Зависимость заряда аккумулятора от напряжения: Таблица заряда аккумулятора аккумулятора автомобиля на 12 вольт по напряжению

Содержание

Степень заряда автомобильного аккумулятора

Нормальные значения параметров АКБ «надо знать в лицо». По ним контролируется степень ее заряженности. Если контроль взять за привычку, то можно продлить срок службы изделия и избавить себя от встречи с последствиями его разрядки. Обсудим допустимые цифры и способы их замера. Также порассуждаем о причинах отклонений и выработаем список действий по возвращению величин в приемлемые рамки.

Нормальное напряжение полностью заряженного аккумулятора автомобиля и методы его замера

Измерение вольтажа производится вольтметром. Он встречается в составе мультиметра, в конструкции нагрузочной вилки и в ассортименте дополнительного бортового оборудования. Вещь бездушная, но будучи присоединенной к АКБ, способна вызывать тревогу.

Без нагрузки: что показывает тестер при 100% заряде

12,6-12,7 Вольт при +20…+25°C. Именно такое напряжение должно быть на аккумуляторе автомобиля через 6 часов после полной зарядки от бытовой сети или стоянки с неработающим двигателем. При измерениях важно отсоединить одну из клемм и учитывать температуру аккумулятора. Скажем, при -10…-15°C «напруга» 12,7 В соответствует уже 75% заряду.

Сразу после отключения крокодилов зарядного устройства разность потенциалов несколько выше. Конкретной цифры нет. К примеру, у AGM она может быть в районе 13,8-14,8 В, у EFB и кальциевого – 13,8-14,4 В.

Под нагрузкой: что показывает нагрузочная вилка при 100% заряде и стоит ли вообще ей доверять

Все АКБ, которые держат более 10В в течение первых 5 секунд, считаются исправными. Да, статус размазанный, но точную степень разряженности или заряженности вилка без детального анализа параметров не скажет. Именно поэтому опираться на показания прибора с дополнительным сопротивлением не стоит даже при проверке нового аккумулятора перед покупкой в магазине.

Проблема в том, что у каждого АКБ свой показатель в А*ч, а единого напряжения, соответствующего 100% заряду под нагрузкой – нет. Таблиц тоже нет, зато есть еще одна головная боль. Отсутствуют единые требования к изготовлению нагрузочных вилок. В результате, можно купить прибор, потребляющий, скажем, 200 А или 100 А. И тогда вовсе возникает путаница.

Остается полагаться на реальные данные, которые берутся из опытов. Известно, что обычная батарея на 55 А*ч считается полностью заряженной, если нагрузочная вилка выдает 10,5 В, при этом:

  • Напряжение после снятия нагрузки восстанавливается до 12,66-12,7 В.
  • Температура окружающей среды – около +15°C.
  • Нагрузка – 100 А.

В дополнение к вольтажу: плотность электролита заряженной АКБ

С эпохи дефицита батарей известно, что напряжение заряженного аккумулятора автомобиля напрямую зависит от плотности электролитической жидкости. С тех пор ничего не изменилось. Электролит – это по-прежнему смесь серной кислоты и дистиллированной воды, а ареометр – прибор №1 в комплекте юного аккумуляторщика.

1,26-1,28 г/см3 при +20…+25°C. Такая плотность химического вещества в каждой банке соответствует напряжению 12,6-12,7 В. Подобное соотношение показаний ареометра и мультиметра говорит о том, что емкость источника питания восстановлена до 100%. Говоря научным языком, сульфат, откладывающийся на пластинах при разряде в составе сульфата свинца, полностью покинул электроды и прореагировал с водородом, перейдя в серную кислоту.

Зимой: каким должно быть напряжение полностью восстановленного аккумулятора автомобиля в мороз

12,9 В при -10…-15°C. Эта разность потенциалов соответствует 100% заряду АКБ. При минусовой температуре ход электрохимических реакций замедляется и факты тому подтверждение:

  • При -30°C фактическая емкость батареи составляет примерно 50% от указанной на этикетке.
  • Плотность электролита – 1,28 г/см3. Напряжение при -30°C – 12,4 В, а при +25°C – 12,7 В.
  • При температуре ниже -25°C аккумулятор перестает брать заряд от генератора.

В холодных регионах принято добавлять в электролит серную кислоту, благодаря чему повышается его плотность. При 1,30-1,32 г/см3 напряжение аккумулятора автомобиля на морозе должно быть 12,9 В без нагрузки (температура: -10…-15°C). Увеличивая концентрацию сернокислого компонента, не стоит превышать 1,35 г/см3, иначе он начнет разъедать пластины.

К сведению. При разряде выделяется вода, и плотность электролитической жидкости падает, отчего случается ее замерзание при минусовых температурах. Лед коробит пластины, чем выводит АКБ из строя.

Чем вызваны отклонения от нормы в 12,6-12,7 В

Глубокая сульфатация пластин препятствует восстановлению напряжения без нагрузки до нормальных величин. В целом, это не единственный ее признак:

  1. Уменьшается плотность электролитической жидкости в банках.
  2. Аккумулятор быстро разряжается и быстро заряжается.
  3. Пластины покрыты белым слоем.

Крупные сульфаты не растворяются в ходе обычного зарядного цикла с током 10% от емкости АКБ. Поэтому, время заряда от стандартного ЗУ сокращается, и электролит быстро закипает.

Прогресс сульфатации вызван хранением в разряженном состоянии. Частный случай – использование в режиме хронического недозаряда. Противостоять деструкции не способны ни кальциевые, ни прогрессивные батареи AGM и EFB.

Что делать, если разность потенциалов ниже 12,6 В

  • Зарядить. 12,3-12,4 В. До этого напряжения можно разряжать аккумулятор автомобиля без особого для него вреда. Свыше 60% степени заряженности сульфатация протекает замедленным образом. Для восстановления батарею рекомендуется «погонять» током до 10% от емкости в течение 6-7 часов. Если изделие часто подзаряжается и в автономном состоянии держит норму, интересуйтесь, почему АКБ быстро разряжается при простое.
  • Произвести десульфатацию. В незапущенных случаях достаточно подключить десульфатирующее устройство к клеммам АКБ на несколько дней и емкость восстановится. Спецприбор дорог, поэтому многие имитируют его функционал с помощью обычного зарядника и лампы из автомобильной фары.

Интересные факты из эксплуатации аккумуляторных батарей

Сколько потребляет стартер зимой, каков минимальный порог вольтажа для его срабатывания и сколько прокруток он может совершить в -20°C, прежде чем сядет аккумулятор? Как оценить степень заряженности АКБ только с помощью мультиметра, и как часто пользоваться зарядным устройством? Обо всем этом рассказывают эксперты журнала.

Батарея и стартер

Максимальный пусковой ток электромотора стартерного механизма на переднеприводных Ладах – не более 400 А. Зимой, как правило, дело доходит до 350 А. Летом требуется меньше – порядка 200 А.

Если сделать последовательно 5 попыток запуска двигателя при -20°C, аккумулятор сядет.
Результат получен при определенных условиях:

  • Емкость АКБ – 60 А*ч.
  • Изделие заряжено: при комнатной температуре тестер показывал 12,7 В.
  • Батарея ночевала на улице.
  • Длительность 1 попытки безуспешного запуска – 10 секунд.
  • Машина – Lada Priora.
  • Масло – полусинтетика Liqui Moly 10W-40.

К сведению. После отогревания в помещении батарея частично восстанавливается и способна еще несколько раз покрутить стартер.

11,9 В без нагрузки при температуре +15°C – минимальное напряжение, при котором двигатель еще может запуститься. Но ситуация опасна, поскольку при 11,9 В и ниже прогрессирует сульфатация.

Мультиметр – аккумулятор – ЗУ

Для оценки степени заряженности аккумулятора разработаны таблицы, увязывающие напряжение на клеммах с % заряда по шкале от 0 до 100%. Критическим принято считать 10,8 В. Это глубокий разряд. Обычная батарея переносит не более 2-3 таких предельных режимов.

Раз в два месяца при смешанном цикле езды. Такова периодичность подзаряда АКБ летом, весной и осенью. Зимой частота увеличивается до 2-3 недель при -10°C за бортом. При эксплуатации при температуре ниже -25°C зарядка должна производиться 1 раз в 5 дней.

Рабочее состояние аккумуляторной батареи определяется по ее напряжению, которое, надо заметить, при разряде, заряде и на холостом ходу будет очень сильно различаться и, тем не менее, эта характеристика АКБ является основной для определения степени заряженности аккумулятора вашего автомобиля.

Первый способ
Можно воспользоваться двумя простыми методами определения заряженности АКБ. Первый способ наиболее простой. Он заключается в обычном измерении электрического напряжения на контактных клеммах аккумуляторной батареи, для чего необходим цифровой вольтметр, поскольку он может показать при замере точное значение уровня напряжения АКБ, включая десятые и даже сотые доли вольта.
Напряжение аккумуляторной батареи измеряют на ее клеммах обязательно при отсутствии как разрядного, так и зарядного токов в течение 4-5 часов. Это время необходимо для того, чтобы напряжение могло придти в нормальное стабильное состояние. Нормальное напряжение стартерных аккумуляторных батарей с жидким электролитом составляет от 12,5 до 12,9 вольт. В таблице мы привели показатели напряжения для АКБ с жидким электролитом и степень его заряженности.

Ниже: степень заряженности, % -> Напряжение батареи (В.)
100 -> 12.71
95 -> 12.65
90 -> 12.57
85 -> 12. 53
80 -> 12.47
78 -> 12.41
70 -> 12.37
65 -> 12.33
60 -> 12.29
55 -> 12.25
50 -> 12.21
40 -> 12.13
30 -> 12.05
20 -> 11.99
10 -> 11.95
Более точно измерить уровень заряженности аккумулятора можно только с помощью специальных зарядных устройств с микропроцессором и памятью. Эти современные устройства могут отслеживать как разряд, так и заряд аккумулятора на протяжении нескольких циклов. Такой метод является наиболее точным и с его помощью можно сэкономить деньги при замене или обслуживании аккумулятора.

Второй способ определения заряженности АКБ
Второй способ заключается в измерении плотности электролита и по этому параметру можно будет определять степень заряженности аккумулятора вашей автомашины, но этот метод подходит не ко всем аккумуляторам, а только к АКБ с жидким электролитом.
В таблице приведены показатели плотности электролита и соответствующий этому показателю уровень заряженности аккумулятора.

Ниже: уровень заряженности, % -> Плотность электролита
100 -> 1.266
95 -> 1.258
90 -> 1.250
85 -> 1.242
80 -> 1.234
78 -> 1.226
70 -> 1.219
65 -> 1.212
60 -> 1.205
55 -> 1.198
50 -> 1.191
40 -> 1.177
30 -> 1.163
20 -> 1.149
10 -> 1.135

Информационный сайт о накопителях энергии

Автомобильная батарея состоит из 6 элементов, соединенных последовательно. Каждая банка имеет полный заряд 2,10-2,15 В, поэтому общее напряжение суммируется, составляет 12,6 – 12,8 В. Какое напряжение у АКБ после отключения ЗУ? При установке аккумулятора в авто величина напряжения после зарядки должна быть 12,4 В. это нормально. Аккумулятор автомобиля стартовый, в период запуска двигателя разряжается, в процессе движения восстанавливает энергию от генератора машины. Если напряжение в аккумуляторе снижается до 12 В, устройство требует зарядки от сети. Большая потеря заряда в банках характеризуется, как глубокий разряд, разрушающий батарею.

Напряжение зарядки аккумулятора автомобильным зарядным устройством

Автомобиль, эксплуатируемый с преимуществом длинных пробегов, успевает полностью зарядиться от генератора для следующего пуска. Но заряд его не будет полным. Степень зарядки аккумулятора можно определить по напряжению на клеммах. Чем меньше величина, тем слабее концентрация электролита в банках.

Проверить заряд аккумулятора, можно воспользовавшись мультиметром. Следует установить градуировку «переменный ток» и замерить показатель на клеммах. Можно определить уровень заряда по плотности электролита.

Степень зарядки автомобильного аккумулятора определяется по напряжению, как в таблице.

Чтобы поднять емкость аккумулятора, необходимо зарядить его специальным зарядным устройством. Это преобразователь напряжения, выпрямитель. Аккумуляторы бывают обслуживаемые, необслуживаемые, гелевые, AGM, литиевые. Напряжение и ток зарядки их отличается по напряжению, времени, длительности циклов. Есть универсальные ЗУ, рассчитанные на переключение режимов для разных моделей АКБ, регулирование параметров.

Напряжение на клеммах аккумулятора при зарядке

Для зарядки аккумулятра от зарядного устройства выбирают режим с постоянным током или напряжением. Оба они одинаково эффективны, но применяются к разным батареям. В процессе зарядки и эксплуатации аккумулятора необходимо производить замеры напряжения на клеммах кислотного аккумулятора.

Чтобы зарядить батарею на 12 В, потребуется установить режим постоянного напряжения 16 -16,5 В. Используя ток 14,4 В можно зарядить аккумулятор на 75-85 %. При постоянном напряжении сила зарядного тока величина переменная, ограничивается только ЗУ.

Какое напряжение для зарядки нужно установить? Исходят из достижения критического напряжения, сопровождающегося «кипением» — выделением газа из банок автомобильного аккумулятора. Нормально заряженным считают аккумулятор, с напряжением на клеммах от 12,6 до 14,5 В. Снимать показания следует прибором, не полагаясь на бортовой компьютер. Замеры на работающем двигателе, и в отключенной батарее отличаются.

Допустимое напряжение зарядки на клеммах аккумулятора при работающем моторе варьируется 13,5 -14 В. Показатель показывает недозаряд батареи, если напряжение выше. Нужно повторить замер через 2 минуты, возможно, батарея разрядилась при запуске. Если напряжение зарядки низкое – аккумулятор теряет ресурс или проблемы исходят от автомобильного генератора. Проводить замеры нужно, отключив бортовые системы.

Замеряя напряжение зарядки аккумулятора на неработающем авто, невозможно выявить проблемы с генератором, однако хорошо определяется степень зарядки аккумулятора. Напряжение 12,5 – 14 В говорит об отсутствии проблем. При низком показателе необходимо проверить:

  • состояние электролита – субстанция должна быть прозрачной, уровень нормальным;
  • многое зависит от уровня заряда АКБ;
  • определение возможности подзарядки до оптимального напряжения.

Тестирование выявит проблемы с аккумулятором, его работоспособность.

Зарядка аккумулятора постоянным сопротивлением

Возможна ли зарядка АКБ с постоянным сопротивлением? Из формулы I =U*R, понятно, если установить сопротивление величиной постоянной, то переменными станут ток или напряжение. Но внутри аккумулятора сопротивление – величина переменная, влияющая на поглощение энергии. Полное сопротивление складывается из сопротивления поляризации, которое меняется и омического, остающегося стабильным в одинаковых условиях и для конкретного аккумулятора.

На сопротивление влияют температура, степень разряженности, концентрация электролита, учтенные в характеристиках разрядных кривых АКБ. Но если в формуле сопротивление величина переменная во времени и состоянии автомобильного аккумулятора, то постоянным при зарядке может быть ток, напряжение или комбинирование тока и напряжения. Для сглаживания величины тока зарядки используется резистор — балластное сопротивление.

Какое напряжение выставлять при зарядке аккумулятора

Напряжение это разность потенциалов, и ток потечет в ту сторону, где эта величина будет меньшей. Поэтому напряжение зарядного устройства выбирается всегда выше, чем уровень зарядки автомобильного аккумулятора. Чем больше разница напряжения, тем быстрее и полнее наберет емкость аккумулятор автомобиля после зарядки.

Во время зарядки при постоянном напряжении предел установленного на ЗУ параметра ниже, чем характеристика, при которой начинается выделение газов из обслуживаемого аккумулятора. Какое значение разности потенциалов нужно для зарядки автомобильного аккумулятора? Максимальное напряжение, применяемое при зарядке батареи 16, 5 В. Какой параметр должен быть, зависит от вида АКБ. От напряжения зависит время и полнота зарядки аккумулятора. Соотношение напряжения заряда, восстановления емкости для батареи 12 В за 24 часа таково:

  • Напряжением 14,4 В можно зарядить батарею на 75-80 %;
  • Используя напряжение 15 В степень заряда 85 – 90 %;
  • Напряжением 16 В батарея заряжается на 95 – 97 %;
  • Максимальным напряжением 16,3 -16,5 В батареи заряжаются полностью.

При достижении напряжения на батарее 14,4 – 14,5 на ЗУ загорается сигнал окончания зарядки.

Установлено, что именно это напряжение автомобильного аккумулятора не создает газовыделения после и во время зарядки. Поэтому при реальной эксплуатации автомобилей, генератор через регулятор напряжения ограничивает максимальный уровень напряжения этим значением. Летом этот показатель близок к 100 % емкости, зимой соответствует 13,9-14,3 В, при работающем моторе, что соответствует 70-75 % емкости.

Максимальное напряжение зарядки аккумулятора

Мы знаем, современные авто высокого класса имеют бортовую систему, работающую на 16 В. Какие аккумуляторы применяются в этих АКБ? Для того чтобы не было газовыделения, ситема должна быть закрытой.

Значит, необслуживаемые Ca/Ca аккумуляторы могут выдержать жесткие условия эксплуатации. Для них используется особый режим зарядки. Использование кальция вместо сурьмы позволяет вести зарядку аккумулятора повышенным напряжением, при этом электролит вскипает. Необслуживаемый аккумулятор не терпит резких перепадов напряжения в бортовой сети. Он предназначен для автомобилей с хорошей системой электронного контроля напряжения. Более терпимы к условиям эксплуатации гибридные батареи, из малосурьмянистых и кальциевых пластин.

Напряжение аккумулятора в конце зарядки

После полной зарядки АКБ заряд несколько изменится. Происходит диссоциация электролита с заполнением пор токовыводящих пластин. Установленный в подкапотное пространство автомобильный аккумулятор принимает температуру окружающей среды, и емкость изменится в большую сторону при жаре или падает при минусовых температурах. Поэтому точно узнать после зарядки, какое напряжение аккумулятора автомобиля, можно, установив его на место. Даже, находясь в мастерской, напряжение на клеммах изменяется. Это особенно заметно, если не полностью проведен цикл и ток зарядки не упал до 200 мА. При этом происходит перераспределение заряда, и возможна дополнительная подпитка устройства энергией.

Но если после зарядки аккумулятора напряжение падает на работающей машине – это повод для ревизии генератора или замены аккумулятора.

Зависимость зарядки аккумулятора от напряжения

Каждый вид аккумуляторов заряжается на основании характеристик видов использованный конструкций. Самое низкое напряжение зарядки имеют обслуживаемые, гелевые и литиевые аккумуляторы. Причины вскипание, разрушение состава, пожароопасность. Если обслуживаемый аккумулятор можно зарядить простейшим ЗУ, литиевые и гелевые системы требуют соблюдения 2 ступенчатого комбинированного режима накопления энергии.

Все системы рассчитаны на предотвращение перезаряда, снабжены автоматическим отключением питания при достижении напряжения, какое требуется для автомобильного аккумулятора. При зарядке происходит постепенное снижение силы тока из-за повышения сопротивления, напряжение остается стабильным. После зарядки процесс электрохимической реакции продолжается, в виде незначительного саморазряда.

Важно, чтобы напряжение зарядки всегда превышало параметры, нужные для эксплуатации прибора. Чтобы ток перетекал, нужен уклон, которым является разность напряжения между ЗУ и батареей.

Видео

Предлагаем посмотреть советы специалиста, как правильно заряжать и обслуживать аккумулятор автомобиля, какое напряжение должно быть на аккумуляторе после зарядки.

Заряд аккумулятора от температуры и плотности электролита: SOC

Температура электролитаWet Low Maintenance (Sb/Ca) or Wet Standard (Sb/Sb)** батареяWet “Mainteneance Free” (Ca/Ca)*** или AGM/Gel Cell VRLA (Ca/Ca) батарея
Значение плотности электролитаЗначение напряжения разомкнутой цепиЗначение напряжения разомкнутой цепи
 °F°С100% SoC*75% SoC50% SoC25% SoC0% SoC100% SoC75% SoC50% SoC25% SoC0% SoC100% SoC75% SoC50% SoC25% SoC0% SoC
12048,91,2491,2091,1741,1391,10412,66312,46312,25312,07311,90312,81312,61312,41312,01311,813
11043,31,2531,2131,1781,1431,10812,66112,46112,25112,07111,90112,81112,61112,41112,01111,811
10037,81,2571,2171,1821,1471,11212,65812,45812,24812,06811,89812,80812,60812,40812,00811,808
9032,21,2611,2211,1861,1511,11612,65512,45512,24512,06511,89512,80512,60512,40512,00511,805
8026,71,2651,2251,191,1551,1212,6512,4512,2412,0611,8912,812,612,41211,8
7021,11,2691,2291,1941,1591,12412,64312,44312,23312,05311,88312,79312,59312,39311,99311,793
6015,61,2731,2331,1981,1631,12812,63412,43412,22412,04411,87412,78412,58412,38411,98411,784
50101,2771,2371,2021,1671,13212,62212,42212,21212,03211,86212,77212,57212,37211,97211,772
404,41,2811,2411,2061,1711,13612,60612,40612,19612,01611,84612,75612,55612,35611,95611,756
30-1,11,2851,2451,211,1751,1412,58812,38812,17811,99811,82812,73812,53812,33811,93811,738
20-6,71,2891,2491,2141,1791,14412,56612,36612,15611,97611,80612,71612,51612,31611,91611,716
10-12,21,2931,2531,2181,1831,14812,54212,34212,13211,95211,78212,69212,49212,29211,89211,692
0-17,81,2971,2571,2221,1871,15212,51612,31612,10611,92611,75612,66612,46612,26611,86611,666

*SOC = State of charge – уровень заряда аккумуляторной батареи
**Wet Low Maintenance (Sb/Ca) or Wet Standard (Sb/Sb): Сурьмянисто-кальциевые редкообслуживаемые батареи с электролитом и стандартные Сурьмянистые батареи с электролитом
***Wet “Mainteneance Free” (Ca/Ca): Кальциевые обслуживаемые батареи с электролитом

₽38 990

В корзину

₽12 450

В корзину

₽28 150

В корзину

₽3 900

В корзину

Скачать таблицу зависимости заряженности аккумулятора от температуры и плотности электролита (SOC) в PDF

Li-Ion Battery Charging » Li-Ion Charging » Electronics Notes

Для правильной работы литий-ионных, литий-ионных аккумуляторов их необходимо правильно заряжать, в противном случае они не будут работать должным образом.


Литий-ионный аккумулятор Включает:
Литий-ионная технология
Типы литий-ионных аккумуляторов
Литий-полимерный аккумулятор
литий-ионная зарядка
Преимущества и недостатки литий-ионных аккумуляторов
Как продлить срок службы литий-ионных аккумуляторов

Аккумуляторная технология Включает:
Обзор аккумуляторных технологий
Определения и термины батареи
Цинк-углерод
щелочной
Цинковые воздушные ячейки
NiCad
NiMH
литий-ион
Свинцово-кислотные


Литий-ионные, литий-ионные аккумуляторы обеспечивают превосходный уровень производительности. Чтобы получить от них максимум пользы, их необходимо правильно заряжать.

Если зарядка ионно-литиевых аккумуляторов не производится надлежащим образом, это может привести к нарушению работы аккумуляторов и даже к их разрушению, поэтому следует соблюдать осторожность.

Правильная зарядка литий-ионных аккумуляторов обеспечивает наилучшую производительность и максимально длительный срок службы. В результате зарядка литий-ионных аккумуляторов обычно осуществляется в сочетании с системой управления батареями. Это контролирует уровень заряда, разряда и скорость, с которой они могут происходить.

Зарядка литий-ионного аккумулятора электроинструмента

Химия заряда/разряда литий-ионного аккумулятора

В самых общих чертах зарядку и разрядку ионно-литиевой батареи объяснить относительно легко.

Когда литий-ионный элемент или аккумулятор разряжаются, он подает ток во внешнюю цепь. Внутри анода в процессе окисления выделяются ионы лития, которые переходят к катоду. Электроны из созданных ионов текут в противоположном направлении, вытекая в электрическую или электронную цепь, на которую подается питание. Затем ионы и электроны воссоединяются на катоде.

Этот процесс высвобождает химическую энергию, которая хранится в клетке в виде электрической энергии.

Во время цикла заряда реакции протекают в обратном направлении с переходом ионов лития от катода через электролит к аноду. Электроны, обеспечиваемые внешней цепью, затем объединяются с ионами лития, чтобы обеспечить накопленную электрическую энергию.

Следует помнить, что процесс зарядки не является полностью эффективным — часть энергии теряется в виде тепла, хотя типичными являются уровни эффективности около 95% или чуть меньше.

Электронные условия для зарядки ионно-литиевых аккумуляторов

С точки зрения электроники процесса зарядка ионно-литиевых аккумуляторов сильно отличается от зарядки никель-кадмиевых или никель-металлогидридных аккумуляторов. Использовать одни и те же электронные схемы для их зарядки невозможно по разным причинам.

Зарядка ионно-литиевых аккумуляторов зависит от напряжения, а не от тока. Таким образом, зарядка ионно-литиевых аккумуляторов больше похожа на зарядку свинцово-кислотных аккумуляторов.

Одно из отличий от зарядки ионно-литиевых аккумуляторов заключается в том, что они имеют более высокое напряжение на элемент — от 3,7 до 4 вольт на элемент по сравнению с 1,2 вольта. 1

Литий-ионные элементы

также требуют гораздо более жесткого допуска по напряжению при обнаружении полного заряда, и после полной зарядки они не допускают и не требуют непрерывного или плавающего заряда. Особенно важно иметь возможность точно определять состояние полного заряда, потому что ионно-литиевые батареи не терпят перезарядки. Они перегреваются, и это сокращает срок их службы, но в экстремальных условиях это может привести к возгоранию или даже взрыву.

Типичная кривая разряда потребительского литий-ионного элемента

Большинство ориентированных на потребителя литий-ионных аккумуляторов заряжаются до напряжения 4,2 вольта на элемент, и это имеет допуск около ± 50 мВ на элемент. Зарядка сверх этого значения вызывает нагрузку на элемент и приводит к окислению, что сокращает срок службы и емкость. Это также может вызвать проблемы с безопасностью.

Кривая разряда, показанная выше, является типичной для литий-ионного элемента в форме оксида кобальта. Различные типы ионно-литиевых элементов имеют немного разные напряжения, но все они будут иметь одинаковую форму разрядных кривых.

Зарядку ионно-литиевых аккумуляторов можно разделить на два основных этапа:

  • Заряд постоянным током:   На первом этапе зарядки литий-ионного аккумулятора или элемента контролируется ток заряда. Обычно это будет от 0,5 до 1,0 C. (Примечание: для батареи емкостью 2000 мАч скорость заряда будет составлять 2000 мА при скорости заряда C).

    Для потребительских элементов и батарей LCO рекомендуется скорость заряда не более 0,8C.

    На этом этапе напряжение на литий-ионном элементе увеличивается для заряда постоянным током. На этом этапе время зарядки может составлять около часа.

  • Заряд насыщения:   Через некоторое время напряжение достигает пика около 4,2 В для элемента LCO. В этот момент элемент или батарея должны войти во вторую стадию зарядки, известную как заряд насыщения. Поддерживается постоянное напряжение 4,2 вольта, а ток будет неуклонно падать.

    Конец цикла заряда достигается, когда ток падает примерно до 10 % от номинального тока. Время зарядки на этом этапе может составлять около двух часов в зависимости от типа элемента, производителя и т. д.

Эффективность заряда, т. е. количество заряда, сохраняемого аккумулятором или элементом, по сравнению с количеством заряда, поступающего в элемент, является высоким. Может быть достигнута эффективность заряда от 95 до 99%. Это отражается в относительно низких уровнях повышения температуры клеток.

Многие элементы в настоящее время предназначены для быстрой зарядки, хотя в пределах рейтинга для элемента этот процесс может сократить срок службы батареи, и необходимо найти баланс между удобством и сроком службы.

Меры предосторожности при зарядке ионно-литиевых аккумуляторов

Ввиду количества энергии, хранящейся в ионно-литиевых батареях, характера их химического состава и т. д., необходимо обеспечить, чтобы батареи заряжались надлежащим образом и с использованием соответствующего зарядного устройства и оборудования.

Зарядные устройства для ионно-литиевых аккумуляторов или аккумуляторные блоки включают в себя различные механизмы для предотвращения повреждений и опасностей. Часто эти механизмы предусмотрены внутри аккумуляторной батареи, которую затем можно использовать с простым зарядным устройством.

Механизм, необходимый для зарядки и разрядки литий-ионного аккумулятора, включает:

  • Ток заряда:  Для литий-ионных аккумуляторов ток заряда должен быть ограничен. Обычно максимальное значение составляет 0,8°C, но чаще устанавливаются более низкие значения, чтобы дать некоторый запас. Для некоторых аккумуляторов возможна более быстрая зарядка.

    Даже для батарей или элементов, которые могут выдерживать зарядку более высоким током, это влияет на срок службы. Если есть возможность снизить скорость заряда и не использовать быструю зарядку, это увеличит срок службы элемента.

  • Температура заряда:   Следует контролировать температуру заряда литий-ионного аккумулятора. Элемент или аккумулятор нельзя заряжать при температуре ниже 0°C или выше 45°C.

    Ионно-литиевые элементы и батареи

    лучше всего работают при комнатной температуре, поэтому зарядка в указанных температурных пределах обеспечивает наилучшую зарядку, а также продлевает срок службы батареи.

  • Ток разряда:   Требуется защита от тока разряда для предотвращения повреждения или взрыва в результате короткого замыкания. Для конкретного аккумуляторного блока существует ограничение, которое не следует превышать. Ввиду огромного запаса энергии превышение пределов может привести к пожару или даже к впечатляющему взрыву.

    Обычно аккумуляторные блоки имеют схему управления зарядом/разрядом, чтобы гарантировать, что допустимый ток не будет превышен, но всегда лучше не перенапрягать их.

    Различные типы технологии литий-ионных аккумуляторов могут обеспечивать различные возможности — в результате фактический выбор технологии ионно-литиевых аккумуляторов будет зависеть от области применения и необходимого тока/разрядной способности.

  • Перенапряжение:   Защита от перенапряжения при зарядке необходима для предотвращения подачи слишком высокого напряжения на клеммы аккумулятора. если зарядному напряжению будет позволено подняться слишком высоко, это может привести к повреждению.

  • Защита от перезарядки:   Схема защиты от перезарядки необходима для остановки процесса зарядки Li-ion, когда напряжение на элемент превышает 4,30 В. Чрезвычайно важно не перезаряжать литий в аккумуляторе. Система управления батареями должна обеспечивать защиту от перезарядки.
  • Защита от обратной полярности:   Защита от обратной полярности литий-ионного аккумулятора необходима, чтобы убедиться, что аккумулятор не заряжается в неправильном направлении, поскольку это может привести к серьезному повреждению или даже к взрыву.
  • Переразряд Li-Ion:   Требуется защита от переразряда, чтобы предотвратить падение напряжения аккумулятора ниже примерно 2,3 В, в зависимости от производителя.
  • Перегрев:   Часто используется защита от перегрева, чтобы предотвратить работу батареи, если температура поднимается слишком высоко. Температуры выше 100°C могут привести к непоправимым повреждениям.

При использовании ионно-литиевых аккумуляторов обязательно использовать зарядное устройство производителя, поскольку в зарядном устройстве и аккумуляторном блоке могут использоваться различные элементы защиты в зависимости от конструкции.

циклов зарядки-разрядки Li-ion

Срок службы ионно-литиевых элементов и батарей часто выражается количеством циклов заряда-разряда, которые они выдерживают до того, как их емкость удержания заряда упадет.

Хотя литий-ионные элементы имеют так называемый календарный срок службы — их срок службы в терминах истекшего времени, даже если они не используются, еще одним важным фактором является количество циклов заряда-разряда, которые они могут выдержать. Обычно это, а не календарный срок службы, означает конец срока службы литий-ионного элемента.

Другие характеристики литий-ионного элемента свидетельствуют об улучшении по сравнению с конкурентами. Было показано, что он способен выдержать около 1000 циклов заряда/разряда при очень осторожном использовании и при этом сохранять 80% своей начальной емкости.

Никель-кадмиевые аккумуляторы

выдерживают около 500 циклов, хотя это сильно зависит от способа их использования. Плохо обработанная ячейка может дать только 50 или 100. Ячейки NiMH еще хуже, и это одно из основных направлений развития. Они способны дать в лучшем случае 500 циклов, прежде чем их емкость упадет до 80% от начального заряда.

Также было обнаружено, что ионно-литиевые элементы и батареи не страдают от эффекта памяти, который был очевиден для никель-кадмиевых аккумуляторов. Эффект памяти становился очевидным, если при каждом использовании элементы разряжались лишь частично. Со временем они «запоминали» уровень разряда и их емкость соответственно уменьшалась. В результате было целесообразно периодически производить полную разрядку элементов. Для литий-ионных аккумуляторов это не так.

Зарядка и разрядка ионно-литиевых аккумуляторов имеют ключевое значение для их работы и долговременной работы. Обычно микросхемы управления батареями встроены в блоки батарей. Он управляет зарядкой и разрядкой литий-ионной батареи. Таким образом, пользователь может подключить аккумулятор к зарядному устройству и оставить его заряжаться, зная, что его не нужно отключать через определенное время. Чип управления батареей также гарантирует, что батарея не разрядится слишком сильно. Проблема заключается в том, чтобы убедиться, что управление батареями понимает точное состояние заряда батареи.

Другие электронные компоненты:
Батарейки
конденсаторы
Соединители
Диоды
полевой транзистор
Индукторы
Типы памяти
Фототранзистор
Кристаллы кварца
Реле
Резисторы
ВЧ-разъемы
Переключатели
Технология поверхностного монтажа
Тиристор
Трансформеры
Транзистор
Клапаны/трубки

    Вернуться в меню «Компоненты». . .

Зарядка аккумуляторов | Мастервольт

Напряжение заряда

Гелевые аккумуляторы Mastervolt (2 В, 12 В) и Mastervolt AGM (6 В, 12 В) следует заряжать напряжением 14,25 В для систем на 12 В и 28,5 В для систем на 24 В. За фазой абсорбции следует фаза подзарядки (см. характеристику трехступенчатой ​​зарядки + на стр. 242), в которой напряжение снижается до 13,8 В для систем на 12 В и до 27,6 В для систем на 24 В. Эти цифры предполагают температуру 25 °C.

Для жидкостных свинцово-кислотных аккумуляторов напряжение поглощения составляет 14,25 В для систем 12 В и 28,5 В для систем 24 В. Плавающее напряжение для этого типа аккумуляторов составляет 13,25 В для систем на 12 В и 26,5 В для систем на 24 В. Все эти цифры приведены для 25 °C.

Литий-ионные аккумуляторы заряжаются при напряжении поглощения 14,25 В для 12 В и 28,5 В для 24 В систем. Плавающее напряжение составляет 13,5 В для систем на 12 В и 27 В для систем на 24 В.

Ток заряда

Практическое правило для гелевых и AGM-аккумуляторов гласит, что минимальный зарядный ток должен составлять от 15 до 25 % емкости аккумулятора. Во время зарядки вы, как правило, продолжаете подавать питание на подключенные устройства, и к этому энергопотреблению следует добавить 15-25 %.

Это означает, что для аккумуляторной батареи емкостью 400 А·ч и подключенной нагрузки в десять ампер требуется зарядное устройство емкостью от 70 до 9 ампер.0 ампер, чтобы зарядить аккумулятор за разумное время.

Максимальный зарядный ток составляет 50 % для гелевых аккумуляторов и 30 % для аккумуляторов AGM. Литий-ионные аккумуляторы Mastervolt могут подвергаться гораздо более высоким зарядным токам. Тем не менее, чтобы максимально увеличить срок службы литий-ионной батареи, Mastervolt рекомендует максимальный зарядный ток на уровне 30 % от емкости. Например, для аккумулятора емкостью 180 Ач это означает максимальный зарядный ток 60 ампер.

Зарядное устройство с температурной компенсацией для оптимальной защиты

Для обеспечения максимально возможного срока службы гелевых, AGM и литий-ионных аккумуляторов требуется современное зарядное устройство Mastervolt с трехступенчатой+ зарядной характеристикой. Эти зарядные устройства постоянно регулируют зарядное напряжение и зарядный ток.

Для мокрых гелевых и AGM аккумуляторов рекомендуется наличие датчика для измерения температуры аккумулятора. Это регулирует напряжение заряда в зависимости от температуры батареи, продлевая срок ее службы. Мы называем это «температурной компенсацией».

Кривая температурной компенсации

Поскольку такие устройства, как холодильники, всегда потребляют энергию от аккумулятора, даже когда он заряжается, температурная компенсация Mastervolt обеспечивает максимальный компенсационный эффект для защиты подключенных устройств. Компенсация составляет не более 14,55 В для системы 12 В и 29,1 В для системы 24 В.

При очень высоких (> 50 °C) и низких (<-20 °C) температурах влажные гелевые и AGM-аккумуляторы больше нельзя заряжать. Вне этих пределов зарядное устройство Mastervolt будет продолжать питать подключенных потребителей, но не заряжать аккумуляторы.

Регулировка напряжения в сторону более высокой или более низкой температуры для ионно-литиевых аккумуляторов не требуется.

             

Приведенная ниже формула используется для расчета времени зарядки гелевого или AGM-аккумулятора:

Приведенная ниже формула используется для расчета времени зарядки литий-ионного аккумулятора: 90 007

Lt = время зарядки
Co = емкость аккумулятора
эфф = эффективность; 1.1 для гелевого аккумулятора, 1.15 для аккумулятора AGM и 1.2 для аккумулятора с заливкой батареи следует учитывать следующее:

В первую очередь необходимо учитывать эффективность батареи. В стандартной влажной батарее это около 80%. Это означает, что если из аккумулятора разряжено 100 Ач, необходимо зарядить 120 Ач, чтобы иметь возможность снова извлечь 100 Ач. У гелевых и AGM аккумуляторов КПД выше — 85 к 90 % – так меньше потерь и меньше время заряда по сравнению с жидкостными батареями. В литий-ионных батареях КПД достигает 97 %.

Еще одна вещь, которую необходимо иметь в виду при расчете времени зарядки, это то, что последние 20 % процесса зарядки (от 80 до 100 %) занимают около четырех часов для аккумуляторов с жидким электролитом, гелевых аккумуляторов и аккумуляторов AGM (это не относится к литиевым аккумуляторам). Ионные батареи). Во второй фазе, также называемой фазой поглощения или последующей зарядки, тип батареи определяет, сколько тока поглощается, независимо от емкости зарядного устройства.

Феномен фазы после зарядки снова не относится к литий-ионным батареям, которые заряжаются намного быстрее.

Вредное воздействие пульсаций напряжения на батареи

Аккумулятор может преждевременно выйти из строя из-за пульсаций напряжения, создаваемых зарядными устройствами. Чтобы предотвратить это, пульсации напряжения, вызванные зарядным устройством, должны оставаться как можно ниже.

Пульсации напряжения вызывают пульсации тока. Как правило, пульсирующий ток должен оставаться ниже пяти процентов от установленной емкости батареи. Если к аккумулятору подключено навигационное или связное оборудование, такое как устройства GPS или УКВ, напряжение пульсаций должно быть не более 100 мВ (0,1 В). Большее количество может привести к неисправности оборудования.

Зарядные устройства Mastervolt оснащены отличной регулировкой напряжения, а создаваемое ими напряжение пульсаций всегда ниже 100 мВ.

Еще одним преимуществом низких пульсаций напряжения является предотвращение повреждения системы, если, например, клемма аккумулятора не закреплена должным образом или подверглась коррозии. Благодаря низкому напряжению пульсаций зарядное устройство Mastervolt может питать систему даже без подключения к аккумуляторной батарее.

Определение уровня заряда аккумулятора

Сопутствующее пояснение относительно показателя Пейкерта показывает, что состояние заряда батареи нельзя определить просто на основе, например, измерения напряжения батареи.

Лучший и наиболее точный способ проверить состояние заряда — использовать счетчик ампер-часов (монитор батареи). Примером такого измерителя является монитор батареи Mastervolt MasterShunt, BTM-III или BattMan. В дополнение к току заряда и разряда, этот монитор также показывает напряжение батареи, количество израсходованных ампер-часов и время, оставшееся до момента, когда батарея нуждается в подзарядке.

Одна из вещей, которая отличает монитор батареи Mastervolt от других поставщиков, — это доступность исторических данных. Это показывает, например, циклы заряда/разряда батареи, самый глубокий разряд, средний разряд, а также самое высокое и самое низкое измеренное напряжение.

Закон Пейкерта

На первый взгляд кажется, что легко рассчитать, как долго батарея будет обеспечивать достаточную мощность. Одним из наиболее распространенных методов является деление емкости аккумулятора на ток разряда. Однако на практике такие расчеты часто оказываются ошибочными. Большинство производителей аккумуляторов указывают емкость аккумулятора, предполагая, что время разряда составляет 20 часов. Например, батарея емкостью 100 Ач должна выдавать 5 ампер в час в течение 20 часов, в течение которых напряжение не должно опускаться ниже 10,5 вольт (1,75 В на элемент) для 12-вольтовой батареи. К сожалению, при разряде при силе тока 100 ампер аккумулятор емкостью 100 Ач выдает только 45 Ач, а это означает, что его можно использовать менее 30 минут.

Это явление описано в формуле — законе Пейкерта — разработанной более века назад пионерами батарей Пейкертом (1897) и Шредером (1894). Закон Пейкерта описывает влияние различных значений разрядки на емкость батареи, то есть емкость батареи уменьшается при более высоких скоростях разряда. Все мониторы батарей Mastervolt учитывают это уравнение, поэтому вы всегда будете знать правильное состояние своих батарей.

Закон Пейкерта не применяется к литий-ионным батареям, поскольку подключенная нагрузка не влияет на доступную емкость.

Формула Пейкерта для емкости батареи при заданном токе разряда:

Cp = доступная емкость батареи при заданном токе разряда
I = уровень тока разряда
90 218 n = показатель Пейкерта = log T2 — logT1 : log I1 — log I2
T = время разрядки в часах

I1, I2 и T1, T2 можно определить, выполнив два теста на разрядку. Это включает в себя разрядку батареи дважды при двух разных уровнях тока.

Один высокий (I1) – скажем, 50 % емкости аккумулятора – и один низкий (I2) – около 5 %. В каждом из тестов регистрируют время T1 и T2, которое проходит до того, как напряжение батареи упадет до 10,5 вольт. Проведение двух разрядных испытаний не всегда просто. Часто большая нагрузка будет недоступна или не будет времени для теста медленного разряда. Вы можете получить данные, необходимые для расчета показателя Пейкерта, из спецификаций батареи.

Вентиляция

В нормальных условиях гелевые, AGM и литий-ионные аккумуляторы производят мало опасного газообразного водорода или вообще не выделяют его. Небольшой газ, который выходит, ничтожно мал. Однако, как и в случае со всеми другими аккумуляторами, во время зарядки выделяется тепло. Для обеспечения максимально возможного срока службы важно, чтобы это тепло отводилось от батареи как можно быстрее. Для расчета вентиляции, необходимой для зарядных устройств Mastervolt, можно использовать следующую формулу.

Q = требуемая вентиляция в м³/ч закрытые батареи
n = номер используемых элементов (12-вольтовая батарея имеет шесть элементов по 2 вольта каждая)

Возвращаясь к примеру с комплектом батарей 12 В/400 Ач и зарядным устройством на 80 ампер, минимальная необходимая вентиляция будет: Q = 0,05 x 80 х 0,5 х 0,5 х 6 = 6 м³/ч

Этот воздушный поток настолько мал, что обычной естественной вентиляции будет достаточно.