cu. Данные металлы отличаются высокой пластичностью, электропроводностью и коррозионной стойкостью. Благодаря этим свойствам они широко применяются в микроэлектронике и ювелирном деле. Медь используют также для получения бронз и латуней. Слитки благородных металлов, размещённые в банках, играют роль фактических денег.
3. Легкоплавкие металлы – Sn, Pb, Zn, Hg и т.д. Имеют сравнительно низкую температуру плавления. Температура плавления ртути (Hg) ниже комнатной и поэтому данный металл в обычных условиях является жидким. Sn и Pb используют для изготовления припоев, те сплавов, служащих для соединения деталей методом пайки.
Наиболее распространенным металлом на земном шаре является алюминий (8,8%). На втором месте находится железо (4,65%), которое к тому же является одним из наиболее дешёвых металлов.
studfiles.net
Под металлами понимают определенную группу элементов, расположенную в левой части Периодической таблицы Д.И.Менделеева.
Особенность строения металлических веществ заключается в том, что они все построены в основном из таких атомов, у которых внешние электроны слабо связаны с ядром. Это обусловливает и особый характер химического взаимодействия атомов металла, и металлические свойства.
Теория металлического состояния рассматривает металл как вещество, состоящее из положительно заряженных ионов, окруженных отрицательно заряженными частицами - электронами, слабо связанными с ядром. Эти электроны непрерывно перемещаются внутри металла и принадлежат не одному какому-то атому, а всей совокупности атомов.
Характерной особенностью атомно-кристаллического строения металлов является наличие электронного газа внутри металла, слабо связанного с положительно заряженными ионами.
Все металлы можно разделить на две большие группы - черные и цветные металлы.
Черные металлы имеют темно-серый цвет, большую плотность (кроме щелочноземельных), высокую температуру плавления, относительно высокую плотность и во многих случаях обладают полиморфизмом. Наиболее типичным металлом этой группы является железо.
Цветные металлы чаще всего имеют характерную окраску: красную, желтую, белую. Обладают большой пластичностью, малой твердостью, относительно низкой температурой плавления, для них характерно отсутствие полиморфизма. Наиболее типичным металлом этой группы является медь.
Текже металлы можно подразделить следующим образом:
1. Железные металлы - железо, кобальт, никель и близкий к ним по своим свойствам марганец. Кобальт, никель и марганец часто применяют как добавки к сплавам железа, а также в качестве основы для соответствующих сплавов, похожих по своим свойствам на высоколегированные стали.
2. Тугоплавкие металлы, температура плавления которых выше, чем железа (т.е. 1539 С). Применяют как добавки к легированным сталям, а также в качестве основы для соответствующих сплавов.
3. Редкоземельные металлы (РМЗ) - лантан, церий, неодим, празеодим и др., объединяемые под названием лантаноидов, и сходные с ними по свойствам иттрий и скандий.
4. Щелочноземельные металлы в свободном металлическом состоянии не применяются, за исключением специальных случаев.
Цветные металлы подразделяются на:
1. Легкие металлы - бериллий, магний, алюминий, обладающие малой плотностью.
2. Благородные металлы - серебро, золото, металлы платиновой группы.
3. Легкоплавкие металлы - цинк, кадмий, ртуть, олово, свинец, висмут, таллий, сурьма и элементы с ослабленными металлическими свойствами - галлий, германий.
Всякое вещество может находится в трех агрегатных состояниях -твердом, жидком и газообразном.
Кристаллическое состояние прежде всего характеризуется определенным, закономерным расположением атомов в пространстве.
В кристалле каждый атом имеет одно и то же количество ближайших атомов - соседей, расположенных на одинаковом от него расстояние.
Расположение атомов в кристалле изображается в виде пространственных схем, в виде так называемых кристаллических ячеек. Под элементарной кристаллической ячейкой подразумевается наименьший комплекс атомов, который при многократном повторение в пространстве позволяет воспроизвести пространственную кристаллическую решетку .
Простейшим типом кристаллической ячейки является кубическая решетка. В простой кубической решетке атомы расположены (упакованы) недостаточно плотно.
Рис.1. Типы кристаллической ячейки:
а - кубическая объемно-центрированная, б – кубическая гранецентрированная; с - гексагональная плотноупакованная
Стремление атомов металла занять места, наиболее близкие друг к другу, приводят к образованию решеток следующих типов (рис. 1): кубической объем-ноцентрированной, кубической гранецентрированной и гексагональной плотноупакованной (рис.1 ).
В кубической объемно-центрированной решетки (ОЦК) атомы расположены в углах куба и один атом в центре объема куба. в гранецентрированной кубической решетке (ГЦК) -атомы расположены в углах куба и в центре каждой грани, в гексагональной решетке атомы расположены в углах и центре шестигранных оснований призмы и три атома в средней плоскости призмы.
Кубическую ОЦК решетку имеют металлы:Na, Li, W, V, Cr и др. Кубическую ГЦК решетку имеют Pb, Ni, Ag, Au, Cu и др.
Размеры кристаллической решетки характеризуются параметрами, или периодами решетки. Кубическую решетку определяет один параметр - длина ребра куба. Параметры имеют величины порядка атомных размеров и измеряются в ангстремах.
Некоторые металлы имеют тетрагональную решетку; она характеризуется тем, что ребро с не равно ребру а. Отношение этих параметров характеризует так называемую степень тетрагональности. Число атомов, находящихся на наиболее близком расстояние от данного атома, называется координационным числом. Так например, атом в простой кубической решетке имеет шесть ближайших равноотстоящих соседей, т.е. координационное число этой решетки равно 6 (рис. 2 ).
Центральный атом в объемноцентрированной решетке имеет восемь ближайших равноотстоящих соседей, т.е. координационное число этой решетки равно 8. Координационное число для гранецентрированной решетки равно 12. В случае гексагональной плотноупакованной решетки координационное число равно 12.
studfiles.net
Категория:
Изготовление форм
Понятие о структуре металлов и сплавовВсе металлы и сплавы имеют кристаллическое, или зернистое, строение. Их кристаллы состоят из мельчайших частиц — атомов, которые располагаются в строго определенном порядке, образуя мельчайшие кристаллические решетки, которые можно рассмотреть с помощью рентгеновских лучей. Атомы находятся в непрерывном движении. При нагреве металла движение атомов усиливается, а по достижении температуры плавления кристаллические решетки разрушаются, благодаря чему расплавленный металл приобретает жидкотекучесть. При охлаждении металла кристаллические решетки образуются вновь.
Форма, размеры и расположение зерен характеризуют внутреннее строение —структуру металла, которая наряду с химическим составом оказывает большое влияние на свойства металлов и сплавов: чем меньше зерно, тем плотнее материал, тем выше его механические свойства.
Структуру сплавов определяют в металлографической лаборатории путем рассмотрения шлифа (отшлифованного до зеркального блеска среза кусочка сплава) при увеличении в 100—500 и более раз с помощью металлографического микроскопа. Для выявления отдельных структурных составляющих сплава шлиф обрабатывают растворами кислот.
Железоуглеродистые сплавы в зависимости от содержания углерода подразделяются на две группы — чугуны и стали. Если в железоуглеродистом сплаве содержится до 2% углерода, то его называют сталью, а если больше 2% углерода — то чугуном.
Железоуглеродистые сплавы могут содержать в качестве структурных составляющих графит, феррит, цементит, перлит и др.
Графит —свободный углерод, находящийся в основной массе сплава в виде пластйнок или зерен. Присутствуя в сером чугуне в виде пластин, графит как бы разделяет основную металлическую массу и тем самым снижает прочность и пластичность. Шаровидный графит в меньшей степени нарушает сплошность основной структуры сплава, благодаря чему повышается его прочность и пластичность.
Феррит — почти чистое железо, в котором углерод растворен в небольшом количестве (до 0,04%). Обладает большой вязкостью и пластичностью, низкой прочностью и сопротивляемостью износу.
Цементит — химическое соединение 6,67% углерода и 93,33% железа. Обладает очень большой твердостью и хрупкостью. Значительное количество цементита в белом чугуне делает его хрупким, не -поддающимся механической обработке.
Перлит — смесь тонких, чередующихся между -собой пластин цементита и феррита. Перлит содержит 0,83% углерода и 99,17% железа. Обладает высокой прочностью, твердостью, вязкостью и является основой высококачественных чугунов и сталей.
pereosnastka.ru
Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.
Структура металла — – строение металла, сплава. Основные методы изучения структуры металла – световая и электронная микроскопия, рентгеноструктурный анализ, а также изучение изломов и микрошлифов невооружённым глазом и с помощью лупы. [Новый… … Энциклопедия терминов, определений и пояснений строительных материалов
Структура — [structure] собирательное название характеристик макро и микростроения вещества. В металловедении под структурой понимают особенности строения металлов и сплавов, характеризующих природу (состав), морфологию и расположение разных фаз, а также их… … Энциклопедический словарь по металлургии
Структура — I Структура (лат. structura строение, расположение) определённая взаимосвязь, взаиморасположение составных частей; строение, устройство чего либо. II Структура совокупность устойчивых связей объекта, обеспечивающих его целостность … Большая советская энциклопедия
СТРУКТУРА — (1) определённое сочетание составных частей целого; строение, устройство чего либо; особенности машин, устройств, материалов, определяемые в первую очередь типом элементов, из которых они состоят, их количеством и порядком соединения между собой; … Большая политехническая энциклопедия
структура — ы, ж. structure f., нем. Structure <, лат. structura. Взаимное расположение и связь составных элементов чего л.; строение чего л. Структура металла. Зернистая структура почвы. БАС 1. Структура храма сего от внешния страны, сиречь архитектуры,… … Исторический словарь галлицизмов русского языка
СТРУКТУРА — СТРУКТУРА, структуры, жен. (лат. structura). То же, что строение в 3 знач. Структура металла. Структура гранита. Структура административного управления. Организационная структура. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова
структура — ы, ж. 1) (чего или какая) Строение вещества, обусловленное способами сочетания, связями зерен, атомов и т. п. Структура почвы. Структура металла. Древесная структура. Кристаллическая структура. Известняк, например, и мрамор имеют одинаковый… … Популярный словарь русского языка
структура — ы; ж. [лат. structura] 1. чего. Взаиморасположение и связь частей, составляющих что л. целое; устройство, строение чего л. С. металла. С. почвы. С. языка. Различная с. сходных явлений. Исследовать структуру вещества. Нарушения в структуре чего л … Энциклопедический словарь
структура — ы; ж. (лат. structura) см. тж. структурный 1) чего Взаиморасположение и связь частей, составляющих что л. целое; устройство, строение чего л. Структу/ра металла. Структу/ра почвы. Структу/ра языка … Словарь многих выражений
АТОМА СТРОЕНИЕ — раздел физики, изучающий внутреннее устройство атомов. Атомы, первоначально считавшиеся неделимыми, представляют собой сложные системы. Они имеют массивное ядро, состоящее из протонов и нейтронов, вокруг которого в пустом пространстве движутся… … Энциклопедия Кольера
dic.academic.ru