Транзисторная система зажигания: Принцип действия контактно-транзисторной системы зажигания

Содержание

Лекция №6-3 Бесконтактная система зажигания

 Исторически сложилось так, что для первых бензиновых моторов использовалась батарейная (аккумуляторная) система зажигания, основанная на эффекте самоиндукции. Самой первой была контактная, ставшей впоследствии классической, система. По мере совершенствования автомашины развивались и его отдельные компоненты, так появилась контактно транзисторная система зажигания.

 

НОВЫЙ ЭТАП РАЗВИТИЯ

Основным элементом, благодаря которому новая схема приобрела улучшенные характеристики, относительно прежней, классической, стал транзистор. Причем он явился причиной, что контактно-транзисторная система зажигания получила новый узел – коммутатор.

Отличительной особенностью, присущей транзистору, является то, что небольшой ток, поступающий на управление (в базу), позволяет управлять током гораздо большей величины, протекающим через прибор.

 

 

 

Контактно транзисторная система зажигания, несмотря на незначительные, на первый взгляд, изменения и сохранение принципа работы, приобрела новые свойства, недоступные классической системе. Но прежде чем оценивать достоинства и недостатки, которыми обладает контактно-транзисторная схема, необходимо коснуться отличий в работе.

Главное отличие от классического зажигания заключается в том, что прерыватель воздействует не на бобину, а на базу транзистора. В остальном контактно-транзисторная схема работает так же, как обычная система зажигания. При прерывании, в первичной обмотке бобины протекания тока, во вторичной наводится высоковольтное напряжение. Не касаясь деталей внутреннего устройства коммутатора и его подключения, можно отметить, что транзисторная схема зажигания даже в таком упрощенном виде обладает следующими достоинствами:

Контактно-транзисторное управление процессами, происходящими в катушке зажигания, обеспечивает возможность увеличить в первичной обмотке ток, вследствие чего:

  1. можно повысить величину вторичного напряжения;
  2. увеличить между электродами свечи зазор;
  3. улучшить процесс искрообразования, сделать его более устойчивым, а также улучшить запуск двигателя при пониженной температуре;
  4. повысить количество оборотов и увеличить мощность двигателя.

Однако подобная контактно-транзисторная схема требует использования катушки зажигания с отдельными обмотками (первичной и вторичной).
Повысилась надёжность: контактно-транзисторная система позволяет снизить нагрузку на контакты прерывателя, уменьшив значение проходящего через них тока, следствием чего является уменьшение подгорания контактов.
Однако не все так хорошо, как кажется с первого взгляда.

Контактно-транзисторная система зажигания имеет и свои недостатки.

Вызваны они использованием прерывателя, т.е. система начинает работать и формировать искру, когда контактно разрывается цепь прохождения тока в обмотке бобины. Величина тока, поступающего в базу транзистора, существенно влияет на его работу, и уменьшение тока из-за качества контактов скажется на работе всей системы.

 

     Для того чтобы бензиновый двигатель заработал, в его цилиндрах должно произойти воспламенение топлива. Это истина. Поэтому система зажигания (сначала, естественно, контактная) и возникла одновременно с автомобилем. Но прогресс не стоит на месте. Он, конечно же, коснулся и системы зажигания: на смену традиционному способу образования искры пришел более эффективный и надежный, а именно, бесконтактный. О нем и пойдет речь в данной статье.

Основные различия традиционной и бесконтактной систем зажигания

При работе бензинового двигателя искрообразование (то есть подача высокого напряжения на свечу) происходит в момент, когда осуществляется размыкания низковольтной цепи питания катушки зажигания.

В традиционной системе в качестве такого «выключателя» выступают контакты механического прерывателя, которые периодически размыкаются при соприкосновении с кулачками вращающегося ротора прерывателя.

Именно этот узел и был заменен при переходе на бесконтактную систему.

Управляющий сигнал в ней формируется специальным сенсором (индуктивным, оптическим или датчиком Холла), установленным под крышкой распределителя. Электрический импульс поступает на полупроводниковый коммутатор, который и осуществляет управление первичной обмоткой катушки зажигания.

 

     Датчик Холла получил свое название по имени Э.Холла, американского физика, открывшего в 1879 г. важное гальваномагнитное явление.

    Суть данного явления заключалась в следующем: Если на полупроводник, по которому (вдоль) протекает ток, воздействовать магнитным полем, то в нем возникает поперечная разность потенциалов (ЭДС Холла). Возникающая поперечная ЭДС может иметь напряжение только на 3 В меньше, чем напряжение питания.

а — нет магнитного поля, по полупроводнику протекает ток питания — АВ; б — под действием магнитного поля — Н появляется ЭДС Холла — ЕF; в — датчик Холла     

Эфект Холла

Рисунок. Эффект Холла

  • Av А2 — соединения, полупроводниковый слой
  • UH — напряжение Холла
  • В — магнитное поле (плотное)
  • Iv — постоянный ток питания

   

    Датчик Холла имеет щелевую конструкцию.

   С одной стороны щели расположен полупроводник, по которому при включенном зажигании протекает ток, а с другой стороны — постоянный магнит. В щель датчика входит стальной цилиндрический экран с прорезями. При вращении экрана, когда его прорези оказываются в щели датчика, магнитный поток воздействует на полупроводник с протекающим по нему током и управляющие импульсы датчика Холла подаются в коммутатор, в котором они преобразуются в импульсы тока в первичной обмотке катушки зажигания.

На примере датчика Холла, применяемого в бесконтактной системе зажигания автомобилей ВАЗ 2108, 2109, 21099.

      На практике это выглядит так: датчик Холла автомобилей ВАЗ 2108, 2109, 21099 установлен на опорной пластине распределителя и состоит из двух частей – магнита и элемента Холла с усилителем. На датчик Холла подается напряжение с коммутатора (вывод 5) через токовый красный провод. «Масса» так же с коммутатора – бело-черный провод с вывода 3. Магнит создает магнитное поле, элемент Холла принимает его, создает напряжение, которое усиливает усилитель и через зеленый импульсный провод напряжение подается на коммутатор (вывод 6).

        

      Для изменения магнитного поля применяется экран с четырьмя прорезями, который вращается вместе с валом распределителя зажигания (трамблера) проходя между магнитом и принимающей частью датчика Холла. При прохождении в пазу датчика прорези экрана магнитное поле имеет определенную величину и соответственно датчик выдает на коммутатор электрический ток определенного напряжения (9-12 В).

      При прохождении в пазу датчика зубца экрана магнитное поле экранируется и не поступает на приемник датчика, при этом напряжение, поступающее на коммутатор, падает (0-0,5 В).

     

     Соответственно коммутатор прерывает электрический ток, подающийся на катушку зажигания, магнитное поле в ней резко сжимается и, пересекая витки обмотки, наводит ЭДС 22-25 кВ (ток высокого напряжения). Ток через бронепровода попадает на распределитель и далее на свечи зажигания, производя разряд, поджигающий топливную смесь. Прохождение каждого из четырех зубцов экрана в прорези датчика соответствует такту сжатия в одном из четырех цилиндров двигателя.

 

 

1 — свечи зажигания; 2 — датчик-распредепитель; 3 — коммутатор; 4 — генератор; 5 — аккумуляторная батарея; 6 — монтажный блок; 7 — репе зажигания; 8 — катушка зажигания; 9 — датчик Холла

Данные системы являются системами зажигания с регулированием времени накопления энергии. Данная система зажигания пришла на смену TSZi, чтобы исправить 2 недостатка:

  1. Форма и величина выходного напряжения магнитоэлектрического датчика изменяются с частотой вращения, что влияет на момент искрообразования.
  2. Уменьшение вторичного напряжения при росте частоты вращения коленчатого вала. Поэтому более перспективна система с регулированием времени накопления энергии.

На рисунке представлена электрическая схема системы зажигания с датчиком Холла:

Стабилизация величины вторичного напряжения достигается в схеме двумя путями — во-первых, регулированием времени нахождения транзистора VT1 в открытом состоянии, т.е. времени включения первичной цепи обмотки зажигания в сеть, во-вторых, ограничением величины тока в первичной цепи величиной около 8 А. Последнее, кроме того, предотвращает перегрев катушки.

Принцип работы: С датчика Холла на вход коммутатора приходит сигнал прямоугольной формы, величина которого приблизительно на 3 В меньше напряжения питания, а длительность, соответствует прохождению выступов экрана мимо чувствительного элемента датчика. Нижний уровень сигнала 0,4 В соответствует прохождению прорези. В момент перехода от высокого уровня к низкому происходит искрообразование.

 

В микросхеме коммутатора сигнал в блоке формирования периода, накопления энергии сначала инвертируется, затем интегрируется. На выходе интегратора образуется пикообразное напряжение, величина которого тем больше, чем меньше частота вращения двигателя. Это напряжение поступает на вход компаратора, на другой вход которого подано опорное напряжение. Компаратор преобразует величину напряжения во время. Сигнал на входе компаратора имеет место тогда, когда величина пилообразного напряжения достигает опорного и превышает его. При большой частоте вращения величина пилообразного напряжения мала, соответственно мала и длительность сигнала на выходе компаратора. С исчезновением выходного сигнала компаратора через схему управления открывается транзистор VT1, и первичная .цепь зажигания включается в сеть. Следовательно, время накопления энергии в катушке соответствует времени отсутствия сигнала на выходе компаратора. Уменьшение длительности выходного сигнала компаратора позволяет увеличить относительную величину времени накопления энергии и тем самым стабилизировать ее абсолютное значение.

Блок ограничения силы выходного тока срабатывает по сигналу, снимаемому с резисторов, включенных последовательно в первичную цепь зажигания. Если этот сигнал достигает уровня соответствующего силе тока 8 А, блок переводит выходной транзистор в активное состояние с фиксированием этой величины тока.

Блок безискровой отсечки отключает катушку зажигания в случае, если включено электропитание, но вал двигателя неподвижен. При этом, если при остановленном двигателе выходное напряжение датчика соответствует низкому уровню, катушка отключается сразу, в противном случае отключение происходит через 2 — 5 с.

Схема насыщена элементами защиты от всплесков напряжения и включения обратной полярности питания. Регулировка угла опережения зажигания осуществляется традиционными способами, т.е. центробежным и вакуумным регуляторами.

     Датчики индуктивного типа используются главным образом для измерения скорости и положения вращающихся деталей. Их действие основывается на известном принципе электрической индукции (изменение магнитного потока наводит э.д.с. в катушке). В результате вращения ротора датчика управляющих импульсов изменяется магнитное поле и в индукционной обмотке (статоре) создается представленное на рисунке а, б переменное напряжение. При этом напряжение увеличивается по мере приближения зубцов ротора к зубцам статора. Положительный полупериод напряжения достигает своего максимального значения, когда расстояние между зубцами статора и ротора минимальное. При увеличении расстояния магнитный поток резко меняет свое направление и напряжение становится отрицательным.

Рисунок. Датчик управляющих импульсов по принципу индукции
а) Технологическая схема

  1. Постоянный магнит
  2. Индукционная обмотка с сердечником
  3. Изменяющийся воздушный зазор
  4. Ротор датчика управляющих импульсов

б) временная характеристика переменного напряжения, индуктируемого датчиком управляющих импульсов tz = момент зажигания

В этот момент времени (tz) в результате прерывания первинного тока коммутатором инициируется процесс зажигания.

Количество зубцов ротора и статора в большинстве случаев соответствует количеству цилиндров. В этом случае ротор вращается с уменьшенной вдове частотой вращения коленчатого вала. Пиковое напряжение (± U) при низкой частоте вращения составляет прибл. 0,5 В, при высокой — прибл. до 100 В.

Момент зажигания можно проконтролировать только при работающем двигателе, поскольку без вращения ротора изменение магнитного поля не происходит и в результате не создается сигнал.

 

1 — свечи зажигания; 2 — датчик-распределитель, 3 — коммутатор, 4 — катушка зажигания

      Данные системы являются бесконтактными системами зажигания с нерегулируемым временем накопления энергии. Бесконтактная система зажигания с нерегулируемым временем накопления энергии принципиально отличается от контактно-транзисторной только тем, что в ней контактный прерыватель заменен бесконтактным датчиком. На рисунке ниже приведена электрическая схема системы:

Принцип работы: Сигнал с обмотки L магнитоэлектрического датчика через диод VD2, пропускающий только положительную полуволну напряжения, и резисторы R2, R3 поступает на базу транзистора VT1. Транзистор открывается, шунтирует переход база-эмиттер транзистора \/Т2, который закрывается. Закрывается и транзистор VT3, ток в первичной обмотке катушки зажигания прерывается, и на выходе вторичной обмотки возникает высокое напряжение. В отрицательную полуволну напряжения транзистор VT1 закрыт, открыты VT2 и VT3, и ток начинает протекать через первичную обмотку Катушки возбуждения. Очевидно, что число пар полюсов датчика должно соответствовать числу цилиндров двигателя.

Цепь R3-C1 осуществляет фазосдвигающие функций, компенсирующие фазовое запаздывание протекания тока в базе транзистора VT1 из-за значительной индуктивности обмотки датчика L, чем снижается погрешность момента искрообразования.

Стабилитрон VD3 и резистор R4 защищают схему коммутатора от повышенного напряжения в аварийных режимах, так как, если напряжение в бортовой цепи превышает 18 В, цепочка начинает пропускать ток, транзистор VT1 открывается и закрывается выходной транзистор VT3. Цепями защиты от опасных импульсов напряжения служат конденсаторы СЗ, С4, С5, С6; диод VD4 защищает схему от изменения полярности бортовой сети. Форма и величина выходного напряжения магнитоэлектрического датчика изменяются с частотой вращения, что влияет на момент искрообразования.

Давайте обобщим всё прочитанное. Не смотря на разность датчиков, системы схожи в построении и различаются внутренним устройством некоторых компонентов. Давайте взглянем на систему и опишем последовательно работу:

Итак, водитель поворачивает ключ в замке зажигания, тем самым замыкая цепь. Ток начинает поступать из аккумулятора по замкнутому замку зажигания.

Можно сказать, что питание цепи происходит по схеме: Аккумулятор->Стартер->Генератор. При нахождении ключа в положении «стартер» замыкаются контакты 50 и 30. Электрический ток поступает на реле стартера. Там появляется магнитное поле, что приводит к тому, что бендикс стартера вводится в зацепление с шестернёй маховика. Включается электродвигатель стартера и он начинает крутить маховик. Тот в свою очередь начинает раскручиваться и при достижении скорости, большей чем допустимая скорость вращения вала шестерни стартера привод стартера выводит её из зацепления. В свою очередь, вращение коленчатого вала передаётся на вращение вала генератора, что в свою очередь приводит к выработке электрического тока на нём, который питает бортовую сеть автомобиля и подзаряжает аккумулятор.

1 —  свечи зажигания; 2 — датчик-распределитель; 3 — распределитель; 4 — датчик импульсов; 5 — коммутатор; 6 — катушка зажигания; 7 — монтажный блок; 8 — реле зажигания; 9 — выключатель зажигания; А — к клемме генератора.

     Электрический ток поступает на первичную обмотку катушки зажигания(6).

     Коммутатор, получая сигнал с датчика(4), прерывает или наоборот включает первичную обмотку. Когда протекание тока по первичной обмотке прерывается, то во вторичной обмотке возникает ток высокого напряжение, который подаётся по высоковольтному проводу на распределитель.

   Распределитель, вал которого приводится в движение от шестерни привода масляного насоса или коленчатого вала(зависит от конкретного устройства двигателя) распределяет искру по свечам, тем самым воспламеняя смесь в нужном цилиндре двигателя в нужное время.

Преимущества БСЗ

Задача системы зажигания — обеспечение в нужный момент искры зажигания достаточной энергии для воспламенения топливной смеси. Чем точнее выполняется этот процесс, тем выше мощность и эффективность двигателя. Правильно выставленное зажигание позволяет повысить мощность двигателя, снизить расход топлива и выбросы вредных веществ.

     В последние годы и десятилетия эти цели приобретали все большую актуальность. Контактная система зажигания не смогла справиться с требованиями, которые к ней предъявлялись. Максимально передаваемую энергию, необходимую для зажигания рабочей смеси, увеличить не удалось, хотя это было необходимо для двигателей с высокой компрессией и мощностью, частота вращения которых становились все больше. Кроме того, из-за постоянного износа контактов не возможно обеспечить точное соблюдение заданного момента воспламенения. Это вызывало перебои в работе двигателя, повышение расхода топлива и выбросам вредных веществ атмосферу.

     Благодаря развитию электроники удалось инициировать процесс воспламенение бесконтактно, в результате чего решились проблемы износа и технического обслуживания. При этом заданный момент зажигания точно соблюдается практически в течение всего срока службы. В первую очередь, это достигается благодаря индуктивному формированию сигнала (бесконтактная транзисторная система зажигания с накоплением энергии в индуктивности) и формированию сигнала датчиком Холла (TSZ-h). Поскольку обе эти системы экономичны и относительно недорогие, они используются и сегодня на некоторых двигатетелях малого объема.

 

Основные преимущества бесконтактной системы зажигания:

  • отсутствие износа и технического обслуживания,
  • постоянный момент воспламенения,
  • отсутствие дребезга контактов и, как следствие, возможность увеличения частоты вращения,
  • регулирование накопления энергии и ограничение первичного тока,
  • более высокое вторичное напряжение системы зажигания
  • отключение постоянного тока.

Контактно-транзисторная система зажигания — презентация онлайн

Похожие презентации:

Электрооборудование автомобиля. Система зажигания и её виды

Классическая система зажигания

Контактная система двигателя

Система зажигания

Электронная система зажигания

Система зажигания

Основное назначение системы зажигания автомобиля

Диагностика системы зажигания автомобилей «ВАЗ»

Диагностика системы зажигания автомобиля «Москвич-412»

Система зажигания. Бесконтактная система зажигания

1. Контактно-транзисторная система зажигания

2. Опишите устройство и принцип работы?

3. Опишите «Классической» системы зажигания?

Это наиболее старая из существующих систем фактически она является ровесницей самого автомобиля

5. Опишите устройство и принцип работы «Классической» системы зажигания?

6. Опишите назначение катушки зажигания

7. Опишите устройство и принцип работы катушки зажигания

8. Назначение первичной и вторичной обмотки ?

9. Опишите процесс электромагнитной индукции тока высокого напряжения во вторичной обмотки

11.

Прерыванием тока первичной цепи и распределением тока высокого напряжения по свечам занимается прерыватель – распределитель,

или – трамблер (инженер изобретатель)

12. Прерыватель – распределитель, или – трамблер (инженер изобретатель). Зачем нужен?

13. Прерыватель – распределитель — в чем отличие друг от друга?

14. Устройство прерывателя – распределителя, или – трамблера?

15. Устройство прерывателя цепи низкого напряжения 12 v. Зачем нужно?

16. Это что и зачем нужно?

17. Это что и зачем нужно?

18. Как они работают?

19. Опишите назначение, устройство и принцип работы систем прерывателя распределителя?

21. Какой зазор должен быть на контактах и как он проверяется и регулируется?

22. Как на него поступает напряжение и куда уходит?

23. Виды роторов «бегунков». Опишите его устройство и неисправности.

24. Виды роторов «бегунков». Опишите его устройство и неисправности.

25. Виды роторов «бегунков».

Опишите его устройство и неисправности.

26. Виды роторов «бегунков». Опишите его устройство и неисправности.

27. Виды роторов «бегунков». Опишите его устройство и неисправности.

28. Виды роторов «бегунков». Опишите его устройство и неисправности.

29. Виды роторов «бегунков». Опишите его устройство и неисправности.

30. Виды роторов «бегунков». Опишите его устройство и неисправности

31. Виды роторов «бегунков». Опишите его устройство и неисправности

32. Виды роторов «бегунков». Опишите его устройство и неисправности

33. Виды роторов «бегунков». Опишите его устройство и неисправности.

34. Откуда приходит высокое напряжение на трамблер, как в нем проходит и куда уходит?

35. Откуда приходит высокое напряжение на трамблер, как в нем проходит и куда уходит?

36. Распределитель высокого напряжения по свечам

37. Откуда приходит высокое напряжение на трамблер, как в нем проходит и куда уходит?

38.

Откуда приходит высокое напряжение на трамблер, как в нем проходит и куда уходит?

39. Крышка распределителя трамблера. Откуда высокое напряжение поступает куда и как передается?

Вакуумный регулятор опережения зажига- ния предназначен для
изменения момента воз- никновения искры между электродами
свечей зажигания, в зависимости от нагрузки на двига тель.
Уменьшение
Увеличение

41. Опишите еще раз устройство и принцип работы системы зажигания и основные неисправности?

42. THE END

43. Почему классическую систему зажигания нельзя использовать на 6 и 8 цилиндровых двигателях?

44. Потому что напряжение не успевает расти до величины пробоя на контактах свечи, а такт «рабочий ход уже наступает и ….

45. двигатель на высоких оборотах теряет мощность, так как не вся рабочая смесь успевает сгореть

46. Какие еще неисправности были у классической системы зажигания?

47. «Пригорают» и окисляются контакты на крышке трамблера и стирается уголек, что приводит к………

48.

пропускам зажигания и падению мощности двигателя. А почему дымит?

49. Трещины на высоковольтных проводах, что приводит к…………….

50. «утечке» тока, пропускам зажигания и падению мощности двигателя. А почему дымит?

51. «Пригорают» и окисляются подвижные контакты трамблера (10 000 км) , что приводит к…… А почему дымит?

52. пропускам зажигания и падению мощности двигателя. А почему дымит?

53. Что бы решить проблемы «Классической» системы зажигания решили поставить……

54. Что бы решить проблему с пропускaми зажигания поставили в систему зажигания….?

55. Контактно-транзисторная система зажигания

Контактнотранзисторная система
зажигания
Какие проблемы решили?
1)Убрали пригорание контактов
трамблера.
Как решили проблему?
Пустили ток контакты трамблера
— 1 Ампер
2) Увеличили искру зажигания.
Как решили проблему?
Подали на первичную обмотку
катушки зажигания ток –
10 ампер.
За счет чего произошли такие
изменения?

56.

Назначение, устройство и принцип работы?

57. Назначение, устройство и принцип работы?

58. Покажите с чем соединен ТК?

59. Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

Опишите устройство и принцип работы контактнотранзисторной системы зажигания?

60. Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

61. Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

Опишите устройство и принцип работы контактнотранзисторной системы зажигания?

62. Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

63. Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

64. Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

Опишите устройство и принцип работы контактнотранзисторной системы зажигания?

65. Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

66.

Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

67. Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

Опишите устройство и принцип работы контактнотранзисторной системы зажигания?

68. Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

Опишите устройство и принцип работы контактнотранзисторной системы зажигания?

70. Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

71. Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

72. Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

73. Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

74. Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

75. Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

76. Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

77.

Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

78. Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

79. Опишите устройство и принцип работы контактно-транзисторной системы зажигания?

80. Какие проблемы решила контактно-транзисторной системы зажигания?

Какие проблемы решила контактнотранзисторной системы зажигания?

81. Какие проблемы не решила контактно-транзисторной системы зажигания?

Какие проблемы не решила контактнотранзисторной системы зажигания?

82. THE END

English    
Русский
Правила

Транзисторная система зажигания Работа и схема

Реклама

Транзисторная система зажигания представляет собой схему зажигания, которая сокращает использование механических устройств. Целью транзисторной системы зажигания является повышение эффективности работы системы зажигания путем замены движущихся частей, таких как точки прерывания.

Основной принцип транзисторных систем зажигания заключается в использовании транзисторов в качестве электронных переключателей вместо точек прерывания.

Те из вас, кто уже знаком с системами зажигания автомобилей, должны знать точку прерывания или платину.

Прерыватель — это устройство, используемое для прерывания тока первичной обмотки в катушке зажигания, чтобы могла возникнуть электромагнитная индукция. Эта точка прерывания работает механически, используя кулачок, который может растягивать зазор точки прерывания.

Однако использование точек прерывания считается менее эффективным, так как трущиеся компоненты будут разрушаться, что может повлиять на общую работу системы зажигания. Кроме того, когда точка прерывателя растягивается, в точке прерывателя возникает частое искрение, так что индукционная мощность катушки зажигания снижается.

Для этого есть регулировка зазора брекера.

Используя транзисторы, можно решить две вышеуказанные проблемы. Таким образом, нам не нужно устанавливать зазор.

Почему вместо точек прерывателя используются транзисторы?

Как мы уже говорили в начале, транзистор выполняет функцию электронного переключателя. У транзистора три ножки: база, коллектор и эмиттер.

Коллектор на входе, а эмиттер на выходе. База как контроллер, если на базе течет электрический ток (низкое напряжение), то ток на входе (коллектор) будет течь на выход (эмиттер).

Однако, когда электрический ток на базе прекращается, коллектор снова отключается эмиттером.

Итак, в заключение, транзистор можно использовать в системе зажигания из-за его характеристик, позволяющих быстро разъединять и соединять линии.

Для контроля работы транзистора нам нужен один дополнительный датчик, приемная катушка. Этот датчик будет посылать ток низкого напряжения с паузами в соответствии с опережением зажигания на базовой ножке. Так что производительность транзистора будет соответствовать оборотам двигателя.

Как работает подхват катушки?

Приемная катушка состоит из трех частей: ротора с кулачком, постоянного магнита и катушки.

Три компонента размещены, как показано на рисунке, подтверждено, что постоянный магнит излучает магнитное поле, которое воздействует на ротор. В то время как ротор сделан из металла, который способен притягиваться магнитами.

Кулачок на роторе служит для сокращения зазора между ротором с постоянным магнитом.

Из-за этого изменяющегося зазора ток в приемной катушке становится зигзагообразным. Когда кулачок расположен параллельно постоянному магниту, возникает электрический ток, но когда кулачок смещается, ток исчезает. Это падение напряжения используется в качестве синхронизации для прерывания первичного тока в катушке зажигания.

Схема транзисторной системы зажигания

  • Аккумулятор
  • Замок зажигания
  • Вход катушки зажигания
  • Выход первичной обмотки
  • Выход вторичной обмотки
  • Транзистор
  • Захватная катушка
  • распределитель
  • Свеча зажигания

Порядок работы транзисторной системы зажигания

Когда двигатель запускается, коленчатый вал вращает приемную катушку, так что приемная катушка генерирует ток низкого напряжения. Это приведет к тому, что база транзистора станет активной, так что коллектор соединится с эмиттером.

В катушке зажигания ток от аккумулятора будет протекать по обеим катушкам в катушке зажигания.

Как объяснялось выше, приемная катушка будет генерировать зигзагообразный электрический ток. Затем ток от приемной катушки передается на базу транзистора.

Индукция в катушке зажигания происходит, когда на основание ножки не подается электрический ток, но он длится мгновение, поэтому за один цикл 4-цилиндрового двигателя может происходить четыре раза индукционный процесс.

Индукция производит высокое напряжение, которое распределяется на распределитель, который распределяется на каждую свечу зажигания в соответствии с порядком зажигания.

Integrated Publishing — ваш источник военных спецификаций и образовательных публикаций

Администрация — Навыки, процедуры, обязанности и т. д. военного персонала

Продвижение —
Военный карьерный рост
книги и т. д.

Аэрограф/метеорология
Метеорология
основы, физика атмосферы, атмосферные явления и др.
Руководства по аэрографии и метеорологии военно-морского флота

Автомобилестроение/Механика — Руководства по техническому обслуживанию автомобилей, механика дизельных и бензиновых двигателей, руководства по автомобильным деталям, руководства по деталям дизельных двигателей, руководства по деталям бензиновых двигателей и т. д.
Автомобильные аксессуары |

Перевозчик, персонал |

Дизельные генераторы |

Механика двигателя |

Фильтры |

Пожарные машины и оборудование |

Топливные насосы и хранение |

Газотурбинные генераторы |

Генераторы |

Обогреватели |

HMMWV (Хаммер/Хамви) |

и т.д…

Авиация — Принципы полетов,
авиастроение, авиационная техника, авиационные силовые установки, справочники по авиационным частям, справочники по авиационным частям и т. д.
Руководства по авиации ВМФ |

Авиационные аксессуары |

Общее техническое обслуживание авиации |

Руководства по эксплуатации вертолетов AH-Apache |

Руководства по эксплуатации вертолетов серии CH |

Руководства по эксплуатации вертолетов Chinook |

и т.д…

Боевой —
Служебная винтовка, пистолет
меткая стрельба, боевые маневры, штатное вооружение поддержки и т. д.
Химико-биологические, маски и оборудование |

Одежда и индивидуальное снаряжение |

Боевая инженерная машина |

и т.д…

Строительство —
Техническое администрирование,
планирование, оценка, планирование, планирование проекта, бетон, кирпичная кладка, тяжелый
строительство и др.
Руководства по строительству военно-морского флота |

Совокупность |

Асфальт |

Битумный корпус распределителя |

Мосты |

Ведро, Раскладушка |

Бульдозеры |

Компрессоры |

Обработчик контейнеров |

дробилка |

Самосвалы |

Землеройные машины |

Экскаваторы |

и т. д…

Дайвинг —
Руководства по водолазным работам и спасению различного снаряжения.

Чертежник —
Основы, методы, составление проекций, эскизов и т. д.

Электроника —
Руководства по обслуживанию электроники для базового ремонта и основ. Руководства по компонентам компьютеров, руководства по электронным компонентам, руководства по электрическим компонентам и т. д.
Кондиционер |

Усилители |

Антенны и мачты |

Аудио |

Батареи |

Компьютерное оборудование |

Электротехника (NEETS) (самая популярная) |

техник по электронике |

Электрооборудование |

Электронное общее испытательное оборудование |

Электронные счетчики |

и т.д…

Машиностроение —
Основы и методы черчения, составление проекций и эскизов, деревянное и легкокаркасное строительство и др.
Военно-морское машиностроение |

Армейская программа исследований прибрежных бухт |

и т. д…

Еда и кулинария —
Руководства по рецептам и оборудованию для приготовления пищи.

Логистика —
Логистические данные для миллионов различных деталей.

Математика —
Арифметика, элементарная алгебра,
предварительное исчисление, введение в вероятность и т. д.

Медицинские книги —
Анатомия, физиология, пациент
уход, средства первой помощи, фармация, токсикология и т. д.
Медицинские руководства военно-морского флота |

Агентство регистрации токсичных веществ и заболеваний

Военные спецификации
Правительственные спецификации MIL и другие сопутствующие материалы

Музыка
Мажор и минор
масштабные действия, диатонические и недиатонические мелодии, паттерны такта,
и т.д.

Основы ядра —
Теории ядерной энергии,
химия, физика и т.