Содержание
Измерение реальной емкости аккумулятора мультиметром
На каждой батарее указывают ее вместимость, но эти сведения не всегда правдивы. Для измерения емкости аккумулятора необходимо выполнить ряд действий. Для этого потребуются разные приборы и материалы.
Аккумуляторная батарея Nissan ёмкостью 60 Ач.
Что такое емкость батареи или аккумулятора
Некоторое количество электричества, передаваемое от АКБ при его разряжении, называют энергоемкостью аккумулятора. При проведении расчетов характеристику выражают в ампер-часах (Ач) или ватт-часах (Втч). Большая вместимость батареи позволяет устройству долго работать без подзарядки, что важно при выборе АКБ для машины.
В этом случае вместимость будет зависеть от мощности генератора. В некоторых случаях емкость обозначается по-английски A/hour, т. е. Ач по-русски. Ее не нужно путать с таким параметром, как напряжение, выражаемое в вольтах (В).
Простая проверка емкости АКБ тестером с последующим уточнением
Для измерения вместимости батареи часто используют USB-тестер. У приспособления есть много функций, позволяющих узнать емкость АКБ смартфона, планшета и внешнего пауэрбанка.
USB-тестер подключается к любому портативному устройству посредством провода или переходника.
Полученные показатели помогают определить изношенность аккумулятора. На тестере присутствует кнопка управления, предназначенная для измерения разных показателей. С ее помощью переключаются режимы работы и ячейки памяти устройства.
Когда подключаемый аппарат обладает необходимым напряжением, тестер начинает работать. Снизу в углу появляется значение вместимости батареи. Тестер не дает стопроцентно верного результата.
По этой причине можно воспользоваться математическими вычислениями по формуле: начальный показатель тока*3 = реальная вместимость АКБ. Некоторые производители указывают на устройстве номинальную емкость, превышающую фактический показатель. Эта информация неверная и является рекламой.
com/embed/6SK2tWL_2H0?feature=oembed» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»>
Как определить емкость батареек с помощью мультиметра
Мультиметр помогает определить показатель энергоемкости. Чтобы его узнать, потребуются умные зарядные приборы. У них высокая цена, поэтому приобретать устройства лишь для вычисления вместимости 2-3 аккумуляторов нет смысла.
Для измерения можно применить простой метод, предварительно воспользовавшись мультиметром, соблюдая некоторые тонкости. В процессе нужно определить значение тока любой батареи. При этом измеряется точное время, при котором элемент питания отдавал электрохимическую энергию.
Замеры не будут стопроцентно точными, но покажут максимально близкое число.
В литий-ионных АКБ присутствует своя шкала разрядов, показывающая зависимость напряжения от заряда. Чтобы она не отразилась на измерениях, собирают линейное приспособление в 2,7-3 В.
Измерение ёмкости батареек с помощью мультиметра (регулятор в положении «20V»).
Использование линейного стабилизатора
При использовании линейного устройства необходимо установить значение тока, которое рассчитывают из напряжения (U) батарейки 2,7 В. С помощью стабилизатора проводят подключение резистора, который можно изготовить своими руками или приобрести готовый прибор в магазине.
После этого измеряют ток в цепи и устанавливают секундомер. В дальнейшем нужно следить за показателями U на клеммах. Секундомер отключают при достижении уровня в 2,7 В и записывают показания.
Использование переменного резистора
Чтобы тестирование прошло хорошо, понадобится небольшая батарейка, например 14500 с емкостью 300 мАч. Для проверки потребуется переменный резистор в 100 Ом. Если берут устройство с постоянным током, то процесс осложнится. Результаты нужно будет фиксировать и проводить расчеты потраченной вместимости на отдельных участках шкалы. Для определения значения высчитывают средний арифметический показатель тока.
Для измерения емкости батареи применяют резистор переменного тока, где сопротивление уменьшается постепенно, пока разряжается аккумулятор. В это время показатели тока должны находиться на одном уровне.
Измерение ёмкости аккумуляторной батареи с помощью мультиметра и переменного резистора.
На мультиметре устанавливают положение вольтметра для измерения напряжения и замеряют его показатели на клеммах. При неполном уровне заряженности устройство разряжают с помощью тока 450-500 мА. При этом периодически снижают сопротивление и контролируют напряжение.
Секундомер отключают, когда уровень достигнет 2,7 В. Для полного разряжения батарейки при токе в 500 мА потребуется 25-30 минут. Полученный показатель умножают на время в часах и получают реальное значение вместимости АКБ. Этот способ измерения емкости является наиболее точным благодаря математическим вычислениям.
Как сделать прибор собственными руками
Когда необходимая техника отсутствует, прибор можно сделать самому, посмотрев видео. Из готовых приборов необходимо взять вольтметр, а оставшиеся детали сооружают из подручных средств. Трудности возникнут при расчетах и создании внутреннего сопротивления, для которого потребуется ток.
Подходящим материалом является нихромовая проволока, используемая для создания нагревательных спиралей в электрических плитках. Нихромовые элементы можно заменить металлической полосой из прочих нагревательных устройств.
Для напряжения 12 В показатель тока должен находиться в рамках 80-120 Ампер, а сопротивление — 0,1-0,15 Ом. Прибор для измерения такого сопротивления сложно найти. По этой причине подбирают длину одного элемента и измеряют ток, который он пропускает. После этого совмещают несколько подобных деталей.
Самодельный аппарат делают последовательно:
- Подбирают нихромовую проволоку или нагревательную полосу и измеряют мультиметром до 15 А ток. Элемент должен пропускать 10-12 А.
- Соединяют 10 таких деталей, получая нагрузку в 100-120 А. Проволоку необходимо надежно скручивать.
- Полученный элемент помещают в подходящий корпус и фиксируют в нем. Если коробка небольшая, то проволоку несколько раз сгибают так, чтобы витки не касались друг друга. Параллельное соединение должно быть надежным, что обеспечивается изолирующими цилиндрами, которые устанавливают на изгибы.
- Концы скрутки припаивают к контактам на выходе, а снаружи — к соединительным проводам.
- Подключают вольтметр.
- Крепят на концы соединительного кабеля зажимы, которые потом подсоединяют к аккумулятору.
Когда устройство будет готово, можно проводить измерения в домашних условиях.
От чего зависит текущая емкость АКБ
В процессе эксплуатации удельная емкость АКБ меняется. Сначала пластины разрабатываются, поэтому показатели вместимости высокие. После этого прибор начинает работать стабильно, значение не отходит от одного уровня. Затем емкость начинает уменьшаться из-за изнашивания пластин.
На вместимость влияют активные материалы, конструкция электролитов, электродов, их температура и концентрация, амортизация батареи, величина разрядного и пускового тока, содержание налета в электролитах и прочие факторы.
Снижение начинается при увеличении разрядного тока. Если АКБ разряжают специально, то устройство теряет меньше вместимости, чем при плавном режиме с низким уровнем тока. Это позволяет зафиксировать на корпусе показатели для разного времени разряжения.
Емкость одинаковых аккумуляторов редко меняется. Низкие показатели характерны для небольших промежутков разрядки, а высокие — для больших временных отрезков.
Значение вместимости начинает меняться, когда повышается температура электролитов. Если из-за этого превышаются допустимые нормы, то срок службы снижается. Высокая температура электролитов понижает их вязкость, и они попадают в действующую массу. При этом сопротивление начинает расти.
По этой причине коэффициент использования активной массы при разряжении больше, чем при заряжении с низкой температурой. В связи с этим нужно проверять емкость АКБ на каждом этапе его эксплуатации.
Характеристики аккумуляторов • Ваш Солнечный Дом
- 1
Емкость батареи - 2
Напряжение - 3
Степень заряженности - 4
Срок службы аккумуляторов - 5
Максимальные токи заряда и разряда - 6
Внутреннее сопротивление - 7
Саморазряд - 8
Харакеристики аккумуляторов: ГЛОССАРИЙ
Разрядные характеристики аккумуляторных батарей
Наиболее важными показателями качества АБ являются: емкость, напряжение, габариты, вес, стоимость, допустимая глубина разряда, срок службы, КПД, диапазон рабочих температур, допустимый ток заряда и разряда. Также, необходимо учитывать, что все характеристики производитель дает при определенной температуре — обычно 20 или 25 °С. При отклонениях от этого напряжения, характеристики меняются, и обычно в худшую сторону.
Значения напряжения и емкости обычно входят в название модели батареи. Например: RA12-200DG — батарея напряжением 12 вольт и емкостью 200 ампер*часов, гелевая, глубокого разряда. Это значит, что батарея может выдать в нагрузку энергию 12 х 200 = 2400 Вт*ч при 10 часовом разряде током в 1/10 от емкости. При больших токах и быстром разряде емкость батареи понижается. При меньших токах — обычно увеличивается. Это можно видеть на графике разрядных характеристик аккумуляторных батарей. Также, нужно смотреть на разрядные характеристики на конкретные батареи. Иногда производители в названии пишут завышенную емкость аккумулятора, которая имеет место только в идеальных условиях — так, например, делает Haze (у аккумуляторов Haze реальная емкость процентов на 10-20 ниже, чем указано в названии батареи).
При разряде током в 0,1 С время работы составляет 10 часов и батарея полностью выдаст в нагрузку аккумулированную энергию. При разряде током 2 С (в 20 раз большим) время работы будет около 15 минут (1/4 часа) и при этом батарея выдаст в нагрузку только половину аккумулированной энергии. При больших токах разряда это значение еще меньше. Зачастую в источниках бесперебойного питания аккумуляторные батареи работают в еще более тяжелых режимах, при которых токи разряда достигают 4 С. При этом время разряда сравнимо с 5 минутами и батарея выдает в нагрузку менее 40% энергии.
Емкость батареи
Количество энергии, которое может быть сохранено в батарее, называется ее емкостью. Она измеряется обычно в ампер-часах, хотя правильнее приводить значения в ватт-часах.
Заряд-разрядные кривые свинцово-кислотных аккумуляторов
Емкость (Вт*ч) = U*I*t
где U — напряжение аккумулятора, В; I — ток, который он может отдавать в течение времени t.
Так как обычно принимается, что для различных аккумуляторов напряжение одинаковое, то из формулы убирается напряжение, и остается емкость в ампер-часах.
Одна АБ емкостью 100 Ач может питать нагрузку током 1 А в течение 100 часов, или током 4 А в течение 25 часов, и т.п., хотя емкость батареи снижается при увеличении разрядного тока. На рынке продаются батареи емкостью от 1 до 3000 Ач.
Для увеличения срока службы свинцово-кислотной АБ желательно использовать только малую часть ее емкости до повторной зарядки. Каждый процесс разряда-заряда называется зарядным циклом, причем не обязательно полностью разряжать аккумулятор. Например, если вы разрядили аккумулятор на 5 или 10% и затем снова зарядили его — это тоже считается как 1 цикл. Конечно, количество возможных циклов будет сильно отличаться при различной глубине разряда (см. ниже). Если возможно использовать более 50% энергии, запасенной в АБ до ее заряда, без заметного ухудшения ее параметров, такая батарея называется батареей «глубокого разряда».
Можно повредить батареи, если перезарядить их. Максимальное напряжение синцово-кислотных АБ должно быть 2,5 вольта на элемент, или 15 В для 12-ти вольтовой батареи. Многие фотоэлектрические батареи имеют мягкую нагрузочную характеристику, поэтому при увеличении напряжения ток заряда снижается значительно. Поэтому всегда необходимо использовать специальный контроллер заряда для солнечных батарей. В случае применения ветроэлектрических станций или микроГЭС, такие контроллеры также обязательны.
Напряжение
Напряжение на аккумуляторе зачастую является основным параметром, по которому можно судить о состоянии и степени заряженности аккумулятора. Особенно это относится к герметизированным аккумуляторам, у которых не возможно измерить плотность электролита.
Напряжение при заряде, разряде и отсутствии тока очень сильно отличаются. Для определения степени заряженности аккумулятора измеряют напряжение на его клеммах при отсутствии как зарядного, так и разрядного токов в течение как минимум 3-4 часов. За это время напряжение обычно успевает стабилизироваться. Значение напряжения при заряде или разряде ничего не скажет от состоянии или степени заряженности АБ. Примерная зависимость степени заряженности аккумулятора от напряжения на его клеммах в режиме холостого хода, приведена в таблице ниже. Это типичные значения для стартерных аккумуляторов с жидким электролитом. Для герметизированных аккумуляторов (AGM и гелевых) обычно эти напряжения немного выше (нужно запрашивать производителя) — например, AGM батареи полностью заряжены, если напряжение составляет 13-13,2В (сравните с напряжением стартерных батарей с жидким электролитом 12,5-12,7В).
Степень заряженности
Степень заряженности зависит от очень многих факторов, и точно ее могут определить только специальные зарядные устройства с памятью и микропроцессором, которые отслеживают как заряд, так и разряд конкретного аккумулятора в течение нескольких циклов. Этот метод наиболее точный, но и наиболее дорогой. Однако он сможет сэкономить много денег при обслуживании и замене аккумуляторов. Применение специальных устройств, контролирующих работу аккумуляторов по степени их заряженности, позволяет очень сильно повысить срок службы свинцово-кислотных аккумуляторов. Ряд предлагаемых нами контроллеров для солнечных батарей имеют встроенные устройства вычисления степени заряженности аккумулятора и регулируют заряд в зависимости от ее величины.
Для определения степени заряженности можно использовать также следующие 2 упрощенных метода.
- Напряжение на аккумуляторе. Этот способ наименее точный, но требует только наличия цифрового вольтметра, способного измерять десятые и сотые доли вольта. Перед измерениями нужно отсоединить от аккумулятора всех потребителей и все зарядные устройства и подождать как минимум 2 часа. Затем можно измерить напряжение на терминалах аккумулятора. Ниже в таблице приведены напряжения для аккумуляторов с жидким электролитом. Для полностью заряженной новой AGM или гелевой батареи напряжение составляет 13-13,2В (сравните с напряжением стартерных батарей с жидким электролитом 12,5-12,7В). По мере старения аккумуляторов это напряжение снижается. Можно измерять напряжение на каждой банке аккумулятора, чтобы найти неисправную банку (разделите напряжение для 12В на 6 для того, чтобы определить нужное напряжение на одной банке).
- Второй метод определения степени заряженности — по плотности электролита. Этот метод подходит только для аккумуляторов с жидким электролитом.
Также, нужно подождать 2 часа перед измерениями. Для измерения используется ареометр. Обязательно наденьте резиновые перчатки и защитные очки! Держите рядом пищевую соду и воду на случай, если вода попадет на кожу.
100 | 12.70 | 25.40 | 1.265 |
95 | 12.64 | 25.25 | 1.257 |
90 | 12.58 | 25.16 | 1.249 |
85 | 12.52 | 25.04 | 1.241 |
80 | 12.46 | 24.92 | 1.233 |
75 | 12. 40 | 24.80 | 1.225 |
70 | 12.36 | 24.72 | 1.218 |
65 | 12.32 | 24.64 | 1.211 |
60 | 12.28 | 24.56 | 1.204 |
55 | 12.24 | 24.48 | 1.197 |
50 | 12.20 | 24.40 | 1.190 |
40 | 12.12 | 24.24 | 1.176 |
30 | 12.04 | 24.08 | 1.162 |
20 | 11.98 | 23.96 | 1.148 |
10 | 11.94 | 23.88 | 1.134 |
Срок службы аккумуляторов
Срок службы аккумуляторных батарей в циклах
Неправильно определять срок службы аккумуляторов в годах или месяцах. Срок службы батареи определяется числом циклов заряд-разряд и значительно зависит от условий ее эксплуатации. Чем глубже разряжается батарея, чем большее время она находится в разряженном состоянии, тем меньшее число возможных циклов работы.
Само понятие «количество рабочих циклов «заряда-разряда» аккумулятора» относительное, так как сильно зависит от различных факторов. Кроме того, значение количества рабочих циклов, например для одного типа аккумулятора, не является универсальным понятием, так как зависит от технологии, различной у каждого из производителей.Срок службы аккумуляторов определяется в циклах, поэтому время работы в годах — приблизительное и рассчитано для типичных условий работы. Поэтому, если, например, в рекламе указано, что срок службы аккумуляторов составляет 12 лет, это значит, что производитель посчитал срок службы для буферного режима с средним числом циклов заряд-разряд 8 в месяц. Например, для AGM аккумуляторов Haze указывается срок службы 12 лет и максимальное число циклов 1200 при разряде на 20%. В год получается 100 таких циклов, в месяц — около 8.
Еще один важный момент — в процессе эксплуатации полезная емкость аккумулятора уменьшается. Все характеристики по количеству циклов обычно приводятся не до полной смерти аккумулятора, а до момента потери им 40% своей номинальной емкости. Т.е, если производителем приведено количество циклов 600 при 50% разряде, это значит, что через 600 идеальных циклов (т.е. при температуре 20С и разряде током одной величины, обычно 0,1С) полезная емкось аккумулятора будет 60% от начальной. При такой потере емкости уже рекомендуется замена аккумулятора.
Свинцово-кислотные АБ, предназначенные для использования в системах автономного электроснабжения имеют, срок службы от 300 до 3000 циклов в зависимости от типа и глубины разряда. В системах на базе ВИЭ батарея может разрядиться гораздо сильнее, чем при буферном режиме. Для обеспечения длительного срока службы, в типичном цикле разряд не должен превышать 20-30% емкости АБ, а глубокий разряд — не более 80% емкости. Очень важно сразу же после разряда заряжать свинцово-кислотные аккумуляторы. Длительное нахождение (более 12 часов) в разряженном или не полностью заряженном состоянии приводит к необратимым последствиям в аккумуляторах и снижению их срока службы.
Как определить, что аккумулятор уже близок к окончанию своего срока службы? Очень просто — у аккумулятора повышается внутреннее сопротивление, это приводит к более быстрому росту напряжения при заряде (и, соответственно, снижению времени, требуемого для заряда), и более быстрому разряду аккумулятора. Если заряд производится током, близким к предельно допустимому, умирающий аккумулятор будет нагреваться при заряде сильнее, чем раньше.
Максимальные токи заряда и разряда
Токи заряда и разряда любой аккумуляторной батареи измеряются относительно ее емкости. Обычно для аккумуляторов максимальный ток заряда не должен превышать 0,2-0,3С. Превышение зарядного тока ведет к сокращению срока службы аккумуляторов. Мы рекомендуем устанавливать максимальный ток заряда не более 0,15-0,2С. Смотрите характеристики на конкретные модели аккумуляторов для определения максимального зарядного и разрядного токов.
Зарядные и разрядные характеристики сильно зависят от химического состава аккумулятора. Также, многое зависит от конструкции аккумулятора — объем электролита, толщина пластин, покрытия, плотность электролита и т.п. Некоторые аккумуляторы разработаны для разрядом малыми токами долгое время, другие могут работать при больших токах короткое время.
Ниже приведена таблица с типичными значениями основных параметров аккумуляторов.
Внутреннее сопротивление
На максимальные токи заряда и разряда также влияет внутреннее сопротивление аккумулятора. Особенно важен этот показатель для высокотоковых аккумуляторов. Аккумулятор можно представить как источник тока и последовательное сопротивление. Чем больше внутреннее сопротивление, тем больше будет нагреваться аккумулятор и тем больше будет падать на нем напряжение.
Величина снижения напряжения на элементах аккумуляторной батареи при протекании токов, определяется внутренним сопротивлением элементов. Полное сопротивление свинцово-кислотного аккумулятора – это сумма таких величин, как сопротивление поляризации и омическое сопротивление. Омическое сопротивление является суммой сопротивлений сепараторов аккумулятора, электродов, положительного и отрицательного выводов, мостовых сварных соединений между элементами и электролита.
Условно, можно аккумулятор представить в виде двухполюсника с ЭДС (электродвижущей силой — напряжением без нагрузки) E и внутренним сопротивлением r. При этом предполагается, что часть ЭДС аккумулятора падает на нагрузке, а другая часть — на внутреннем сопротивлении аккумулятора. Иначе говоря, предполагается, что верна формула:
E = ( R + r ) * I
Внутреннее сопротивление свинцово-кислотных аккумуляторов
На сопротивление электродов оказывает влияние их конструкция, пористость, геометрия, конструкция решётки, состояние активного вещества, наличие легирующих компонентов, качество электрического контакта решёток и обмазки активной массы. При этом, как известно, у аккумуляторов большей емкости больше рабочая поверхность пластин и больше пространства для диффузии электролита внутри аккумулятора. Поэтому внутреннее сопротивление аккумуляторов большой емкости меньше, чем внутреннее сопротивление аккумуляторов меньшей емкости.
Кроме того, внутреннее сопротивление аккумуляторов зависит и от токов нагрузки. Например, внутреннее сопротивление аккумулятора при больших токах нагрузки в несколько раз меньше, чем внутреннее сопротивление того же аккумулятора при малых токах. В процессе разряда свинцово-кислотного аккумулятора на поверхности электродов выделяется сульфат свинца (PbSO4). Это плохой проводник, который существенно увеличивает сопротивление электродных пластин. Кроме того, сульфат свинца откладывается в порах активной массы пластин и существенно уменьшает диффузию серной кислоты из электролита в них.
Существенное влияние на сопротивление свинцово-кислотного аккумулятора оказывает и величина сопротивления электролита. Эта величина, в свою очередь, сильно зависит от концентрации и температуры электролита. Так, при уменьшении температуры сопротивление электролита растет и достигает бесконечности при его замерзании. И, наоборот, при высокой температуре скорость диффузии ионов электролита выше и внутреннее сопротивление аккумулятора ниже. Наиболее оптимальным значением является установленная производителем плотность электролита при температуре 20-25°С, при которой внутреннее сопротивление принимает минимальное значение. При уменьшении или увеличении плотности электролита его сопротивление увеличивается, а, следовательно, растет и внутреннее сопротивление аккумулятора.
Поскольку емкость аккумуляторной батареи связана с ее внутренним сопротивлением и, получив опытным путем значение внутреннего сопротивления, можно оценить и емкость самой аккумуляторной батареи. Так, если внутреннее сопротивление аккумуляторной батареи увеличилось в 2 раза, то можно предположить, что емкость аккумуляторной батареи уменьшилась примерно в 2 раза. Другими словами, внутреннее сопротивление батареи определяет ее способность отдавать в нагрузку большой ток. Эта зависимость подчиняется закону Ома. При низком значении внутреннего сопротивления батарея способна отдавать в нагрузку большой пиковый ток (без существенного уменьшения напряжения на ее выводах), а значит, и большую пиковую мощность, в то время как высокое значение внутреннего сопротивления приводит к резкому уменьшению напряжения на выводах батареи при резком увеличении тока нагрузки. Это приводит к тому, что внешне хороший аккумулятор не может полностью отдать запасенную в нем энергию в нагрузку.
Регулярность измерений внутреннего сопротивления обеспечивает возможность прогнозирования выработки ресурса аккумуляторной батареи, и планировать ее замену заблаговременно. Считается, что за 1 год сопротивление аккумуляторной батареи, при правильной эксплуатации, должно возрастать, исходя из срока службы, например, в 15 лет, не более, чем на 6-7%. Если скорость увеличения сопротивления элементов превышает ожидаемую, то анализируются условия эксплуатации аккумуляторной батареи, нагрузка, процесс подзаряда и другие. Элементы аккумуляторной батареи, сопротивление которых отличается от среднего, вычисляемого для всех элементов, более чем на 10% подвергаются тренировочному заряду, а, если он не дает нужного эффекта, считаются неисправными и нуждающимися в замене. Тренировочный заряд проводится не всех элементах аккумуляторной батареи от штатного зарядно-подзарядного устройства, а индивидуально, только тех элементов, которые в этом нуждаются, от переносного зарядного устройства. При обследовании аккумуляторной батареи кроме внутреннего сопротивления ее элементов измеряются сопротивления и межэлементных соединений. Это позволяет своевременно выявлять характерные дефекты, обусловленные коррозией токовыводов аккумуляторов.
Государственный стандарт ГОСТ Р МЭК 60896-2-99 «Свинцово-кислотные стационарные батареи. Общие требования и методы испытаний», соответствующий рекомендациям МЭК, предусматривает определение внутреннего сопротивления аккумуляторов по двум значениям разрядного тока и напряжения. При этом разрядный ток первой ступени выбирается в зависимости от тока десятичасового режима разряда и равен (4–6) I10, напряжение регистрируется на 20 секунде разряда. Ток второй ступени выбирается из расчета (20–40) I10, напряжение регистрируется на 5 секунде разряда. Далее линейной экстраполяцией определяются расчетная ЭДС и ток короткого замыкания аккумулятора. По полученным данным определяют внутреннее сопротивление аккумулятора. По этой методике проводят испытания многие отечественные аккредитованные специализированные испытательные центры и лаборатории, у которых оборудование позволяет провести это опытным путем.
Обычному пользователю при наличии специального оборудования достаточно измерить внутреннее сопротивление для оценки состояния аккумуляторной батареи в целом. В то же время на сегодняшний день самым объективным способом оценки состояния аккумуляторных батарей является их контрольный 20- или 10-часовой разряд в соответствии с данными тока разряда и конечного напряжения разряда разрядных таблиц завода-изготовителя.
Таким образом, внутреннее сопротивление аккумуляторных батарей является условной величиной. Свинцово-кислотный аккумулятор представляет собой нелинейное устройство, внутреннее сопротивление которого не остается постоянным, а меняется в зависимости от температуры, величины нагрузки, степени заряженности, концентрации электролита и прочих вышеперечисленных параметров. Поэтому для проведения точных расчётов аккумулятора желательно все-таки использовать разрядные кривые, а не величину внутреннего сопротивления.
Параметры проводимости АКБ рассчитывают, отталкиваясь от ЭДС, нагрузки и силы тока. В итоге можно получить условную, изменяющуюся величину, на которую влияют такие факторы:
- размеры и форма батареи;
- конструктивные особенности;
- текущее состояние электролита;
- наличие или отсутствие легирующих добавок;
- состояние контактов.
Особенно существенно на ВС влияет электролит. А именно его состав, концентрация, температурные характеристики.
График внутреннего сопротивления АКБ
Есть определённая зависимость между сопротивлением и составом электролитической массы:
- у свинцово-кислотных минимальные значения, они могут отдавать ток до 2,5 кА для запуска ДВС;
- самый низкий параметр внутреннего сопротивления у никель-кадмиевых батарей, который может сохраняться спустя 1 тысячу циклов разряда и заряда;
- у аккумуляторов типа NiMh сопротивление изначально выше, а спустя 300-400 циклов увеличивается;
- Li-ion находятся между 2 предыдущими батареями.
Саморазряд
Явление саморазряда характерно в большей или меньшей степени для всех типов аккумуляторов и заключается в потере ими своей емкости после того, как они были полностью заряжены в отсутствие внешнего потребителя тока.
Для количественной оценки саморазряда удобно использовать величину потерянной ими за определенное время емкости, выраженную в процентах от значения, полученного сразу после заряда. За промежуток времени, как правило, принимается интервал времени, равный одним суткам и одному месяцу. Так, например, для исправных NiCD аккумуляторов считается допустимым саморазряд до 10% в течение первых 24 часов после окончании заряда, для NiMH – немного больше, а для Li-ION пренебрежимо мал и оценивается за месяц. Саморазряд в герметизированных свинцово-кислотных аккумуляторах значительно уменьшен и составляет 40% в год при 20 °С и 15% при 5 °С. При более высоких температурах хранения саморазряд увеличивается: при 40 °С батареи лишаются 40 % емкости за 4-5 месяцев.
Следует отметить, что саморазряд аккумуляторов максимален именно в первые 24 часа после заряда, а затем значительно уменьшается. Глубокий его разряд и последующий заряд увеличивают ток саморазряда.
Саморазряд аккумуляторов в основном обусловлен выделением кислорода на положительном электроде. Этот процесс еще больше усиливается при повышенной температуре. Так, при повышении окружающей температуры на 10 градусов по отношению с комнатной возможно увеличение саморазряда в два раза.
В некоторой степени саморазряд зависит от качества использованных материалов, технологического процесса изготовления, типа и конструкции аккумулятора. Потери емкости могут быть вызваны повреждением сепаратора, когда образования слипшихся кристаллов пробивают его. Сепаратором принято называть тонкую пластину, разделяющую положительный и отрицательный электроды. Это обычно происходит из–за неправильного обслуживания аккумулятора, его отсутствия или применения несоответствующих или некачественных зарядных устройств. У изношенного аккумулятора пластинки электродов разбухают, слипаясь друг с другом, что приводит к повышению тока саморазряда, при этом поврежденный сепаратор невозможно восстановить проведением циклов заряда/разряда.
Каргиев Владимир, «Ваш Солнечный Дом»
©При цитировании ссылка на эту страницу и на «Ваш Солнечный Дом» обязательна
Дополнительная информация по теме в Разделе «Библиотека«. Настоятельно рекомендуем почитать эту статью
Харакеристики аккумуляторов: ГЛОССАРИЙ
Емкость (С) — энергия, которую способен отдать аккумулятор в нагрузку, выражаемая в ампер-часах (А·ч, мA·ч). Она будет больше при следующих условиях: меньшем токе разряда, разряде с меньшими перерывами, более высокой температуре окружающей среды, а также более низком конечном напряжении.
Номинальная емкость — номинальное значение емкости: количество энергии, которую способен отдать полностью заряженный аккумулятор при разряде в строго определенных условиях.
Саморазряд — потеря емкости в отсутствие внешнего потребителя тока.
Срок службы батареи — наработка, при которой разрядная емкость сделается меньше определенной нормированной величины, обычно оценивается рабочим количеством циклов «заряд-разряд».
Срок хранения — максимальный период времени, в течение которого батарея может храниться при оговоренных условиях, не требуя дополнительной зарядки.
Эта статья прочитана 155733 раз(а)!
Путеводитель по теме «Аккумуляторы»
10000
Раздел «Основы — Аккумулирование энергии» Раздел «Оборудование — Аккумуляторы» Свинцово-кислотные аккумуляторы Литиевые аккумуляторы Раздел «Библиотека — про аккумуляторы» См. также полную карту нашего сайта со списком всех статей. Купить Аккумуляторы в нашем Интернет-магазине
Руководство покупателя АКБ для систем электроснабжения
10000
Аккумуляторы для систем электроснабжения. Руководство покупателя В интернете есть много разрозненной информации по разным типам аккумуляторов, их возможностям, характеристикам, областям применения, достоинствам и недостаткам. При этом во многих случаях информация эта однобокая — связано это бывает или с недостаточными знаниями…
Сравнение аккумуляторов
10000
Сравнение аккумуляторов различных производителей При проектировании системы автономного или резервного электроснабжения всегда стоит вопрос — какие аккумуляторы лучше выбрать? На рынке представлены множество брендов, типов, и моделей аккумуляторных батарей, и разобраться в них очень непросто. Часто наши клиенты задают вопрос…
Аккумуляторы — FAQ
10000
Как правильно заменять аккумуляторные батареи, какое напряжение выдают аккумуляторы, что такое гелевый аккумулятор, в чем преимущества литиевых аккумуляторов, как соединять аккумуляторы параллельно и последовательно для увеличения емкости и напряжения — ответы на эти и другие часто задаваемые вопросы вы получите…
Online калькулятор емкости АКБ
65
Какая емкость аккумуляторной батареи нужна в системе электроснабжения? При расчете системы автономного или резервного электроснабжения очень важно правильно выбрать емкость аккумуляторной батареи. Калькулятор емкости АКБ в конце статьи. Специалисты компании «Ваш Солнечный Дом» помогут Вам правильно рассчитать необходимую емкость АБ…
Аккумуляторные батареи. Ликбез
60
Как продлить срок службы свинцово-кислотных аккумуляторов? Зачастую представляет определенные трудности использовать напрямую энергию, генерируемую солнечными, ветровыми или микрогидроэлектрическими установками. Поэтому электричество обычно сохраняется в специальных аккумуляторных батареях для последующего использования. Эти батареи очень часто работают по тому же принципу, что…
Мощность и мощность | Все о батареях
Сохранить
Подписаться
Пожалуйста, войдите, чтобы подписаться на это руководство.
После входа в систему вы будете перенаправлены обратно к этому руководству и сможете подписаться на него.
Поскольку это особенно запутанная часть измерения батарей, я собираюсь обсудить ее более подробно.
Мощность — это количество энергии, запасенное в аккумуляторе. Эта мощность часто выражается в ватт-часах (символ Втч ). Ватт-час — это напряжение (В), которое обеспечивает батарея, умноженное на то, сколько тока (Ампер) батарея может обеспечить в течение некоторого времени (обычно в часах). Напряжение * Ампер * час = Втч. Поскольку напряжение в значительной степени фиксировано для типа батареи из-за ее внутреннего химического состава (щелочной, литий, свинцово-кислотный и т. д.), часто сбоку печатается только измерение ампер*час, выраженное в Ач или мАч (1000 мАч = 1 Ач). Чтобы получить Втч, умножьте Ач на номинальное напряжение. Например, допустим, у нас есть батарея номиналом 3 В с емкостью 1 ампер-час, поэтому ее емкость составляет 3 Втч. 1 Ач означает, что теоретически мы можем потреблять 1 А тока в течение одного часа, или 0,1 А в течение 10 часов, или 0,01 А (также известный как 10 мА) в течение 100 часов.
Однако количество тока, которое мы действительно можем потреблять (мощность , мощность )
от батареи часто ограничено. Например, монетоприемник с рейтингом
на 1 Ач на самом деле не может обеспечить 1 Ампер тока в течение часа, на самом деле
он не может обеспечить даже 0,1 ампер, не перенапрягая себя. Это как
говоря, что человек может путешествовать до 30 миль: конечно
Пробежать 30 миль — это совсем не то, что пройти пешком! Аналогично, монета 1 Ач
у ячейки нет проблем с обеспечением 1 мА в течение 1000 часов, но если вы попытаетесь
вытяните из него 100 мА, он проработает намного меньше 10 часов.
Например, на этом изображении ячейка типа «таблетка» может управлять резистором 3,9 кОм и обеспечивать 230 мАч (именно на это рассчитано ее номинальное значение), прежде чем упасть до 2 В, но если это резистор 1 кОм, он обеспечит только 125 мАч (изображение с http ://biz.maxell.com/en/product_primary/?pci=9&pn=pb0002)
Мощность мощность измеряется в C . A C — это емкость в ампер-часах, деленная на 1 час. Таким образом, C батареи емкостью 2 Ач составляет 2 А. Количество тока, которое батарея «любит» потреблять от нее, измеряется в С . Чем выше C , тем больший ток вы можете получить от батареи, не разряжая ее преждевременно. Свинцово-кислотные батареи могут иметь очень высокие значения C (10 C или выше), а литиевые батарейки типа «таблетка» — очень низкие (0,01 C )
Как измеряются батареи
Свинцово-кислотные аккумуляторы
Это руководство было впервые опубликовано 16 февраля 2013 года.
обновлено 16 февраля 2013 г.
Эта страница (мощность и мощность) последний раз обновлялась 13 февраля 2013 г.
Текстовый редактор на базе tinymce.
Измерение емкости ячейки | Electronic Design
Загрузите эту статью в формате PDF.
От сотовых телефонов до электромобилей каждый пользователь беспокоится о времени работы. Разработчики систем усердно работают над тем, чтобы максимально увеличить время работы, используя один из двух подходов: спроектировать систему с батарейным питанием таким образом, чтобы она эффективно потребляла электроэнергию, чтобы батареи работали дольше, или максимизировать количество энергии, доступной для системы с батарейным питанием. Чтобы максимизировать доступную мощность батареи, вы можете использовать большую батарею или меньшую батарею большой емкости. Поскольку большинство систем с батарейным питанием портативны, следует учитывать вес и размер. Таким образом, использование батареи большего размера несколько противоречит цели меньшего и легкого.
Итак, при сборке батареи вам лучше всего создать батарею большой емкости. Батарея состоит из элементов, соединенных последовательно для увеличения доступного напряжения и параллельно для увеличения доступного тока. Таким образом, аккумуляторы большой емкости строятся из элементов большой емкости. Сегодня литий-ионный элемент является основным элементом для большинства приложений с батарейным питанием, с отличным балансом размера, веса, доступного тока, емкости и стоимости.
Емкость литий-ионного аккумулятора
Литий-ионные элементы или любые другие элементы имеют емкость, измеряемую в ампер-часах (Ач). Для справки, один ампер-час означает, что вы можете потреблять один ампер из ячейки в течение одного часа. Итак, ампер-часы — это произведение ампер-часов. Точно так же 1 Ач также означает, что вы можете потреблять 2 А в течение 0,5 часов или 0,25 А в течение четырех часов.
Ач емкость фактически является мерой хранимых кулонов. Глядя на единицы, участвующие в ампер-часах, один ампер равен 1 кулону в секунду. Если умножить ампер на время, то получится кулон. Учитывая, что один час равен 3600 секундам, тогда 1 Ач равен 3600 ампер-секундам, или (3600 кулонов/секунду) × секунды, что равно 3600 кулонам накопленного заряда в элементе. Обратите внимание, что для меньших ячеек вы можете найти их емкость, измеренную в миллиампер-часах (мАч). Например, типичный литий-ионный элемент 18650 будет хранить около 3 Ач или 3000 мАч.
1. На рисунке показан профиль разряда литий-ионного элемента. Верхняя линия представляет собой зависимость напряжения от времени, начиная с момента полного заряда и продолжая до тех пор, пока не будет достигнуто напряжение конца разряда (EODV). Во время этого разряда ток постоянен. Измеряемое время представляет собой продолжительность времени, необходимого для разрядки. Емкость элемента – это площадь под кривой разряда.
Вы также можете измерить емкость ячейки в ватт-часах (Втч). Мощность Wh является мерой накопленной энергии. В единицах измерения один ватт равен одному джоулю в секунду. Если вы умножите ватты на время, вы получите джоули. Учитывая, что один час равен 3600 секундам, тогда 1 Втч равен 3600 ватт-секундам, или (3600 джоулей/секунду) × секунды, что равно 3600 джоулей энергии, запасенной в клетке.
Однако типичным способом описания емкости литий-ионных аккумуляторов является их зарядная емкость, или Ач. В оставшейся части этой статьи я буду рассматривать емкость исключительно в Ач.
Чтобы измерить емкость Ач, начните с полностью заряженного элемента. Самый простой способ измерить емкость элемента — подать постоянный ток X ампер, пока он не разрядится. Ячейка считается разряженной, когда напряжение на ячейке достигает конечного напряжения разряда (EODV).
Для практического измерения просто подключите фиксированную нагрузку постоянного тока X ампер и запустите часы. Чтобы быть уверенным в потребляемом токе, не полагайтесь на точность уставки нагрузки постоянного тока. Вместо этого измерьте ток, потребляемый нагрузкой. Мы назовем этот измеренный ток Х ампер. Постоянно измеряйте напряжение на ячейке. Когда напряжение достигает EODV, часы останавливаются. Допустим, это T часов (рис. 1) .
Теперь просто умножьте значение постоянного тока X ампер на измеренное время T. Результатом будет измеренная емкость X × T А·ч. Емкость — это площадь под кривой зависимости тока от времени. В этой простой измерительной установке кривая зависимости тока от времени представляет собой не кривую, а прямую линию. Следовательно, площадь под кривой рассчитывается просто как X × T.
Факторы, влияющие на точность измерения емкости
В приведенном выше примере мы измеряли три параметра: ток, время и напряжение. Измерение времени может быть выполнено с предельной точностью, поэтому ошибка в измерении времени вряд ли окажет серьезное негативное влияние на измерение емкости.
Точность измерения напряжения важна, поскольку возможность измерения напряжения — это то, что останавливает часы. Плохое измерение напряжения может привести к преждевременной остановке часов, что приведет к заниженному измерению емкости. Точно так же плохое измерение напряжения может привести к слишком поздней остановке часов, что приведет к завышению емкости. Хорошей новостью является то, что напряжение ячейки медленно меняется со временем. Таким образом, ошибку измерения напряжения можно уменьшить, используя более длительное время интегрирования цифрового мультиметра, чтобы уменьшить шум, который может помешать правильному измерению напряжения. Поскольку напряжение меняется медленно, безопасно использовать более длительное время интегрирования.
Точность измерения тока является доминирующим фактором при определении погрешности измерения емкости Ач. Плохая точность измерения тока будет означать плохое измерение емкости Ач. Чтобы получить четкое представление о качестве измерения емкости в Ач, посмотрите характеристики текущего измерения, которое вы делаете.
Определение точности измерения емкости
При измерении емкости будет погрешность измерения емкости в виде коэффициента усиления в % от измерения емкости плюс погрешность в мАч на час измерения.
2. Keysight Advanced Power System (APS) — это семейство источников питания постоянного тока, состоящее из 24 моделей на 1000 Вт (вверху) и 2000 Вт (внизу). Эти источники питания могут как обеспечивать питание, так и действовать как нагрузка постоянного тока, обеспечивая при этом очень высокую точность измерения тока. Для получения дополнительной информации посетите сайт www.keysight.com/find/APS.
Рассмотрим пример измерения емкости с помощью источника питания Keysight APS 1000 Вт, модель N7950A, рассчитанного на 9 В и ±100 А (рис. 2) . Этот источник питания является двухквадрантным, что означает, что он может как отдавать (положительный ток до +100 А), так и потреблять ток (отрицательный ток до –100 А). Это делает его отличным инструментом для зарядки и разрядки элементов.
При разрядке элемента или втекающем токе N7950A действует как электронная нагрузка постоянного тока (e-нагрузка), поэтому его можно использовать для измерения емкости элемента с использованием описанного выше метода. Примечание. В оставшейся части этой статьи я буду называть этот двухквадрантный источник питания электронной нагрузкой, поскольку мы используем его в качестве электронной нагрузки для разрядки элемента для измерения емкости элемента.
Теперь, продолжая пример, мы измерим емкость большой ячейки, где мы можем получить постоянный ток 5 А. или выше (рис. 3) .
Спецификация точности измерения тока N7950A составляет 0,05 % + 3 мА в диапазоне от 0 до 10 А. Помните, ранее я сказал, что не имеет значения, на каком уровне постоянного тока установлен ток, потому что мы будем использовать измерение тока, чтобы точно определить, какой ток потребляется от ячейки. N7950A также имеет точность временной развертки 0,01%.
3. Крупноформатные литий-ионные аккумуляторы были разработаны для использования в электромобилях. Большие мешочные ячейки могут иметь емкость от 10 Ач до 40 Ач и выше. Для сравнения в правом верхнем углу фото показаны типичные цилиндрические ячейки 18650.
Чтобы определить коэффициент усиления погрешности измерения емкости, нам нужна сумма точности усиления измерения тока, равной 0,05 %, и погрешности временной развертки, равной 0,01 %. Следовательно, коэффициент усиления измерения емкости будет составлять 0,06% от измерения емкости. Таким образом, если мы измерим емкость 10 Ач, то коэффициент усиления 0,06% даст погрешность (0,06% × 10 Ач) = 6 мАч.
Теперь давайте посмотрим на фиксированный срок. APS в нижнем диапазоне имеет погрешность смещения 3 мА. Это говорит о том, что за период интегрирования будет ошибка 3 мА. В результате на каждый час измерения будет погрешность 3 мАч. Переводя это в более простую форму для расчета, это будет 0,833 мкАч на каждую секунду измерения.
Итак, складываем все вместе:
- Электронная нагрузка имеет точность измерения тока 0,05% + 3 мА.
- Электронная нагрузка имеет емкость точность измерения 0,06% + 0,833 мкАч/сек
- Мы измеряем ток 10 А в течение 1 часа, потому что требуется 1 час, чтобы ячейка достигла своего EODV, что «останавливает часы» при измерении емкости.