Содержание
Основные способы охлаждения, виды и свойства
В этом обзоре, речь пойдет об основных способах охлаждения, которые зависят от метода теплопереноса (теплообмена). Здесь будут доступны лишь самые общие описания.
Содержание:
- Естественное охлаждение
- Искусственное охлаждение
- Охлаждение химическим способом
- Охлаждение дросселированием
- Термоэлектрический способ охлаждения
Естественное охлаждение
Способы естественного охлаждения отводят теплоту в окружающую среду, затрачивая при этом минимум электрической энергии. Это самый эффективный метод понижения температуры с точки зрения расхода энергии, который имеет одно ограничение, он не способен охладить теплоноситель ниже температуры источника естественного холода. Как только теплофизическое равновесие достигнуто, дальнейшее охлаждение тела невозможно.
Термодинамическое равновесие — это такой термодинамический порядок тел, который при неизменности внешних факторов (давления, температуры, энтропии, объёма) т. е. без внешнего воздействия может сохраняться не ограниченное время.
Количество тепла, которое способно принять тело, применяемое для охлаждения, определяет его холодопроизводительность или холодильный эффект. Поскольку физическая природа процессов одинакова, понятия теплота и холод условны.
Для лучшего понимания картины происходящего давайте вспомним, о чем говорит второй закон термодинамики.
Охлаждение, это необратимый процесс физического переноса тепловой энергии от нагретого (тела) к более холодному, до получения эффекта термодинамического равновесия. Под термином тело, понимают любое агрегатное состояние вещества (кристаллы, жидкость, газ) принимающего участие в теплообмене.
Теплообмен представляет собой разностороннее физическое явление, которое условно можно поделить на цепь простых, но принципиально разных способов теплопереноса.
Эффект термодинамического равновесия достигается путем одного из трёх видов передачи теплоты в пространстве:
- Излучение (лучистое тепло) — термический перенос между предметами, за счет инфракрасного излучения без нагрева окружающего воздуха или вакуума.
- Конвекция – перенос тепла в замкнутом объеме, веществом (газом либо жидкостью), путем перемешивания более горячего вещества, с холодным.
- Теплопроводность – передача тепловой энергии между твердыми предметами при их непосредственном контакте, методом взаимодействия элементарных частиц.
Основными природными агентами для естественного охлаждения тел принято считать лед, воду и воздух.
Вода один из самых универсальный и уникальных химических элементов на земле. В зависимости от окружающей температуры, при стандартном давлении ртутного столба 760 мм или 1,013 бар, её можно встретить в любом агрегатном состоянии:
- Кристаллическом – лед.
- Жидком – вода.
- Газообразном – пар.
Каждое агрегатное изменение состояния воды называется фазовым переходом. Удельная теплоемкость воды равна 1,16 Вт/кг на 1°С, для запуска фазового перехода воды в лед потребуется 7,5 Вт/кг. Т.е. для образования кристаллов льда в объеме, необходимо приложить практически в семь раз больше энергии, чем для обычного охлаждения.
Это свойство веществ широко применяется при получении искусственного холода, когда требуется охладить продукт ниже температуры природного источника низкой температуры.
Искусственное охлаждение (refrigeration)
Искусственные способы охлаждения базируются на следующих физических процессах:
- Вихревой способ температурного разделения газа при закручивании в камере с условием, что поток в трубке проходит в обоих направлениях. Эффект Жозефа Ранка и Рудольфа Хильша.
- Дросселирование (торможение, редуцирование). Способ Джоуля — Томпсона, получение эффекта охлаждения путем снижения давления жидкости или газа при прохождении потоком местного сопротивления, ограничивающего проходное сечение.
- Способ охлаждения Пельтье, в этом случае происходит термоэлектрическое поглощение или выделение теплоты при воздействии электрического тока в месте соединения двух разнородных проводников.
- Абсорбционный способ охлаждения тел получил свое название от процесса абсорбции. Т.е. поглощения веществом паров хладагента.
- Фазовое преобразование агрегатного состояния вещества, сопровождающиеся выделением либо поглощением тепла:
- плавление или кристаллизация
- испарение либо конденсация
- сублимация или десублимация
Особенность фазового перехода, заключается в том, что температура тела осуществляющего преобразование, при одинаковом давлении, остается неизменной до полного завершения процесса.
Распространенные способы получения искусственного холода на основе изменения агрегатного состояния тел, которые применяют в производстве и хранении продуктов классифицируют на два типа:
- Нециклический способ охлаждения, является кратковременным и достигается, как правило, за счет фазового перехода кристаллизованного вещества путем плавления или сублимации.
То есть перехода твердого тела в жидкость (плавление) либо минуя жидкое состояние сразу в газообразное (сублимация). Изменение исходного агрегатного состояния при фазовом преобразовании походят при постоянном давлении и температуре, которые зависят от свойств физического тела и внешних условий перехода. Для примера можно рассмотреть способы охлаждения продуктов в низкотемпературной камере, в которую помимо продуктов помещают заранее заготовленный водяной лёд (Н2О) или сухой лед (диоксид углерода СО2). Температура сублимации кристаллической угольной кислоты при нормальном атмосферном давлении равна -78,9 °C. Водный лед при атмосферном давлении плавится при достижении температуры выше 0 °C.
- Циклический способ, чаще называют машинным охлаждением, он базируется на термодинамических процессах, то есть на обратимых физических циклах, которые в термодинамике называют круговыми. В основе здесь так же лежит фазовый переход, но уже между жидкостью и газом, это так называемые парокомпрессионные холодильные машины.
Дросселирование в таких схемах применяют для усиления холодильного эффекта.
Охлаждение химическим способом
Сорбционные или Абсорбционные — пароконденсационные холодильные машины (АБХМ) непрерывного действия, тоже являются циклическими, так как процессы абсорбции хладагента в абсорбере и выпаривания (десорбции) раствора в генераторе протекают непрерывно при постоянном давлении кипения жидкости в испарителе и конденсации паров в конденсаторе.
Абсорбционные процессы охлаждения происходят в среде рабочих веществ (растворов), состоящих, из двух компонентов – хладагента и сорбента. При работе АБХМ, хладагент циклически находится как в жидком, так и в виде пара, а абсорбент только в жидком состоянии.
Абсорбционные холодильные устройства могут быть водно-аммиачными или бромисто-литиевыми LiBr . Ввиду низкой холодопроизводительности такие машины в основном используют в промышленности и производстве электрической энергии.
Вихревой способ охлаждения осуществляется с помощью трубы Ранка.
Воздух, имеющий температуру окружающей среды, под большим давлением поступает в диффузор находящийся под углом к вихревой камере.
В камере кинетическая энергия закручивает воздушный поток. Круговая скорость воздушного вихря распределяется не равномерно, по внешней окружности она значительно уступает скорости струи находящейся ближе к центру. При движении газового потока в направлении дроссельного клапана происходит расслоение температуры (кинетическая энергия внутреннего вихря, через трение передается периферийному вихрю в виде тепловой энергии), в результате чего наружный вихрь нагревается, а внутренний напротив остывает.
Достигая конца трубки с коническим дроссельным клапаном, периферийный вихрь вырывается наружу перегретым, центральный осевой вихрь отражается от дросселя и движется в противоположном направлении, выходя через диафрагму охлажденным.
Вихревая труба Ранка-Хильша позволяет получить значительный перепад температур на разных концах трубы, более 200°С. Ввиду большого потребления энергии, способ применяется для местного (точечного) охлаждения оборудования.
Охлаждение дросселированием
Дросселированием называется преодоление жидкостью либо газом отверстия с малым сечением, которое сопровождается резким снижением давления.
При дросселировании не обязательно происходит охлаждение, иногда температура на выходе растет или остается прежней. Это зависит от исходных данных жидкости или газа перед процессом дросселирования.
На принципе дросселирования был основан простой однократный холодильный цикл Линде, примененный в установке по сжижению воздуха.
В парокомпрессионных холодильных машинах рабочее вещество в начале цикла сжимается компрессором, затем подвергается охлаждению, а потом через дроссель поступает в испаритель. Чаще всего в бытовых холодильниках в качестве дросселя встречается капиллярная калиброванная трубка.
При дросселировании жидкого хладагента с низкой температурой кипения, на внешней стороне дросселя (в промышленной холодильной технике ТРВ — терморегулирующий вентиль), вследствие снижения давления происходит закипание жидкости. Жидкий хладагент при этом интенсивно испаряется, значительно увеличиваясь в объеме, в результате чего совершается работа по преодолению взаимного притяжения молекул рабочего вещества. Произведенная работа по разрыву молекулярных связей, сопровождается снижением внутренней энергии кипящего тела. Дросселирование жидкого хладагента, в результате преобразования сил трения в тепло и передачи ее газу, способствует значительному снижению температуры.
Термоэлектрический способ охлаждения Жана-Шарля Пельтье
Эффект был открыт в 1834 году. Испытатель пролил воду на электроды, изготовленные из висмута и сурьмы, которые были подключены к электрической цепи. Вода на одном из контактов, внезапно превратилась в лёд.
Дальнейшее изучение феномена показало, что при прохождении электрического тока между двумя разно заряженными проводниками, на одной стороне происходит нагрев, а на противоположной стороне охлаждение. При смене полярности, горячая и холодная стороны элемента также меняется местами.
По причине низкого КПД, на протяжении следующих 100 лет о термоэлектрическом охлаждении было известно только научному сообществу, прикладного применения он не находил. Только в конце 30х годов прошлого столетия ученый академик А.Ф.Иоффе, предложил использовать для элемента Пельтье полупроводники и доказал достаточную эффективность термоэлектрического охлаждения.
Сегодня машинные способы охлаждения встречаются повсюду, в квартире, автомобиле, офисе, на промышленном и пищевом производстве.
Наука и медицина применяют охлаждение в криогенной технике:
- Криобиология — раздел биологии, который исследует действие низких температур на живые клетки.
- Криотерапия — лечение организма воздействием холода.
Сферы применения того или другого способа охлаждения веществ определяются их свойствами, которые влияют на производственные процессы, а также показателями экономической эффективности.
Охлаждение. Виды и способы охлаждения
В пищевой промышленности холод применяют при хранении сырья, полуфабрикатов и готовой продукции, а также при проведении ряда технологических процессов. С использованием процессов искусственного охлаждения происходят процессы кристаллизации, разделения газов, сублимационной сушки, некоторые реакторные процессы.
Охлаждение – процесс понижения температуры материала путем отвода от него теплоты. Охлаждение всегда связано с переносом тепла от тела с более высокой температурой к телу с более низкой температурой. Способы получения искусственного холода классифицируются по требуемой температуре охлаждения. Условно различают умеренное охлаждение (диапазон температур +20 … –100 °С) и глубокое охлаждение (температура ниже -100 °С).
Способы охлаждения пищевых продуктов (мяса, рыбы, птицы, яиц, отдельных видов плодов и овощей) могут быть подразделены на три группы по физическому принципу отвода тепла: теплопроводностью, конвекцией, радиацией; фазовым превращением; конвекцией и фазовым превращением воды.
Способы охлаждения, в основе которых лежит конвективный и радиационный обмен, характеризуются отсутствием или незначительной потерей влаги продуктом во время охлаждения. К этим способам можно отнести охлаждение в воздухе продуктов, упакованных в непроницаемые искусственные или естественные оболочки, а также охлаждение в жидкой среде. Охлаждению в жидкой среде подвергаются рыба, птица и некоторые овощи.
Зачастую этим способом пользуются для частичного понижения температуры. Вследствие интенсификации теплообмена сокращается продолжительность процесса, отсутствуют потери массы продукта. Однако контактное охлаждение неупакованных продуктов в жидкой среде имеет следующие недостатки: частичное экстрагирование составных частей продукта, поглощение поверхностными слоями некоторого количества охлаждающей среды.
Охлаждение во влагонепроницаемой упаковке исключает непосредственный контакт продукта с окружающей средой и тем самым предотвращает отмеченные недостатки. При этом требуются дополнительные затраты на упаковку продукта.
Способы охлаждения, при которых отвод тепла осуществляется только вследствие фазовых превращений, в промышленности применяют для охлаждения овощей, плодов и рыбы. Они заключаются в том, что при вакуумировании происходит испарение части влаги, содержащейся в продукте. Эти способы также являются эффективными в сочетании с предварительной промывкой или частичным охлаждением в воде с последующим вакуумированием. При охлаждении вода, поглощенная поверхностным слоем продукта, испаряется.
В промышленности наиболее распространены способы охлаждения, осуществляемые передачей тепла продуктам конвекцией, радиацией и вследствие теплообмена при фазовом превращении. Наиболее распространены в мировой практике методы охлаждения воздухом (принудительным потоком или потоком, создаваемым при разности давлений). Охлаждающей средой является воздух, движущийся с различной скоростью. Этот способ осуществляется по-разному.
Успешно происходит охлаждение в обычных камерах, снабженных устройством для распределения охлажденного воздуха. Продукты размещаются в камере в различной таре (сливочное масло, жиры, птица, яйца и др.) или без тары в подвешенном вертикальном положении (мясные полутуши и тушки мясного рогатого скота, колбасные изделия и др.). Охлаждение воздухом применяется также для широкого ассортимента плодоовощной продукции.
Лучший технологический эффект охлаждения достигается в камерах туннельного типа с продольной или поперечной принудительной циркуляцией охлаждающей воздушной среды. При этом удается получить более равномерное распределение температуры и скорости движения воздуха и тем самым равномерно охладить продукцию по всему объему.
Относительно новым способом охлаждения является охлаждение мяса в воздухе, перенасыщенном влагой. В камерах для охлаждения имеется возможность изменять степень перенасыщения, скорость и температуру воздуха. Из-за хорошей теплоотдачи продолжительность охлаждения мясных полутуш сокращается.
Искусственное охлаждение воздухом используется в поверхностных или смесительных теплообменниках. Охлаждение воздухом в поверхностных теплообменниках применяется редко из-за низкого коэффициента теплопередачи и значительного расхода энергии при работе вентилятора.
Смесительные теплообменники (градирни) представляют собой аппараты башенного типа, в которых охлаждаемый воздух движется снизу вверх навстречу стекающей жидкости. При этом охлаждение происходит не только за счет теплоотдачи, но и в значительной степени за счет испарения части жидкости.
Вода является наиболее распространенным охлаждающим агентом из-за высокой теплоемкости, большого коэффициента теплоотдачи, доступности.
Подземная (артезианская) вода имеет температуру +8… 15 °С. Часто используют оборотную воду, т.е. воду, охлажденную в градирне, а затем возвращенную на охлаждение теплообменного аппарата.
Охлаждение водой производится погружением продукта в холодную воду или разбрызгиванием, но чаще используют поверхностные теплообменники. Скорость охлаждения водой значительно выше, чем воздухом. Кроме того, добавление в воду антисептиков наряду с охлаждением сокращает размер порчи от возбудителей, уменьшаются до минимума потери массы продукции.
Гидроохлаждение яблок, груш, персиков, слив, томатов, дынь перед перевозкой рефрижераторным транспортом получило наибольшее распространение в Италии, США и других странах.
Если температура охлаждаемой среды выше –100 °С, то применяют испарительное охлаждение. В Японии, США и других странах успешно используют вакуум-испарительное охлаждение для зеленных овощей.
Система испарительного охлаждения
В качестве низкотемпературных агентов при создании температур ниже –5…–20 °С применяют лед, охлаждающие смеси (смеси льда с различными солями), холодильные соли (растворы хлористого кальция, хлористого натрия и др.) и пары жидкостей, кипящих при низких температурах.
При охлаждении холодильными рассолами и парами низкокипящих жидкостей пользуются холодильными установками.
В Великобритании, Испании, Германии и других странах применяют охлаждение продукции жидким азотом в камерах хранения и в транспортных средствах.
типов систем охлаждения | Smarter House
Кондиционирование воздуха или охлаждение сложнее, чем отопление. Вместо того, чтобы использовать энергию для создания тепла, кондиционеры используют энергию для отвода тепла. Наиболее распространенная система кондиционирования воздуха использует цикл компрессора (аналогичный тому, который используется в вашем холодильнике) для передачи тепла из вашего дома на улицу.
Представьте свой дом в виде холодильника. Снаружи находится компрессор, заполненный специальной жидкостью, называемой хладагентом. Эта жидкость может меняться между жидкостью и газом. При изменении он поглощает или выделяет тепло, поэтому он используется для «переноса» тепла из одного места в другое, например, из внутренней части холодильника наружу. Просто, верно?
Нет. И процесс становится немного сложнее со всеми задействованными элементами управления и клапанами. Но эффект от него замечательный. Кондиционер забирает тепло из более прохладного места и отдает его в более теплое, что, по-видимому, работает против законов физики. Движущей силой процесса, конечно же, является электричество — на самом деле его довольно много.
Центральные кондиционеры и тепловые насосы
Центральные кондиционеры и тепловые насосы предназначены для охлаждения всего дома. В каждой системе процесс приводится в действие большим компрессорным агрегатом, расположенным снаружи; внутренний змеевик, заполненный хладагентом, охлаждает воздух, который затем распределяется по всему дому через воздуховоды. Тепловые насосы похожи на центральные кондиционеры, за исключением того, что цикл можно реверсировать и использовать для отопления в зимние месяцы. (Тепловые насосы более подробно описаны в разделе «Отопление».) В случае центрального кондиционера та же система воздуховодов используется с печью для принудительного воздушного отопления. Фактически, центральный кондиционер обычно использует вентилятор печи для распределения воздуха по воздуховодам.
Центральные кондиционеры воздуха и воздушные тепловые насосы, работающие в режиме охлаждения, оцениваются в соответствии с коэффициентом сезонной энергоэффективности (SEER) с 1992 года. SEER – это сезонная мощность охлаждения в БТЕ, деленная на сезонное потребление энергии в ватт-часах. для «среднего» климата США. До 1992 года использовались разные показатели, но производительность многих старых центральных кондиционеров была эквивалентна рейтингу SEER только 6 или 7. Средний центральный кондиционер, проданный в 1988 году, имел эквивалент SEER около 9.; к 2002 году он вырос до 11,1. Национальный стандарт эффективности для центральных кондиционеров и тепловых насосов с воздушным источником теперь требует минимального SEER 13 (с 2006 года), а для получения права на ENERGY STAR требуется SEER 14,5 или выше. Центральные кондиционеры также имеют рейтинг энергоэффективности (EER), который указывает на производительность при более высоких температурах. Модели, отвечающие требованиям ENERGY STAR, должны соответствовать требованиям EER 12.
Кондиционеры и тепловые насосы используют цикл хладагента для передачи тепла между внутренним блоком и внешним блоком. Тепловые насосы отличаются от кондиционеров только специальным клапаном, который позволяет реверсировать цикл, подавая внутрь либо теплый, либо холодный воздух.
Новые стандарты эффективности для центральных кондиционеров вступят в силу в 2015 году. Как и в случае с печами, новые стандарты будут различаться в зависимости от региона, с большей строгостью на юге и юго-западе, чем на севере. Новые центральные кондиционеры, продаваемые для установки на юге и юго-западе, должны соответствовать минимуму 14 SEER; для агрегатов, установленных на севере, минимум 13 SEER остается неизменным. Воздушные тепловые насосы должны соответствовать минимуму 14 SEER независимо от того, где они установлены. Кроме того, центральные кондиционеры, установленные на жарком и сухом юго-западе, должны соответствовать как минимум 12,2 EER (или 11,7 EER для более крупных моделей).
В отличие от этого, охлаждающая способность геотермальных тепловых насосов измеряется по установившемуся EER, а не по сезонному показателю. Минимальные требования программы ENERGY STAR для геотермальных тепловых насосов: 21,1 EER для систем с открытым контуром, 17,1 EER для систем с замкнутым контуром и 16 EER для агрегатов с непосредственным испарением (DX).
Комнатные кондиционеры
Комнатные кондиционеры доступны для установки в окна или сквозь стены, но в каждом случае они работают одинаково, с компрессором, расположенным снаружи. Комнатные кондиционеры рассчитаны на охлаждение только одной комнаты, поэтому для всего дома может потребоваться несколько кондиционеров. Стоимость отдельных блоков меньше, чем стоимость централизованных систем.
Комнатные кондиционеры оцениваются только по EER, который представляет собой отношение холодопроизводительности к потребляемой мощности. Чем выше EER, тем эффективнее кондиционер. Пересмотренные федеральные стандарты минимальной эффективности бытовых кондиционеров, принятые в 2011 году, вступят в силу в июне 2014 года; пересмотренные требования ENERGY STAR вступят в силу в октябре 2013 г. В таблице 5.2 перечислены требования к блокам с жалюзийными стенками — наиболее распространенному типу.
Федеральный стандарт мин EER | ENERGY STAR мин. EER | ||
Производительность (БТЕ/ч) | по состоянию на октябрь 2014 г. | по состоянию на октябрь 2014 г. | По состоянию на июль 2017 г. |
менее 6000 | 11,0 | 11,2 | 12.1 |
6000 ро 7999 | 11,0 | 11,2 | 12.1 |
от 8 000 до 13 999 | 10,9 | 11,3 | 12,0 |
от 14 000 до 19 999 | 10,7 | 11,2 | 11,8 |
от 20 000 до 24 999 | 9,4 | 9,8 | 10,3 |
25 000 или выше | 9,0 | 9,8 | 9,9 |
Испарительные охладители
Испарительные охладители, иногда называемые болотными охладителями, менее распространены, чем парокомпрессионные (хладагентные) кондиционеры, но они представляют собой практичную альтернативу в очень засушливых районах, например на юго-западе. Они работают, протягивая свежий наружный воздух через влажные прокладки, где воздух охлаждается за счет испарения. Затем холодный воздух циркулирует по дому. Этот процесс очень похож на ощущение холода, когда вы выходите из бассейна на ветру. Испарительный охладитель может снизить температуру наружного воздуха на целых 30 градусов.
Летом они могут сэкономить до 75 % на охлаждении, поскольку единственным механическим компонентом, использующим электричество, является вентилятор. Кроме того, поскольку технология проще, ее покупка может стоить намного дешевле, чем центральный кондиционер — часто примерно вдвое.
Прямой испарительный охладитель увеличивает влажность дома, что можно считать преимуществом в очень сухом климате. Непрямой испарительный охладитель немного отличается тем, что испарение воды происходит на одной стороне теплообменника. Домашний воздух проходит через другую сторону теплообменника, где он охлаждается, но не впитывает влагу. Оба типа начинают терять свою эффективность при повышении влажности, потому что влажный воздух менее способен переносить дополнительную влагу.
Чтобы испарительные охладители выполняли свою работу, они должны быть подходящего размера. Холодопроизводительность испарительного охладителя измеряется не количеством тепла, которое он может удалить (БТЕ), а давлением вентилятора, необходимым для циркуляции холодного воздуха по дому, в кубических футах в минуту (куб. фут/мин). Хорошее правило состоит в том, чтобы вычислить кубические квадратные метры вашего дома и разделить на 2. Например, для дома площадью 1500 квадратных футов с потолками высотой 8 футов потребуется охладитель на 6000 кубических футов в минуту.
Бесканальные мини-сплит-кондиционеры
Мини-сплит-системы, очень популярные в других странах, могут быть привлекательным вариантом модернизации для пристроек к помещениям и для домов без воздуховодов, например, в домах, использующих водяное отопление (см. раздел «Отопление»). Как и обычные центральные кондиционеры, мини-сплит-системы используют внешний компрессор/конденсатор и внутренние блоки обработки воздуха. Отличие состоит в том, что для каждого помещения или зоны, которую нужно охладить, имеется свой собственный увлажнитель воздуха. Каждый внутренний блок соединен с наружным блоком через кабелепровод, по которому проходят линии питания и хладагента. Внутренние блоки обычно монтируются на стене или потолке.
Основным преимуществом мини-сплит без воздуховодов является его гибкость при охлаждении отдельных комнат или зон. Предоставляя отдельные блоки для каждого помещения, легче удовлетворить различные потребности в комфорте разных комнат.
Избегая использования воздуховодов, мини-сплиты без воздуховодов также позволяют избежать потерь энергии, связанных с центральными системами принудительной вентиляции.
Основным недостатком мини-сплитов является стоимость. Они стоят намного дороже, чем типичный центральный кондиционер того же размера, где воздуховоды уже установлены. Но, учитывая стоимость и потери энергии, связанные с установкой нового воздуховода для центрального кондиционера, покупка мини-сплита без воздуховода может быть не такой уж плохой сделкой, особенно с учетом долгосрочной экономии энергии. Поговорите со своим подрядчиком о том, какой вариант будет наиболее рентабельным для вас.
Современное охлаждение
Night Breeze — это новая технология домашнего климат-контроля, предназначенная для экономии энергии в жарком и сухом климате. По сути, это вентилятор для всего дома, кондиционер и косвенный водонагреватель, объединенные одной системой управления. Летом система всасывает как можно больше прохладного наружного воздуха для удовлетворения потребностей в охлаждении — кондиционер включается только в случае крайней необходимости. Зимой теплообменник вода-воздух, отходящий от водонагревателя, подает теплый воздух в систему.
Контактное лицо: Davis Energy Group
Также подходящий для сухого климата охладитель Coolerado Cooler представляет собой технологию испарительного охлаждения, которая является на 100% непрямой. Он может предложить от четырех до шести тонн охлаждения при энергопотреблении 1200 Вт. Его коэффициент энергоэффективности (EER) составляет 40 или выше, что делает его в два-три раза более эффективным, чем у лучших обычных кондиционеров.
Контактное лицо: Coolerado, LLC
Аккумулятор тепловой энергии — это технология, которая лучше всего подходит для простого переноса энергопотребления с пиковых на непиковые часы. Он работает за счет накопления энергии во льду — ночью электричество используется для замораживания воды, а днем лед может охлаждать воздух, который циркулирует по всему дому. Наиболее экономически выгодная для людей, которые живут в климате, где прохладно по ночам и платят больше за пиковое потребление электроэнергии (например, в Калифорнии), эта технология теперь доступна для бытового использования.
Контактное лицо: Ice Energy, LLC
Домашние системы охлаждения | Министерство энергетики
Энергосбережение
Изображение
Изображение
Ваша первая мысль об охлаждении может быть связана с кондиционированием воздуха, существует множество альтернатив, обеспечивающих охлаждение с меньшим потреблением энергии. Сочетание надлежащей изоляции, энергосберегающих окон и дверей, дневного освещения, затенения и вентиляции обычно обеспечивает прохладу в домах с минимальным потреблением энергии во всех климатических условиях, кроме самых жарких. Хотя в жарком и влажном климате следует избегать вентиляции, другие подходы могут значительно снизить потребность в использовании кондиционера. Прежде чем выбрать систему охлаждения, вы можете ознакомиться с принципами нагрева и охлаждения.
Советы по охлаждению
- Установите программируемый термостат на максимальную температуру, комфортную для лета, и повышайте уставку, когда вы спите или находитесь вне дома.
- Чистите или заменяйте фильтры кондиционеров один раз в месяц или в соответствии с рекомендациями.
- Выключите кухонные, ванные и другие вытяжные вентиляторы в течение 20 минут после того, как вы закончили готовить или принимать ванну; при замене вытяжных вентиляторов рассмотрите возможность установки высокоэффективных моделей с низким уровнем шума.
- Летом держите оконные шторы закрытыми в течение дня, чтобы защитить помещение от солнечного тепла.
- При покупке нового холодильного оборудования выбирайте энергосберегающие продукты. Ваш подрядчик должен быть в состоянии предоставить вам информационные бюллетени по энергопотреблению для различных типов, моделей и конструкций, чтобы помочь вам сравнить энергопотребление. См. стандарты эффективности для получения информации о минимальных рейтингах и ищите ENERGY STAR при покупке новых продуктов.
Системы охлаждения
Системы вентиляции для охлаждения
Узнайте, как избежать накопления тепла и поддерживать прохладу в доме с помощью вентиляции.
Узнать больше
Вентиляторы для охлаждения
Во многих частях страны удобно расположенных вентиляторов достаточно для поддержания комфорта в сезон охлаждения.