Узел колеса с осью и подшипниками 7 букв: Узел колеса с осью и подшипником, 7 букв

Содержание

Центральная Часть Колеса С Отверстием Для Насадки На Ось Или Вал 7 Букв

Решение этого кроссворда состоит из 7 букв длиной и начинается с буквы С


Ниже вы найдете правильный ответ на Центральная часть колеса с отверстием для насадки на ось или вал 7 букв, если вам нужна дополнительная помощь в завершении кроссворда, продолжайте навигацию и воспользуйтесь нашей функцией поиска.

ответ на кроссворд и сканворд

Пятница, 17 Мая 2019 Г.



СТУПИЦА

предыдущий

следующий



ты знаешь ответ ?

ответ:

связанные кроссворды

  1. Ступица
    1. Центральная часть вращающейся детали 7 букв
    2. Центральная часть колеса 7 букв

Ходовые колеса, оси, валы, соединительные муфты мостовых кранов

Ходовые колеса, оси, валы, соединительные муфты мостовых кранов

Ходовые колеса механизмов передвижения и тележек мостовых кранов должны быть установлены таким образом, чтобы исключалась возможность схода колес с рельсов. Крановые колеса изготовляют двух типов: ЮР — одноребордные и К2Р — двухребордные штампованные, кованые и катаные с цилиндрической поверхностью катания. Устанавливают такие колеса на валах или осях механизмов передвижения кранов и их грузовых тележек.

Одноребордные ходовые колеса можно применять для тележек мостовых кранов при условии, что ширина обода за вычетом реборды должна превышать ширину головки рельса не менее чем на 30 мм. В специальных мостовых кранах часто используют безребордные ходовые колеса. Горизонтальные ролики исключают возможность схода их с рельсов.

Ходовые колеса электрических мостовых кранов изготовляют из стали разных марок в зависимости от нагрузки на каждое колесо.

Рекламные предложения на основе ваших интересов:

Дополнительные материалы по теме:

Ходовые колеса моста (всегда) и тележки (чаще всего) имеют две реборды (выступа) с обеих сторон, препятствующие сходу колеса с рельсов. В зависимости от назначения ходовые колеса кранов делятся на ведущие, приводимые в движение электродвигателем, и ведомые, не имеющие привода и свободно вращающиеся вокруг своей оси или вместе с осью. Ходовые колеса кранов снабжают щитками, установленными перед каждой группой колес и предохраняющими от попадания под колеса каких-либо предметов. Зазор между щитками и рельсами должен быть не более 10 мм. Ходовые колеса устанавливают на валах или осях.

Валом называется деталь машины, вращающаяся в опорах и предназначенная для передачи вращающего момента. Ось не передает момента, а служит только опорой вращающейся детали. Причем ось может быть неподвижной при вращении колеса или ось и колесо могут быть наглухо соединены и вращаться совместно. В связи с этим различают оси неподвижные и вращающиеся. Опорные части валов и осей, расположенные на концах вала или оси, называются шипами, а размещенные посредине вала или оси — шейками. Опорная деталь, в которой вращается шип, называется подшипником.

Ведущие ходовые колеса чаще всего устанавливают на валах, а ведомые — на вращающихся осях. На неподвижных осях ходовые колеса устанавливают в настоящее время редко. Ходовые колеса на кранах старых конструкций свободно вращаются вокруг неподвижной оси на запрессованных бронзовых втулках. Оси закрепляют наглухо к концевым балкам при помощи ригелей и болтов.

В современных кранах ходовые колеса устанавливают на подшипниках качения — шариковых или роликовых. Подшипники размещают в корпусах, называемых буксами. Буксы бывают отъемными и разъемными. Применение отъемных букс позволяет выкатывать при ремонте ходовые колеса вместе с подшипниками, что значительно облегчает работу. Диаметры приводных колес должны быть совершенно одинаковыми, иначе произойдут «забегание» одной стороны крана и перекос моста. При «забегании» моста возникают значительные силы трения между ребордами колес и рельсами крана, что приводит к преждевременному изнашиванию реборд и рельсов и может вызвать поломку крана или сход его с рельсов.

Кроме того, колеса с цилиндрической поверхностью катания вследствие неизбежной при обработке разницы в диаметрах создают дополнительные условия для перекоса крана. В некоторой степени позволяют устранить перекос моста крана, а следовательно, снизить поперечные нагрузки и мощность двигателя механизма передвижения приводные конические колеса в четырехколесных кранах с центральным приводом. Колеса устанавливают большими основаниями внутрь пролета крана.

Обод конических колес изготовляют с конусностью 1 : 10. При этом они автоматически выравнивают положение моста относительно рельсового пути, так как у колеса отставшей стороны диаметр круга катания увеличивается, а у колеса забежавшей стороны уменьшается. При достаточной ширине конических ходовых колес такое выравнивание положений моста может происходить без участия реборд, что уменьшает сопротивление передвижению и изнашивание ходовых колес.

Ведомые ходовые колеса могут быть цилиндрическими или коническими. Ведущие ходовые колеса закрепляют на валах шпонками, ведомые ходовые колеса — на вращающихся осях без шпонок. На неподвижных осях закрепляют и ведущие ходовые колеса, если их привод осуществляется через открытую зубчатую передачу.

В кранах большой грузоподъемности при установке восьми или шестнадцати ходовых колес применяют уравновешивающие балансиры для равномерного распределения нагрузки ходовых колес на рельсы. При жестком креплении ходовых колес к мосту крана нагрузка между ними всегда распределяется неравномерно, что вызвано неровностью крановых путей или незначительной деформацией моста.

Рис. 2.38. Балансированное крепление колес

Ходовые колеса в балансирах устанавливают попарно. Каждый балансир восьмиколесного крана шарнирно соединен с мостом горизонтальной осью (рис. 2.38, а). В шестнадцатиколесных кранах (рис. 2.38, б) ходовые колеса крепят при помощи главных и малых балансиров. Главные балансиры шарнирно крепятся к мосту горизонтальными неподвижными осями, а малые балансиры шарнирно соединяются с концами главных балансиров. На малых балансирах установлены ходовые колеса крана. При передвижении моста балансиры могут немного качаться на своих шарнирах, вследствие чего кран всегда будет опираться на все колеса, независимо от состояния подкранового пути.

Передача движения на ходовые колеса моста от одного электродвигателя называется центральным приводом. При центральном приводе двигатель передвижения моста устанавливается посредине моста и движение на колеса моста передается через вал, называемый трансмиссионным.

На кранах с большими пролетами трансмиссионный вал получается очень длинным и дорогостоящим. В этом случае делают раздельный привод: предусматривают два электродвигателя и два редуктора (у каждого ведущего колеса). Во избежание перекоса моста необходимо, чтобы электродвигатели включались одновременно и имели совершенно одинаковые частоты вращения. Этот вид привода моста, применяемый сравнительно недавно, дает значительную экономию металла и трудозатрат при изготовлении кранов большой грузоподъемности.

Центральный привод моста можно осуществлять с быстроходным валом и тихоходным. Вал называется быстроходным, если частота вращения его равна частоте вращения электродвигателя.

Рис. 2.39. Колесо моста с цилиндрическим ободом и зубчатым венцом

В этом случае необходимо установить два редуктора — у левого и правого колес, понижающих частоту вращения вала до необходимой частоты вращения ходовых колес, но диаметр вала и ere масса будут небольшими. Такой способ передачи движения считается выгодным при длине вала 15—20 м.

Однако для механизмов передвижения моста с быстроходным валом требуются тщательная балансировка муфт и более прочное крепление опор, а потому их применяют редко. В механизмах с тихоходным валом на двигателе ставится редуктор и частота вращения немного снижается, но у самых колес происходит еще одно уменьшение частоты вращения с помощью двух редукторов или открытых передач. Этот вид передачи дает некоторую экономию за счет уменьшения массы вала, но применяется также довольно редко, так как требуется устанавливать три редуктора.

На рис. 2.39 показано ведущее колесо тихоходного вала с открытой зубчатой передачей. Зубчатый венец изготовляют отдельно от колеса и соединяют с ним болтами. Наибольшее распространение получили механизмы с тихоходными валами, в которых один редуктор устанавливают рядом с двигателем. Частота вращения трансмиссионного вала снижается до необходимого значения. На концы вала насаживают ходовые колеса.

Схемы механизмов передвижения моста с центральным приводом представлены на рис. 2.40. Валы обычно изготовляют из нескольких секций, соединяемых между собой с помощью муфт, главным образом зубчатых. Длинный вал было бы неудобно обрабатывать и поднимать на кран. Сплошные валы имеют сравнительно небольшие диаметры. При диаметре сплошного вала 70 мм расстояние между опорами не должно превышать 4 м, так как в противном случае прогиб вала превысит допустимое значение. При замене сплошного вала диаметром 70 мм валом из стальной трубы диаметром 114 мм и со стенкой 5 мм расстояние между опорами может быть увеличено до 8 м. На кранах пролетом до 17 м эти валы можно устанавливать без промежуточных опор.

Рис. 2.40. Схемы механизмов передвижения моста с центральным приводом: а — с тихоходной трансмиссией; б — с тихоходной трансмиссией и открытой зубчатой передачей; в — с быстроходной трансмиссией 1 – двигатель; 2 – редуктор; 3 — муфта

Секцию вала изготовляют из трубы, к торцам которой приваривают цапфы (рис. 2.41). При замене сплошных валов трубчатыми снижаются трудоемкость изготовления и объем механической обработки, а также масса вала примерно на 40— 50%.

Рис. 2.41. Секция трубчатого вала

В краностроении применяют муфты зубчатые, втулочно-пальцевые и фланцевые. Зубчатые и втулочно-пальцевые муфты немного компенсируют смещения и перекосы осей и валов, однако требуются точное изготовление деталей и центровка валов при установке муфт.

Зубчатые муфты изготовляют двух типов: МЗ — для непосредственного соединения валов, состоящие из двух зубчатых втулок и двух обойм; МЗП — для соединения валов с помощью промежуточного вала, представляющие комплект из двух муфт, каждая из которых состоит из зубчатой втулки, обоймы и фланцевой полумуфты. Зубчатые втулки можно изготовлять из стали с прямыми или бочкообразными зубьями. Зубчатое сопряжение втулки и обоймы показано на рис. 2.42. Зубчатые муфты применяют как на быстроходных, так и на тихоходных валах в механизмах передвижения и подъема. Муфты типов МЗ и МЗП выпускают под номерами с 1 по 12.

Полумуфты типа МУВП соединяют между собой с небольшим зазором, а на соединительные пальцы надевают упругие резиновые кольца. Запрещается заменять резиновые кольца сплошными резиновыми втулками, так как втулки работают значительно хуже.

При монтаже зубчатых муфт надо точно расположить соединяемые валы, что позволит легко устанавливать и снимать пальцы через соответствующие отверстия в полумуфте.

Рис. 2.42. Зубчатое сопряжение

В современных кранах упругие втулочно-пальцевые и фланцевые муфты используют редко. В механизмах передвижения зубчатыми муфтами соединяют вал электродвигателя с редуктором, секции трансмиссионного вала и собственно трансмиссионный вал с ходовыми колесами, а в механизмах подъема — вал электродвигателя с редуктором и выходящий вал редуктора с барабаном. Все муфты изготовляют из стали.

Как было указано выше, опорная деталь, в которой вращается шип вала или оси, называется подшипником.

Рис. 2.44. Подшипник скольжения

По конструкции подшипники делятся на подшипники скольжения и подшипники качения.

Подшипник скольжения (рис. 2.44) состоит из чугунного корпуса, крышки и двух бронзовых вкладышей — нижнего и верхнего. Вкладыши удерживаются в корпусе подшипника при помощи буртика. Чтобы вкладыши не вращались вместе с валом, верхний вкладыш снабжают выступом, который входит в тело крышки, Через отверстие в выступе и крышке в подшипник из масленки подается смазка, которая растекается по валу через канавки. Корпус подшипника соединен с крышкой болтами с гайками. К основанию подшипник крепят при помощи болтов, пропущенных через отверстия в корпусе.

Вкладыши подшипников скольжения делают не только из бронзы. Вообще для вкладышей используют антифрикционные сплавы, которые хорошо прирабатываются к сопряженной детали. На практике широко применяют антифрикционные сплавы на оловянной и свинцовой основе, называемые баббитами.

В Советском Союзе выпускают баббиты семи марок: Б83, Б16, БН, БТ, Б6, БК и БС. Баббиты марок Б83, Б16 и Б6 содержат олова 83, 16 и 6 % соответственно, баббиты БН и БТ — 9—11%; Б К и БС — безоловянные баббиты на основе свинца.

Подшипник должен изнашиваться быстрее, чем вал. Изношенный вал трудно отремонтировать, значительно проще сделать новый вкладыш подшипника.

Рис. 2.45. Подшипники качения: а — шариковый однорядный; б – роликовый

По конструкции корпуса подшипники скольжения делятся на глухие и разъемные. Глухие подшипники применяют в периодически работающих механизмах при малых нагрузках и скоростях скольжения. Недостатками таких подшипников являются неудобство сборки и разборки и невозможность уменьшить зазор между валом и вкладышем при износе вкладыша. В подшипнике с разъемным корпусом используют вкладыши из двух частей. Разъем вкладыша выполняют по оси, перпендикулярной направлению действия нагрузки. Для регулирования зазора в месте разъема вкладышей вставляют тонкие прокладки, которые можно вынимать по мере износа вкладышей.

Подшипники качения обладают значительными преимуществами по сравнению с подшипниками скольжения: для их изготовления не требуются цветные металлы; уменьшается трение в опорах; сокращается расход энергии; снижается расход смазки; увеличивается срок службы подшипников. Для изготовления подшипников качения используют высококачественную закаленную сталь.

Подшипники качения делятся на шариковые (рис. 2.45, а) и роликовые (рис. 2.45, б), а в зависимости от нагрузок, на которые рассчитаны подшипники, они подразделяются на три типа: – радиальные подшипники, предназначенные для восприятия радиальных усилий; – упорные подшипники, воспринимающие осевые усилия; – радиально-упорные подшипники, служащие для вое» приятия нагрузок, одновременно действующих перпен» дикулярно к оси вала и вдоль нее.

Радиальный и радиально-упорный подшипники качения обычной конструкции состоят из наружного кольца, внутреннего кольца, сепаратора и тел качения (шариков или роликов). На наружной поверхности внутреннего кольца и внутренней поверхности наружного кольца имеются очень точно обработанные дорожки качения, по которым катятся также точно обработанные тела качения. Сепаратор удерживает тела качения на равном расстоянии друг от друга. Внутреннее кольцо подшипника закрепляют на валу, наружное — в корпусе.

Предусмотрен широкий ассортимент подшипников, и для отличия одного типоразмера подшипников от другого им присваивают условное обозначение, состоящее из цифр и букв. Цифрами обозначают внутренний диаметр подшипника или закрепительной втулки, его тип и серию, буквами — класс точности и конструктивные особенности подшипника.

Цифры в условном обозначении подшипника читают справа налево. При диаметре отверстия 20—485 мм первые две цифры в обозначении дают число, полученное от деления значения диаметра на 5. Так, диаметр отверстия подшипника, равный 50 мм, обозначают двумя цифрами 10, диаметр 30 мм — цифрами 06 и т. д.

Подшипники с внутренним диаметром 10—20 мм имеют обозначения (также две цифры справа): 10 мм — 00; 12 мм — 01; 15 мм — 02; 17 мм — 03.
Третья цифра означает серию подшипника по диаметру, четвертая цифра — тип подшипника, пятая и шестая — конструктивные особенности, седьмая — серию подшипника по ширине.

Подшипник № 306 имеет внутренний диаметр: 06 X X 5 = 30 мм; цифра 3 указывает, что он относится к средней серии радиальных шариковых подшипников — они обозначаются тремя цифрами.

Радиальные шариковые сферические подшипники имеют четвертую цифру 1, радиальные роликовые с короткими цилиндрическими роликами — 2, радиальные роликовые сферические — 3, радиальные роликовые с длинными цилиндрическими роликами — 4, радиальные с витыми роликами — 5, радиально-упорные шариковые — 6, радиально-упорные с коническими роликами — 7, упорные шариковые — 8 и упорные роликовые — 9.

В современных мостовых кранах подшипники качения применяют широко. Все колеса моста и тележки, электродвигатели, трансмиссионные валы, оси и валы канатных барабанов, блоки и крюки, валы редукторов устанавливают на шарико- и роликоподшипниках.

Рассмотрим смазку узлов крана. Выбор смазочных материалов и периодичность смазки оказывают большое влияние на надежность работы крана и расход электроэнергии. Смазка снижает вредное трение, защищает от коррозии, уплотняет зазоры, предохраняет от попадания в подшипники пылевидных абразивных частиц и отводит теплоту от трущихся частей.

Смазка узлов трения на кране может быть индивидуальной, когда смазочный материал из одного смазочного прибора подается к одной смазываемой точке, и централизованной, когда смазочный материал из одного смазочного прибора подается одновременно к нескольким смазываемым точкам.

По принципу работы системы смазки делятся на следующие:
1) проточные, когда смазочный материал подается к местам смазки периодически, протекает по поверхности трения, вытесняется из узла трения и обратно не поступает;
2) циркуляционные, когда смазочное масло, залитое в бак, непрерывно подается в места смазки, смазывает их, возвращается в бак, фильтруется и снова подается в место смазки в течение всего времени работы машины;
3) картерную смазку или масляную ванну.

Из систем смазки наиболее прогрессивной является централизованная, но в ряде случаев приходится применять индивидуальную смазку — для шарниров тормозов и блочных подвесок.

Корпуса подшипников и редукторы снабжают пресс-масленками, заправляемыми консистентной смазкой. Этот способ наиболее прост, так как не требуется специальных устройств, но и очень неудобен — число мест смазки мостового крана может достигать нескольких десятков и все они расположены в разных местах, на значительном расстоянии. На современных кранах применяют установки для централизованной смазки, позволяющие обслуживать одновременно десятки смазочных мест, что облегчает уход за краном, обеспечивает экономию смазочных материалов, улучшает контроль за смазкой.

Рис. 2.46. Ручная станция густой смазки

Установки централизованной смазки могут быть ручными и автоматическими с приводом от электродвигателя.

В крановых механизмах консистентная смазка к смазываемым точкам подается через большие промежутки времени, и поэтому используют ручные установки, являющиеся более легкими и простыми по сравнению с автоматическими установками.

Отечественная промышленность выпускает установки для ручной централизованной смазки типа СРГ (станция ручной густой смазки), состоящие из двух основных узлов: резервуара для запаса смазки и нагнетательного ручного насоса. В резервуаре (рис. 2.46) расположен поршень, шток которого имеет выход наружу под крышку. Поршень своей массой постоянно давит на находящуюся под ним смазку. Резервуар заполняется через заправочный штуцер с помощью насоса. При этом смазка проходит через фильтр в резервуар под поршень, который поднимается по мере наполнения резервуара. Наполнение прекращается при появлении на штоке поршня, выходящем через отверстие в крышке резервуара, риски с буквой, что означает «полно». Насос присоединяется к станции только при заполнении резервуара смазкой.

При качании рычага плунжер проталкивает смазку через обратный клапан в трубопровод. Из трубопровода смазка поступает в автоматические питатели, а от них — в смазываемые точки. Рычаг качают до тех пор, пока не сработают все автоматические питатели, о чем свидетельствуют показания манометра. После этого рычаг ставится в исходное положение, а трубопровод, находящийся под давление, разгружается переводом золотника в другое крайнее “положение.

На этом заканчивается первый цикл работ. Следующая порция смазки к узлам трения подается через трубопровод 9. Нагнетание производится в той же последовательности.

Для смазки зубчатых и червячных редукторов применяют картерную смазку. Масло заливают в корпус редуктора до определенного уровня, при котором одно или несколько колес частично погружены в масло. Вращаясь, они подают масло на другие колеса. При достаточно большой скорости вращения колес масло разбрызгивается по всему редуктору, заполняя внутреннюю полость масляным туманом.

При смазке механизмов крана надо следить за тем, чтобы смазочный материал не был пролит. Любое масляное пятно на кране грозит серьезными последствиями. Попадание смазки на тормозные колодки или рельсы уменьшает или уничтожает действие тормоза. На скользкой от масла поверхности может поскользнуться и упасть человек. Пролитую смазку следует немедленно убрать, вытерев ветошью или тряпкой замасленную поверхность.

Об удовлетворительной подаче смазки свидетельствуют нормальный нагрев механизмов и отсутствие следов вытекания смазки.

Запас каждого вида смазки на кране не должен превышать суточной потребности. Смазывать механизмы можно только после остановки крана. Периодичность смазки механизмов крана устанавливается администрацией предприятия. Ниже приведена наиболее рациональная периодичность смазки.

AXLE Кроссворд и синонимы

Решатель кроссвордов

Решатель слов

Эрудит Решатель

Синонимы

Решатель анаграмм

Решатель ВВФ
Слова

Решатель кроссвордов

>

Подсказки

>
Кроссворд-подсказка: Ось

2

3

4

5

6

7

8 90 003

9

10+

РАЗГАДАЙТЕ ПОДСКАЗКУ

Лучшие ответы на AXLE

5
Буквы:

  • ВРАЩАТЬСЯ
  • УБОЛТ

Все 15 ответов для: Ось

Параметры
Ось с 3 буквами

БАР

3

ЦЕНТР

3

СТЕРЖЕНЬ

3

Ось с 4 буквами

ОСЬ

4

Ось с 5 буквами

ВРАЩАТЬСЯ

5

УБОЛТ

5

Ось с 6 буквами

КАТУШКА

6

СМАЗКА

6

КОЛПАЧОК

6

УБОЛТЫ

6

Ось с 7 буквами

КОЛПАКИ

7

ОПРАВКА

7

РОТАТОР

7

шпиндель

7

Ось с 9 буквами

ШПЛИНТ

9

Синонимы для ОСЬ

Мы нашли 17
Синонимы

3 Letter Word

4 Letter Word

AXIS

BEAM

ТРОСТЬ

СТОЛБ

9 0002 КАТУШКА

ШТОК

5-буквенное слово

ОПРАВКА

ШПИЛЬКА

ВАЛ

ХВОСТОВИК

ЗОЛОТНИК

6 Letter Word

ОПРАВКА

ШТУКА

РУЧКА

7 Letter Word

FULCRUM 9000 3

ШПИНДЕЛЬ

похожие вопросы

популярные вопросы, включая «Ось»

Новое предложение для оси

Знаете другое решение для кроссвордов, содержащих Ось ? Добавьте свой ответ в базу данных кроссвордов прямо сейчас.

Подсказка

Ответ

Что такое 5 + 8

Пожалуйста, проверьте введенные данные еще раз

Велосипедные подшипники: все, что вам нужно знать

  1. Дом

  2. Функции

  3. Велосипедные подшипники: все, что вам нужно знать

Подшипники Часто упускаемые из виду компоненты, которые на самом деле оживляют ваш велосипед. Вы не можете управлять, катиться, крутить педали или иметь работающую трансмиссию без подшипников.

Подшипники находятся в ваших ступицах, каретке, рулевой колонке, шарнирах подвески, педалях, переключателях… список можно продолжить — в основном все, что движется на вашем велосипеде, будет иметь какой-то подшипник.

В этом руководстве мы рассмотрим различные типы подшипников, обычно используемых на велосипеде, как измерить подшипники на вашем велосипеде, чем один подшипник лучше другого и как обслуживать подшипники.

Различные типы подшипников, используемых на велосипеде

Свободный шарик, шарик в сепараторе, втулки, игольчатые и картриджные — основные стили подшипников, используемых в велосипедных рамах и компонентах. Здесь мы объясним, чем каждый тип подшипников отличается от другого.

Втулки

Втулки этой педали Crankbrothers Stamp представляют собой две черные секции на шпинделе. Дэвид Ром / Immediate Media

Втулка (также известная как втулка или подшипник скольжения) — это тип подшипника скольжения, используемый в амортизаторах, более дешевых шкивах и переключателях.

Втулка — это простейший тип подшипника, представляющий собой просто втулку, которая находится между двумя поверхностями для уменьшения трения.

Шариковые подшипники со свободным креплением (также известные как «чашечные и конические» подшипники)

Проверенные временем конструкции ступиц со свободными шариками служат десятилетиями и обеспечивают простоту обслуживания систем. Томас Макдэниел / Immediate Media

Система свободных шарикоподшипников включает:

  • Шариковые подшипники
  • Чашка, в которую садятся подшипники
  • Конус, создающий предварительную нагрузку на подшипники

Контактные поверхности чашки и конуса обработаны до гладкости, которая соответствует профилю подшипников, по которым они работают.

Шариковые подшипники

обычно используются везде на велосипедах начального уровня, включая ступицы, каретки и рулевые колонки.

В более дорогих моделях большинство брендов отказались от незакрепленных шарикоподшипников, хотя Shimano и Campagnolo заметно воздерживаются, поскольку в большинстве своих ступиц используются высококачественные наружные и конические подшипники. Shimano также использует незакрепленные подшипники в своих педалях.

Несмотря на то, что они самые старые, во многих отношениях они могут быть лучше. Они имеют угловой контакт (подробнее об этом позже), относительно просты в обслуживании и могут работать исключительно при правильной настройке.

Система с шаром и фиксатором похожа на систему со свободным шаром, но требует меньше затрат на сборку и поэтому часто используется для компонентов начального уровня. Томас Макдэниел / Immediate Media

Незакрепленные шарикоподшипники иногда удерживаются в держателе, который также известен как сепаратор (отсюда и название «подшипники с сепараторами»). Обычно он изготавливается из штампованной стали и удерживает незакрепленные шарикоподшипники отдельно друг от друга.

Несмотря на то, что подшипники с сепаратором часто ассоциируются с недорогими моделями, они не всегда плохи: подшипники Campagnolo CULT, демонстрирующие отличные рабочие характеристики, являются подшипниками с сепараторами. Подшипники Hellbender Neo от Cane Creek — еще один интересный вариант этой концепции.

Картриджные подшипники

Картриджный подшипник является цельным узлом. Томас Макдэниел / Immediate Media

Картриджные подшипники

являются наиболее распространенным типом подшипников, используемых во всех велосипедах, кроме самых дешевых.

Это цельный узел, который обычно запрессовывается в отверстие подшипника.

Типовой радиальный патронный подшипник состоит из:

  • Внешнее кольцо
  • Внутренняя гонка
  • Шарикоподшипники
  • Сепаратор/фиксатор для удержания подшипников на месте
  • И два уплотнения с обеих сторон подшипника для защиты от грязи

Эти подшипники нельзя отрегулировать или полностью разобрать.

Картриджные системы

требуют точности для хорошей работы, но по мере развития производственных технологий они все чаще используются в результате постоянно увеличивающихся допусков на отверстия ступицы, рамы и компонентов.

Игольчатые подшипники

Если вы внимательно присмотритесь, то увидите ряд игольчатых подшипников внутри этих педалей Speedplay Zero. Томас Макдэниел / Immediate Media

Игольчатые подшипники

, также известные как роликовые подшипники, относительно редко встречаются в велосипедном мире.

Исключением являются педали и очень редко наушники, но даже в этом случае они сильно уступили место более новым и дешевым технологиям.

В игольчатом подшипнике вместо шариковых сами подшипники цилиндрические.

Они могут создавать невероятно плавные и стабильные платформы, особенно при высоких нагрузках, но в велосипедной индустрии существует тенденция уклоняться от них из-за затрат и сложности создания хороших сопрягаемых поверхностей.

При неправильном спаривании они быстро устают. Игольчатые подшипники часто заменяют несколькими рядами картриджных подшипников для достижения того же эффекта.

Объяснение размеров велосипедных подшипников

Размер шарикоподшипника

Шариковые подшипники со свободным креплением бывают самых разных размеров. Бикрадар

Размеры свободных шарикоподшипников определяются диаметром самого шарикоподшипника. Обычно это выражается в долях дюйма: 3/16 дюйма (4,7625 мм).

Точный размер требуемого подшипника зависит от отдельных компонентов.

Обычно также можно заменить конус в установке с незакрепленным шарикоподшипником, но чашки (особенно в ступицах) заменяются реже.

Картриджные размеры подшипников

Подшипник картриджного типа имеет размеры внешнего диаметра (OD), внутреннего диаметра (ID) и ширины, а иногда и универсальные идентификаторы, такие как «61902» Thomas McDaniel / Immediate Media

Размер картриджного подшипника определяется его внутренним диаметром (ID), внешним диаметром (OD) и шириной.

Размеры имеют форму «15x24x5 мм» или аналогичную.

У них часто есть соответствующий универсальный идентификатор, который в случае вышеупомянутого подшипника, например, будет 6802.

С помощью штангенциркуля вы можете измерить картридж, что позволит вам довольно легко найти замену.

Подшипники рулевой колонки обычно имеют наклонные дорожки качения. Джеймс Хуанг / Immediate Media

Гарнитуры

обладают уникальной особенностью, поскольку имеют угловые выступы. Их размер может быть больше похож на «46,9 x 7 x 45 °», чтобы определить наружный диаметр, ширину и угловые размеры кольца подшипника соответственно.

Что касается производительности, то, вообще говоря, чем больше шарик внутри подшипника, тем лучше, поскольку увеличение диаметра имеет экспоненциальный коэффициент для увеличения контакта. Больше контакта означает более равномерное распределение усилий и приводит к лучшим характеристикам качения и долговечности.

Несколько крупных производителей колес в последние годы стремились к более крупным подшипникам, и размеры ступиц постоянно увеличиваются.

Радиальный против углового картриджа

Несколько примеров картриджных подшипниковых систем — угловая рулевая колонка слева и крошечный подшипник передней ступицы посередине и справа Thomas McDaniel / Immediate Media

В велосипедах обычно используются два типа картриджных подшипников: радиальные , и 9. 0005 угловой контакт .

Радиальные подшипники

Радиальные подшипники являются наиболее распространенными, так как они дешевле. Они пытаются нести нагрузку в действительно радиальном направлении, которое является вертикальным с точки зрения ступиц, кривошипов, шарниров подвески или шкивов переключателя.

Впоследствии они немного жертвуют производительностью, потому что силы внутри этих движущихся частей обычно связаны с нерадиальным вектором. В результате они должны компенсировать снижение допусков.

Короче говоря, с радиальными патронными системами точность меньше. Как такового направленного применения у них нет — нет ни внутри, ни снаружи.

В качестве преимущества, поскольку они немного меньше зависят от допусков, их можно использовать в не столь дорогих приложениях.

Радиально-упорные подшипники

И наоборот, радиально-упорные подшипники требуют жестких допусков, поскольку они являются направленными. Есть внутренний и внешний компоненты, и с точки зрения дизайна их можно сравнить со старыми чашечно-конусными системами.

Они дополняют радиальные и боковые нагрузки, действующие на вращающиеся компоненты велосипеда, но требуют экстремальных допусков в сопрягаемых отверстиях для достижения точной посадки и характеристик качения.

В большинстве случаев угловой контакт является наиболее подходящим применением для ступиц, кривошипов и подвески. Тем не менее, многие втулки и рамы не имеют ответного отверстия, чтобы дополнить точность углового картриджа.

Именно с такой точностью такие бренды, как Industry 9, Chris King, White Industries, Phil Wood и Alchemy Wheel Works получают свою репутацию.

Что делает подшипник качественным?

Обычно подшипники называются «ABEC», за которыми следует номер (например, ABEC 1, 3, 5, 7 и 9).

Короче говоря, чем выше число, тем выше качество подшипника. Он служит грубой метрикой «хорошо, лучше, лучше всего», но Чак Паначчоне из Enduro Bearings говорит, что этот стандарт отсутствует.

Стандарт ABEC определяет диаметр отверстия (допустимое отклонение размера внутреннего отверстия подшипника), параллельность (изменение ширины) и радиальное биение дорожки качения (изменения канавки, в которой сидят шарики).

Но компания Panaccione ясно дала понять, что система ABEC отказывается от обработки груза, точности мяча или твердости по Роквеллу (твердость материала).

Сотрудники Enduro Bearings утверждают, что для велосипедов материалы гораздо важнее, чем рейтинги ABEC, и что для большинства применений ABEC 3 и 5 подходят для всех вещей, связанных с велосипедом.

Что касается рейтингов 7 и 9, этот уровень точности предназначен для оборудования, которое видит тысячи или сотни тысяч оборотов в минуту — немного избыточно для езды на велосипеде.

Краткое руководство по уплотнениям

Уплотнения на картриджных подшипниках можно аккуратно снять, чтобы очистить и ввести свежую смазку, но имейте в виду – это может привести к разрушению подшипника, если сделать это неправильно. Томас Макдэниел / Immediate Media

Картриджные подшипники

обычно уплотняются двумя резиновыми уплотнениями с обеих сторон подшипника.

Может показаться, что это сухая и скучная тема (каламбур), но они имеют большое значение (ууу) для общей производительности подшипника.

В отношении уплотнений необходимо учитывать три основных момента: трение, защита и удобство обслуживания.

Трение является основной проблемой картриджных подшипников, и хотя чем меньше, тем лучше, небольшое трение может указывать на защиту.

Работа уплотнения заключается именно в этом – удерживать смазку и загрязняющие вещества.

Но если у вас есть загрязнение, можете ли вы очистить и обслужить картридж, не повредив уплотнение?

Для большинства качественных подшипников, включая все подшипники Enduro Bearings, Panaccione уверяет, что «маленьким лезвием и аккуратной рукой уплотнения можно снять с внутреннего кольца для обслуживания».

Из чего сделаны подшипники?

Подшипники

изготавливаются из самых разных материалов. Некоторые примеры включают хромированную сталь, нержавеющую сталь 440C, нержавеющую сталь с супер азотом XD15 и нитрид кремния (керамические подшипники).

Вообще говоря, чем тверже материал, тем лучше, но существует точка убывающей отдачи.

В конце концов, слишком твердые шарики могут стать хрупкими, что не лучше, чем слишком мягкие.

Балансировка применения подшипника (ступица, кривошип, шарнир подвески и т. д.), количество услуг, которые вы готовы оказать, и выбор бюджета — все это факторы, которые бренды должны учитывать при выборе подшипников.

Как обслуживать подшипники

Техническое обслуживание подшипников заканчивается с использованием надлежащей смазки — обратитесь к местным поставщикам услуг, чтобы узнать, что лучше всего подходит для компонентов вашего велосипеда и условий катания Thomas McDaniel / Immediate Media

Как и любая движущаяся часть велосипеда, подшипники требуют обслуживания. Интервалы технического обслуживания для более качественных подшипников будут больше, но ни один подшипник не работает по принципу «установил и забыл».

Правильная установка также играет большую роль в долговечности подшипника.

Это может показаться достаточно простым, но несоосность из-за неправильной установки является серьезной причиной преждевременного износа.

Кроме того, если вы работаете с радиально-упорными подшипниками, уплотнения имеют разные цвета по определенной причине: черные уплотнения должны быть обращены к центральной линии, а красные должны быть обращены наружу.

Надлежащее техническое обслуживание подшипников заканчивается надлежащей смазкой, которая может быть любой: от липкой водостойкой смазки до жидкой смазки без трения.

В зависимости от области применения, типа используемой подшипниковой системы, частоты проведения технического обслуживания и типа воздействия окружающей среды на систему определяется наилучший смазочный материал.

Для получения дополнительной информации ознакомьтесь с нашим подробным руководством по обслуживанию подшипников.

Авторы

Джек Люк

Социальные сети

Заместитель редактора

Джек Люк, заместитель редактора BikeRadar, всю свою жизнь возится с велосипедами. Всегда в поисках самой модной новой ниши в велоспорте, Джек — самопровозглашенный гравийный придурок, фиксик-беспокойство, тандем-евангелист и изо всех сил старается лазать по холмам. Джек ничего не думает о велосипеде после работы, чтобы поспать в канаве, или о глупом вызове для канала BikeRadar на YouTube. Он также является постоянным автором подкаста BikeRadar. Обладая почти энциклопедическими знаниями о велосипедных технологиях, начиная от самых эзотерических ретро-ниш и заканчивая самой передовой современной экипировкой, Джек гордится своей способностью выискивать истории, которые в противном случае остались бы незамеченными. Он также особенно любит шины с коричневой стенкой, динамо-фары, чашечные и конусные подшипники и салазки. Джек пишет о велосипедах и тестирует их уже более шести лет, до этого он много лет работал в веломагазинах, и его регулярно можно увидеть за рулем разных странных и замечательных машин. Также часто можно увидеть Джека, летящего со своим партнером на борту их любимого тандема.