|
||||
|
Екатерина - специалист по продаже а/м КАМАЗ
43118-010-10 (дв.740.30-260 л.с.) | 2 220 000 |
43118-6033-24 (дв.740.55-300 л.с.) | 2 300 000 |
65117-029 (дв.740.30-260 л.с.) | 2 200 000 |
65117-6010-62 (дв.740.62-280 л.с.) | 2 350 000 |
44108 (дв.740.30-260 л.с.) | 2 160 000 |
44108-6030-24 (дв.740.55,рест.) | 2 200 000 |
65116-010-62 (дв.740.62-280 л.с.) | 1 880 000 |
6460 (дв.740.50-360 л.с.) | 2 180 000 |
45143-011-15 (дв.740.13-260л.с) | 2 180 000 |
65115 (дв.740.62-280 л.с.,рест.) | 2 190 000 |
65115 (дв.740.62-280 л.с.,3-х стор) | 2 295 000 |
6520 (дв.740.51-320 л.с.) | 2 610 000 |
6520 (дв.740.51-320 л.с.,сп.место) | 2 700 000 |
6522-027 (дв.740.51-320 л.с.,6х6) | 3 190 000 |
Нужны самосвалы? Обратите внимание на Ford-65513-02. |
Контактная информация.
г. Набережные Челны, Промкомзона-2, Автодорога №3, база «Партнер плюс».
тел/факс (8552) 388373.
Схема проезда
Данная разновидность насосов является одной из самых древних. Механическое вытеснение жидкостной среды можно назвать простейшей реализацией принципа перекачки. В наши дни конструкции таких агрегатов, конечно, имеют более сложное устройство по сравнению с первыми представителями класса. В современном виде поршневой жидкостный насос имеет прочный корпус, развитую элементную базу и предполагает наличие широких возможностей для коммуникации. Последний аспект обуславливает распространение оборудования в разных сферах от бытовых нужд и вплоть до промышленных узкоспециализированных отраслей.
Основу агрегата представляет металлический цилиндр, в котором и происходят рабочие процессы с жидкостью. Физические манипуляции выполняет поршень, в котором предусмотрены клапаны. Специалисты также называют такую систему плунжерной – по типу используемых поршневых механизмов. В сущности, главную функцию в таких системах выполняет гидравлический пресс. Поршневой жидкостный насос действует по принципу возвратно-поступательное движения, хотя и отличается от классических гидродвигателей присутствием системы клапанного распределения. Структура приводного механизма также включает целый набор обслуживающих деталей и компонентов. К частям данной конструкции можно отнести кривошип и шатун, которые составляют основу уже силового рабочего органа.
В упрощенном виде функция таких агрегатов напоминает обычный шприц или водозаборную колонку, в которой носитель замещается клапаном. Но, есть и особенности, которыми обладает поршневой жидкостный насос. Принцип действия в данном случае предусматривает, что принимающий трубопровод будет также иметь закрывающийся клапан. Благодаря такому устройству жидкость не может поступать обратно в цилиндр.
Несмотря на простую схему рабочего процесса, есть один существенный недостаток у таких насосов. Дело в том, что возвратно-поступательные действия не предполагают равномерную и плавную подачу носителя. Скачкообразные темпы, в которых работает поршневой жидкостный насос, могут доставлять трудности для последующего обслуживания принимающих коммуникаций. Впрочем, использование нескольких поршней позволяет минимизировать этот недостаток.
Появление данной разновидности поршневых насосов обусловлено стремлением производителей устранить эффект пульсации, который возникает именно по причине ритма, в котором поршень выталкивает порции жидкости. В таких насосах штоковая и поршневая полости имеют индивидуальные клапанные системы. Такой принцип распределения подачи воды позволяет не только устранять пульсацию, но и повышать производительность. Правда, односторонние жидкостные поршневые насосы все же имеют свои преимущества, которые выражаются в более высокой степени надежности и долговечности. Еще одной модификацией, которая должна была устранить ритмическую подачу жидкости, является насос, дополненный гидроаккумулятором. В момент пикового давления такие агрегаты собирают энергию, а при ее понижении – наоборот, отдают. Впрочем, полностью устранить пульсацию получается не всегда и эксплуатирующим предприятиям приходится соответствующим образом разрабатывать конфигурации приема жидкости уже вне конструкции насоса.
Используют такие агрегаты в разных областях. Его принцип действия не предполагает работу с большими объемами носителя, но зато имеет немало других полезных качеств. Так как в ходе вытеснения каждой новой «дозы» поршнем выполняется прием новой жидкости в условиях сухого цилиндра, использование конструкции себя оправдывает в химической промышленности. Специализированное назначение поршневых жидкостных насосов допускает работу с агрессивными средами, взрывоопасными смесями и некоторыми видами топлива. Но этим не ограничивается применение поршневых агрегатов. Их также используют в бытовых нуждах, для снабжения чистой водой и полива. Опять же, такие модели не рассчитываются на большие объемы циркуляции, но отличаются надежностью и деликатным обращением с обслуживаемой жидкостью – собственно, этот фактор и обусловил широкое распространение насосов в пищевой промышленности.
Среди достоинств таких систем можно отметить выносливость конструкции. Это объясняется не только использованием высокопрочных материалов для изготовления составных частей, но и самим принципом работы. Кроме этого, поршневой жидкостный насос отличается возможностью работы с носителями, у которых высокие требования к условиям пуска. В частности, многие специалисты отмечают выгоду от «сухого» всасывания, которое может обеспечить далеко не всякий насос. Что касается недостатков, то они преимущественно относятся к низкой производительности. Конечно, теоретически возможно и расширение технических параметров агрегата, но это приведет к повышению эксплуатационных требований оборудования. Тем более что многие альтернативные конструкции способны обеспечить достаточную продуктивность при меньших затратах.
Насосы такого типа занимают отдельное место на рынке, удовлетворяя при этом и запросы частных пользователей, и нужды крупных предприятий. В современных модификациях поршневой жидкостный насос позволяет выполнять широкий спектр задач. Некоторые из них вполне могут реализовать и агрегаты другого типа, но есть направления, в которых не обойтись именно без гидравлического принципа перекачки. Это относится к упомянутым отраслям химической и пищевой промышленности. С другой стороны, востребованность поршневых насосов в быту обусловлена их простой конструкцией и нетребовательностью в содержании. И это не говоря о высоком эксплуатационном ресурсе данной техники.
fb.ru
Отличительным признаком поршневых насосов является принудительное выталкивание жидкости в сторону нагнетания. Выталкивание жидкости в поршневых насосах (рис. VI.2) осуществляется дисковым поршнем, плотно прилегающим к стенкам кожуха, или продолговатым цилиндром — плунжером (рис. VI.3).
Уплотнение в последнем случае требуется только в месте прохода плунжера, что осуществлять значительно проще, чем при дисковом поршне. Наблюдение за вынесенным наружу сальником также осуществлять гораздо легче, чем наблюдение за уплотнением поршневых колец.
Если насос выталкивает жидкость при ходе поршня только в одном направлении, то его называют насосом одинарного действия (см. рис. VI.2 и VI.3). Насос двойного действия (рис. VI.4) совершает работу и при обратном ходе. Скорость движения рабочего органа принимают от 0,2 до 2 м/с (большие значения для больших по размерам насосов).
VI.2. Поршневой насосVI.3. Плунжерный насос
VI.4. Насос двойного действия
VI.5. Дифференциальный насос
Дифференциальный насос (рис. VI.5) работает на всасывающей стороне по принципу одинарного действия, а на нагнетательной — по принципу двойного.
В дифференциальном насосе жидкость, выталкиваемая из рабочей камеры, поступает в дополнительную камеру, объем которой попеременно заполняется удлиненным плунжером или значительно меньшим по диаметру штоком. В этой камере при нахождении здесь штока часть нагнетаемой жидкости задерживается, а при возвращении плунжера выталкивается дальше. Это обеспечивает при отсутствии второй пары клапанов более равномерную подачу, хотя производительность при этом не увеличивается.
Насосы штангового типа с проходным поршнем (рис. VI.6) применяют для откачивания воды из скважин.
В этих насосах поршень 1 со сквозным отверстием 2, прикрываемым сверху клапаном 3, с помощью штанги 4 перемещается вниз и вверх по расположенному в скважине цилиндру, в котором ниже имеется второй (обратный) клапан 5.
При движении поршня клапан 5 открывается и жидкость засасывается в цилиндр. При движении поршня вниз клапан 5 закрывается и жидкость устремляется вверх через отверстие 2, открывая клапан 3. При следующем движении поршня вверх клапан 3 закрывается, так как давление под ним уменьшается, и жидкость выталкивается в нагнетательную трубу 6, а в цилиндр поступает новая порция снизу.
Насосы с проходным поршнем позволяют отсасывать жидкость с больших глубин, но не обеспечивают равномерной подачи, так как являются насосами одинарного действия.
В соответствии с направлением движения рабочего органа различают насосы горизонтальные (см. рис. VI.5) и вертикальные (см. рис. VI.4). Вертикальные насосы более компактны и, кроме того, у них равномернее износ поршней и цилиндров.
По способу приведения в действие насосы делят на прямодействующие и приводные. Прямодействующие насосы соединены непосредственно с поршневыми паровыми машинами, а приводные — с электродвигателями или паровыми турбинами с помощью кривошипного механизма.
Небольшие поршневые насосы, применяемые, например, для подпитки систем водяного отопления или опрессовки трубопроводов, могут иметь рычажный ручной привод. Одной из причин вытеснения поршневых насосов насосами вращательного типа является то, что последние значительно проще соединять с распространенными в настоящее время электрическими и турбинными двигателями.
www.stroitelstvo-new.ru
Как и следует из названия этого типа гидравлических машин, принцип работы поршневых насосов заключается в циклическом засасывании и вытеснении объемов жидкости посредством рабочих органов – поршней. Очевидно, что поршневые насосы относятся к классу объемных насосов.
Эти насосы имеют общий для объемных насосов недостаток – неравномерность подачи, но выгодно отличаются от насосов динамического типа высоким КПД и напором. В конструкциях поршневых насосов может быть предусмотрено два типа приводов – ручной и механический (включая электромеханический привод посредством электродвигателя).
Для перекачивания малых объемов жидкости и выполнения других вспомогательных функций применяют насосы с ручным приводом. Схемы таких насосов представлены на рис. 1.
При начальных движениях рукоятки 4 поршень 2 совершает возвратно-поступательные движения в цилиндре 7 (рис. 1,а). В насосе имеются две рабочие камеры, расположенные по обе стороны насоса. При движении поршня в любом направлении объем одной из камер будет увеличиваться, и тогда в нее поступает (засасывается) жидкость, а другой камеры – уменьшаться, и жидкость из нее вытесняется в нагнетательную магистраль. Для регулирования направления движения жидкости в обеих камерах имеются нагнетательные 1 и 3 и всасывающие 5 и 6 клапаны. Так как часть объем правой рабочей камеры занимает объем штока, то объем жидкости, поступающий в левую камеру (см. рис. 1,а), будет несколько больше, чем в правую.
Расчетная подача за один ход поршня (при отсутствии потерь из-за перетока из одной камеры в другую) равна объему, определяемому как произведение площади днища поршня на его рабочий ход. Так, при движении поршня вправо этот объем составит:
qпр = π(D2 – d2)L/4,
при движении поршня влево:
qпр = πD2L/4,
где: D и d – диаметры соответственно поршня и штока;L – рабочий ход поршня.
Подача за одно двойное качание рукоятки (полный цикл насоса) будет равна:
qпр = π(2D2 – d2)L/4.
На рис. 1,б показана схема двухцилиндрового ручного поршневого насоса, обеспечивающего равные подачи жидкости при движении рукоятки в любую сторону.
***
При необходимости использовать поршневой насос в работе продолжительное время для его функционирования применяют механический привод, в качестве которого широкое распространение получил кривошипно-шатунный механизм (рис. 2). Возвратно-поступательное движение поршня 4 в цилиндре осуществляется при вращении привода 1 вокруг оси О2, отстоящей на величину радиуса r от оси вращения. За один оборот привода поршень совершает два хода, из которых один служит для всасывания, а другой – для вытеснения (нагнетания) жидкости. Для обеспечения этих процессов имеются два самодействующих клапана – всасывающий 5 и нагнетательный 6.
Подача Q такого поршневого насоса простого действия определяется объемом жидкости Vп, вытесняемым при одном ходе поршня, т. е. произведением площади днища поршня Fп на его ход L, и умноженном на количество рабочих ходов за единицу времени, т. е. – на частоту вращения привода n:
Q = Vпn = FпLn = πD2Ln/4, (м3/с или м3/мин и т. п.).
Очевидно, что подача поршневого насоса неравномерная – недостаток, присущий всем типам и конструкциям объемных насосов. Если представить движение вытесняемой из цилиндра жидкости как поток, перемещающийся по участку трубы, то подачу насоса за цикл вытеснения можно выразить через скорость перемещения поршня (потока):
Q = vпFп,
где: vп - скорость поршня.
Для определения скорости перемещения поршня используем схему на рис. 2. При повороте привода на угол φ поршень в цилиндре переместится на расстояние x, равное
x = (r + R) – r cos φ + R cos α.
Если учесть, что скорость поршня vп является производной пути x ко времени t, и принимая во внимание, что изменение угла φ поворота привода во времени равно его угловой скорости ω, после соответствующих преобразований получим:
vп = rω0 sin φ.
Отсюда следует, что
Q = vпFп = rω0 sin φ Fп.
Таким образом, подача поршневого насоса во времени изменяется по синусоидальной зависимости, при этом процесс нагнетания чередуется с процессом всасывания через каждые 180˚ поворота привода. На рис. 3 приведены графики подачи поршневых насосов: одноцилиндрового (а), двухцилиндрового (б) и трехцилиндрового (в). Из графика видно, что максимальной величины подача достигает при угле поворота φ = 90˚.
Среднюю скорость перемещения поршня можно вычислить по формуле:
vп.ср = (ω0r∫ sin φ dφ)/π = ω0r/2π.
За один оборот привода (φ = 360˚) средняя подача однопоршневого насоса будет равна
Qср = Fпvп.ср = Fпω0r/2π.
Неравномерность подачи а поршневого насоса характеризуется отношением его максимальной подачи Qmax к величине средней подачи Qср:
a = Qmax/Qср.
Если проанализировать формулы, приведенные выше, то становится очевидным, что для данного типа насосов неравномерность подачи составляет a = π. Этот недостаток поршневых насосов стараются уменьшить применением насосов двойного действия, а также применением многоцилиндровых насосов.
***
Работу поршневых насосов исследуют путем снятия индикаторных диаграмм. На рис. 4 приведена индикаторная диаграмма насоса простого действия. В начале всасывания (точка а) и нагнетания (точка b) наблюдается некоторое изменение давления, обусловленное инерционностью жидкости и работой клапанов насоса. Полное давление, определяющее работу, совершаемую за один оборот вала (заштрихованная область), называется индикаторным давлением Рi и определяется выражением:
Рi = Рвак + Рнагн.
В соответствии с этим индикаторная мощность Ni будет равна:
Ni = PiFпLn/60.
Для насосов двойного и многократного действия индикаторная мощность равна сумме мощностей, определенных для насосов простого действия, входящих в конструкцию.
Механический КПД насоса выражается величиной потерь мощности Nв, подводимой к валу, на трение в процессе работы, и может быть определен по формуле:
ηм = Ni/Nв.
Для поршневых насосов величина КПД обычно составляет 0,90…0,95. Помимо механических потерь в таких насосах имеются гидравлические и объемные потери, которые учитываются индикаторным КПД ηi:
ηi = Nп/Ni,
где Nп – полезная мощность.
Мощность на валу при этом составляет
Nв = Nп / ηi ηм = РiQ / ηiηм.
Отношение полезной мощности к мощности на валу называется полным КПД насоса:
η = Nп/Nв = (Nп/Ni)×(Ni/Nв) = ηм ηi.
Для приводных насосов полный КПД находится в пределах 0,65…0,85.
***
На рис. 5,а приведен общий вид насосного агрегата ПН 1,6/16Б, состоящего из горизонтального двухпоршневого насоса двухстороннего действия 1, клиноременной передачи 2, электродвигателя 3, коробки клапанов 4 и всасывающего патрубка 5.
Маркировка насосного агрегата означает:
Рабочие характеристики поршневых насосов обычно представляют в виде графических зависимостей между потребляемой мощностью и основными рабочими параметрами насоса. На рис. 5,б приведена характеристика насоса, т. е. зависимость подачи Q, полного КПД η и потребляемой мощности N от давления P.
***
Аксиально-поршневые насосы
k-a-t.ru
Поршневой насос (плунжерный насос) — один из видов объёмных гидромашин, в котором вытеснителями являются один или несколько поршней (плунжеров), совершающих возвратно-поступательное движение.
Рис. 1. Конструктивная схема простейшего поршневого насоса одностороннего действия Рис. 2. Дифференциальная схема включения поршневого насоса. Во время движения поршня влево часть жидкости отводится в штоковую полость, объём которой меньше объёма вытесняемой жидкости за счёт того, что часть объёма штоковой полости занимает штокВ отличие от многих других объёмных насосов, поршневые насосы не являются обратимыми, то есть, они не могут работать в качестве гидродвигателей из-за наличия клапанной системы распределения.
Поршневые насосы не следует путать с роторно-поршневыми, к которым относятся, например, аксиально-поршневые и радиально-поршневые насосы.
Принцип работы таков: за счет поступательного движения поршня создаётся разрежение в полости под ним, и туда засасывается жидкость из подводящего (всасывающего) трубопровода. При обратном движении поршня на всасывающем трубопроводе закрывается клапан, предотвращающий протечку жидкости обратно, и открывается клапан на нагнетательном трубопроводе, который был закрыт при всасывании. Туда вытесняется жидкость, которая находилась под поршнем, и процесс повторяется. Недостаток такого насоса в том, что жидкость движется по трубопроводу с различной скоростью (скачками). Этот момент обычно обходят созданием насосов, в которых несколько поршней. Основное преимущество в том, что он способен закачивать жидкость, будучи в момент пуска незаполненным ею (сухое всасывание), и поэтому применяется обычно там, где этим преимуществом необходимо воспользоваться.
Рис. 3.Принцип работы поршняОдной из разновидностей поршневого насоса является диафрагменный насос.
Одним из недостатков поршневых насосов, как и других объёмных насосов, являются пульсации подачи и давления. Пульсации можно уменьшить, расположив несколько поршней в ряд и соединив их с одним валом таким образом, чтобы циклы их работы были сдвинуты друг относительно друга по фазе на равные углы. Другим способом борьбы с пульсацией является использование дифференциальной схемы включения насоса (рис. 2), при которой нагнетание жидкости осуществляется не только во время прямого хода поршня, но и во время обратного хода.
Также широко применяют насосы двустороннего действия, у которых как поршневая, так и штоковая полость имеют (в отличие от дифференциальной схемы включения) свою клапанную систему распределения. У таких насосов коэффициент пульсаций ниже, а КПД выше, чем у насосов одностороннего действия (рис. 1).
Для борьбы с пульсацией также применяют гидроаккумуляторы, которые в момент наибольшего давления запасают энергию, а в момент спада давления отдают её.
Поршневые насосы используются с глубокой древности. Известно их применение для целей водоснабжения со II века до нашей эры. В настоящее время поршневые насосы используются в системах водоснабжения, в пищевой и химической промышленности, в быту. Диафрагменные насосы используются, например, в системах подачи топлива в двигателях внутреннего сгорания.
ru-wiki.org
В частном секторе не всегда есть возможность подключиться к централизованному водоснабжению, поэтому каждый хозяин старается возле дома обустроить колодец. Воду при этом совсем не обязательно таскать ведрами. Поршневой насос может обеспечить ее поставку прямо в дом.
Принцип действия устройства является достаточно простым. При помощи некоторого усилия, поршень в цилиндре движется вверх и вниз. Тяга при этом пропускается через фланец с уплотнителем из резины, который находится на верхней крышке. Ко дну устройства присоединяется труба, в ней имеется поршень. Когда он опускается, то вода через данное отверстие пропускается вверх, при этом клапан внизу устройства закрыт давлением воды. Если поршень начинает подниматься, то вода, которая находится над ним, начинает выливаться через выходную трубу. Одновременно с этим нижний клапан открывается, а жидкость снова набирается внутри прибора.
Поршневой насос сейчас все делает автоматически. Достаточно правильно установить его и подключить к электропитанию. При этом все комплектующие устройства должны быть прочными и надежными, особенно входная трубка, через которую вода подается внутрь насоса. В противном случае тяга может спровоцировать слипание ее стенок.
Также поршневой насос должен быть оснащен достаточно прочными обратными клапанами, чтобы они не дали воде вернуться обратно во входной шланг. Они могут быть мембранными или шариковыми. Если используется круглый клапан, желательно, чтобы он был изготовлен из стекла, эбонита или тяжелого пластика.
Однако следует также учитывать и тот факт, что устройства не рассчитаны на глубину более 8 метров. Если расстояние от поверхности до места залегания грунтовых вод достаточно большое, в таком случае придется устанавливать глубинный насос. Дело в том, что нормальной работе прибора может помешать атмосферное давление.
Нужно отметить, что не всегда устройство, работающее от электрической сети, может выполнять свою функцию без сбоев. Дело в том, что время от времени в сети могут быть сбои. В этом случае крайне полезным может быть насос ручной поршневой. Хотя на сегодняшний день такие приборы уже давно не используются и их достаточно тяжело купить. Полезным он будет и в том случае, если вы не планируете все время проводить на участке, не собираетесь каждый день пользоваться водой.
Поршневой насос можно соорудить и самому, тем более что схем конструкции устройства можно найти очень много. Однако лучше все-таки купить прибор у проворенного производителя.
И в домашних условиях, и в промышленных масштабах используются насосы аксиально-поршневые. Они имеют меньшую массу, небольшие габариты, могут работать при высоких оборотах, а также их просто монтировать и обслуживать. Устройство неприхотливое в использовании, его можно легко отремонтировать в случае поломки. Единственным недостатком может стать его стоимость, которая часто бывает достаточно высокой. Использоваться он может также в гидроприводе самолетов, станков, бульдозеров и других больших машин.
fb.ru
В поршневых возвратно-поступательных насосах силовое взаимодействие рабочего органа с жидкостью происходит в неподвижных рабочих камерах, которые попеременно сообщаются с полостями всасывания и нагнетания за счет впускного и выпускного клапанов.
В качестве рабочего органа (вытеснителя) в возвратно-поступательных насосах используются поршень, плунжер или гибкая диафрагма. Поэтому такие насосы подразделяются на поршневые, плунжерные и диафрагменные. Возвратно-поступательные насосы также подразделяются по способу привода на прямодействующие и вальные. Привод прямодействующего насоса осуществляется за счет возвратно-поступательного воздействия непосредственно на вытеснитель. Примером такого насоса является простейший насос с ручным приводом. Вальный насос приводится за счет вращения ведущего вала, которое преобразуется в возвратно-поступательное движение при помощи кулачкового или кривошипно-шатунного механизма.
Рассмотрим устройство и принцип работы поршневого насоса с вальным приводом
на рис. 1, а
приведена конструктивная схема поршневого насоса с кривошипно-шатунным механизмом. Приводной вал 7 через кривошип 6 радиусом ( r ) и шатун 5 приводит в движение поршень 3 площадью ( Sп ) который движется возвратно-поступательно в корпусе (цилиндре) 4. Насос имеет два подпружиненных клапана: впускной 1 и выпускной 2. Рабочей камерой данного насоса является пространство слева от поршня, ограниченное корпусом 4 и крайними положениями поршня 3 оно на рисунке затемнено. При движении поршня 3 вправо жидкость через впускной клапан 1 заполняет рабочую камеру, т. е. обеспечивается всасывание. При движении поршня 3 влево жидкость нагнетается в напорный трубопровод через клапан 2.
Рассматриваемый насос имеет одну рабочую камеру ( z = 1 ), и за один оборот вала поршень 3 совершает один рабочий ход, т.е. это насос однократного действия (к = 1). Из анализа рис. 1, а следует, что рабочий ход ( L ) поршня 3 равен двум радиусам кривошипа 6. Тогда в соответствии с (рис. 1) рабочий объем насоса равен объему рабочей камеры и может быть вычислен по формуле
WQ = WK = Sп * 2r
Насосы с поршнем в качестве вытеснителя являются самыми распространенными из возвратно-поступательных насосов. Они могут создавать значительные давления (до 30...40 МПа). Однако выпускаются также насосы, рассчитанные на значительно меньшие давления (до 1... 5 МПа). Скоростные параметры этих насосов (число рабочих циклов в единицу времени) во многом определяются конструкцией клапанов, так как они являются наиболее инерционными элементами. Насосы с подпружиненными клапанами допускают до 100...300 рабочих циклов в минуту. Насосы с клапанами специальной конструкции позволяют получить до 300...500 циклов в минуту.
В поршневых насосах существуют все три вида потерь: объемные, гидравлические и механические потери. Объемные КПД ( η0 ) большинства поршневых насосов составляют 0,85...0,98. Гидравлические КПД ( ηг ), определяемые потерями напора в клапанах, находятся в пределах 0,8...0,9, а механические КПД ( ηм ) – 0,94...0,96. Полный КПД ( ηн ) для большинства поршневых насосов составляет 0,75...0,92. Определяется по формуле
ηн = η м *ηг *η0
Значительно реже применяются насосы с плунжером в качестве вытеснителя. У этих насосов существенно больше поверхность контакта между корпусом и вытеснителем, что позволяет значительно лучше уплотнить рабочую камеру. Плунжерные насосы обычно изготовляются с высокой точностью, поэтому они являются весьма дорогими, но позволяют получать очень большие давления — до 150...200 МПа. Основной областью использования плунжерных насосов являются системы топливоподачи дизелей.
На рис. 1, б приведена конструктивная схема такого насоса с кулачковым приводом. Ведущий вал приводит во вращение кулачок 11, который воздействует на плунжер 9, совершающий возвратно-поступательные движения в корпусе (цилиндре) 4, причем движение плунжера влево обеспечивается кулачком 11, а обратный ход — пружиной 10. Данный насос имеет только один клапан — выпускной 2. Отсутствие впускного клапана является особенностью насосов, используемых на дизелях. Их топливные системы обычно имеют вспомогательные насосы, и заполнение рабочей камеры плунжерного насоса обеспечивается через проточку 8 вспомогательным насосом.
Диафрагменные насосы в отличие от насосов, рассмотренных выше, достаточно просты в изготовлении и поэтому являются дешевыми. На рис. 1, в приведена схема прямодействующего диафрагменного насоса. В корпусе 4 насоса закреплена гибкая диафрагма 12, прикрепленная также к штоку 13. Насос имеет два подпружиненных клапана: впускной 1 и выпускной 2. Рабочей камерой насоса является объем внутри корпуса 4, расположенный слева от диафрагмы 12. Рабочий процесс диафрагменного насоса не отличается от рабочего процесса поршневого насоса.
Диафрагменные насосы не могут создавать высокое давление, так как оно ограничивается прочностью диафрагмы. Его максимальные значения в большинстве случаев не превышают 0,1... 0,3 МПа. Диафрагменные насосы нашли применение в топливных системах карбюраторных двигателей.
Очень существенным недостатком возвратно-поступательных насосов с вытеснителем любой конструкции является крайняя неравномерность их подачи Q во времени t. Это вызвано чередованием тактов всасывания и нагнетания. График подачи Q, представленный на рис. 2, а, наглядно демонстрирует эту неравномерность. Для ее снижения используют два способа.
Первым из этих способов является применение многокамерных насосов. В этом случае нагнетание осуществляется несколькими вытеснителями по очереди или одновременно. На рис. 2, б представлен график подачи трехпоршневого насоса, на котором тонкими линиями показаны подачи отдельных рабочих камер, а толстой — суммарная подача насоса. Конструкции многокамерных насосов весьма разнообразны, но в большинстве случаев это насосы с несколькими рабочими камерами в одном корпусе. При увеличении числа рабочих камер с целью уменьшения неравномерности подачи предпочтение следует отдавать насосам с нечетным числом камер.
Вторым способом снижения неравномерности подачи жидкости является установка в гидролинию на выходе насосов гидравлических аккумуляторов. На рис. 2, в приведена схема насоса с гидравлическим аккумулятором, который представляет собой замкнутую емкость, разделенную гибкой диафрагмой на две полости. При ходе нагнетания часть подаваемой насосом жидкости заполняет нижнюю полость гидроаккумулятора, а газ (воздух) в верхней полости сжимается. При ходе всасывания давление в трубопроводе снижается и жидкость из гидроаккумулятора вытесняется сжатым газом. График подачи Q во времени t такого устройства приведен на рис. 2, а. Следует отметить, что вместо термина гидроаккумулятор в литературе используется также термин воздушный колпак.
remgidro.ru
Материал из Википедии — свободной энциклопедии
Поршневой насос (плунжерный насос) — один из видов объёмных гидромашин, в котором вытеснителями являются один или несколько поршней (плунжеров), совершающих возвратно-поступательное движение.
В отличие от многих других объёмных насосов, поршневые насосы не являются обратимыми, то есть, они не могут работать в качестве гидродвигателей из-за наличия клапанной системы распределения.
Поршневые насосы не следует путать с роторно-поршневыми, к которым относятся, например, аксиально-поршневые и радиально-поршневые насосы.
Принцип работы таков: за счет поступательного движения поршня создаётся разряжение в полости под ним, и туда засасывается жидкость из подводящего (всасывающего) трубопровода. При обратном движении поршня на всасывающем трубопроводе закрывается клапан, предотвращающий протечку жидкости обратно, и открывается клапан на нагнетательном трубопроводе, который был закрыт при всасывании. Туда вытесняется жидкость, которая находилась под поршнем, и процесс повторяется. Недостаток такого насоса в том, что жидкость движется по трубопроводу с различной скоростью (скачками). Этот момент обычно обходят созданием насосов, в которых несколько поршней. Основное преимущество в том, что он способен закачивать жидкость, будучи в момент пуска незаполненным ею (сухое всасывание), и поэтому применяется обычно там, где этим преимуществом необходимо воспользоваться.
Одной из разновидностей поршневого насоса является диафрагменный насос.
Одним из недостатков поршневых насосов, как и других объёмных насосов, являются пульсации подачи и давления. Пульсации можно уменьшить, расположив несколько поршней в ряд и соединив их с одним валом таким образом, чтобы циклы их работы были сдвинуты друг относительно друга по фазе на равные углы. Другим способом борьбы с пульсацией является использование дифференциальной схемы включения насоса (рис. 2), при которой нагнетание жидкости осуществляется не только во время прямого хода поршня, но и во время обратного хода.
Также широко применяют насосы двустороннего действия, у которых как поршневая, так и штоковая полость имеют (в отличие от дифференциальной схемы включения) свою клапанную систему распределения. У таких насосов коэффициент пульсаций ниже, а КПД выше, чем у насосов одностороннего действия (рис. 1).
Для борьбы с пульсацией также применяют гидроаккумуляторы, которые в момент наибольшего давления запасают энергию, а в момент спада давления отдают её.
Поршневые насосы используются с глубокой древности. Известно их применение для целей водоснабжения со II века до нашей эры. В настоящее время поршневые насосы используются в системах водоснабжения, в пищевой и химической промышленности, в быту. Диафрагменные насосы используются, например, в системах подачи топлива в двигателях внутреннего сгорания.
wiki-org.ru