Содержание
2. Огнетушащие вещества и способы тушения
Резервуары и технологическое оборудование » Подбор оборудования » Полезная информация » Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках
2.1.
|
Огнетушащее действие пены
|
2.1.1.
|
Основным средством тушения нефти и нефтепродуктов в резервуарных парках является воздушно-механическая пена средней и низкой кратности.
Огнетушащее действие воздушно-механической пены заключается в изоляции поверхности горючего от факела пламени, снижении вследствие этого скорости испарения жидкости и сокращении количества горючих паров, поступающих в зону горения, а также в охлаждении горящей жидкости. Роль каждого из этих факторов в процессе тушения изменяется в зависимости от свойств горящей жидкости, качества пены и способа ее подачи.
|
2.
|
При подаче пены одновременно происходит разрушение пены от факела пламени и нагретой поверхности горючего. Накапливающийся слой пены экранирует часть поверхности горючего от лучистого теплового потока пламени, уменьшает количество паров, поступающих в зону горения, снижает интенсивность горения. Одновременно выделяющийся из пены раствор пенообразователя охлаждает горючее. Кроме того, в процессе тушения в объеме горючего происходит конвективный тепломассообмен, в результате которого температура жидкости выравнивается по всему объему, за исключением «карманов», в которых тепломассообмен происходит независимо от основной массы жидкости.
Для современных резервуаров РВС выравнивание температуры по всему объему горящей жидкости при нормативной интенсивности подачи раствора пенообразователя происходит в течение 15 мин тушения при подаче пены сверху и в течение 10 мин при подаче под слой горючего. Это время необходимо принимать в качестве расчетного при определении запаса пенообразователя для тушения нефти и нефтепродуктов воздушно-механической пеной.
Дальность растекания пены средней кратности по поверхности горючей жидкости обычно не превышает 25 м.
|
2.1.3.
|
При подаче пены в нижний пояс резервуара, непосредственно в слой горючей жидкости (подслойный способ тушения пожара), используются пены низкой кратности, которые получают из фторсодержащих пленкообразующих пенообразователей. Применение фторсодержащих пенообразователей является необходимым условием, поскольку пена на их основе инертна к воздействию углеводородов в процессе длительного подъема пены на поверхность нефтепродукта. Применение пены, получаемой на основе обычных пенообразователей для подачи под слой горючей жидкости, недопустимо, так как при прохождении через слой горючей жидкости она насыщается парами углеводородов и теряет огнетушащую способность.
Быстрой изоляции горящей поверхности пеной способствуют саморастекающаяся из пены водная пленка раствора пенообразователя, имеющая поверхностное натяжение ниже натяжения горючей жидкости, а также конвективные потоки, которые направлены от места выхода пены к стенкам резервуара. В результате конвективного тепломассообмена снижается температура жидкости в прогретом слое до среднеобьемной. Вместе с тем интенсивные восходящие потоки жидкости приводят к образованию на поверхности локальных участков горения, в которых скорость движения жидкости достигает максимальных значений. Эти участки, приподнятые над остальной поверхностью и называемые «бурунами», играют важную роль в процессе тушения. Чем выше «бурун», тем больше пены необходимо накопить для покрытия всей поверхности горящей жидкости. Для снижения высоты «буруна» пена подается через пенные насадки с минимальной скоростью.
Пена, всплывающая на поверхность через слой горючего, способна обтекать затонувшие конструкции и растекаться по всей поверхности горючего.
После прекращения подачи пены при полной ликвидации горения на всей поверхности горючей жидкости образуется устойчивый пенный слой толщиной до 10 см, который в течение 2 – 3 чзащищает поверхность горючей жидкости от повторного воспламенения.
|
2.1.4.
|
Вода для приготовления раствора пенообразователя не должна содержать примесей нефтепродуктов.
Для приготовления раствора из отечественных пенообразователей в системах подслойного тушения запрещается использовать воду с жесткостью более 30 мг-экв/л.
Использование оборотной воды для приготовления раствора пенообразователя не допускается.
|
2.2.
|
Нормативные интенсивности подачи пенных средств
|
2.2.1.
|
Нормативные интенсивности подачи раствора пенообразователя являются одним из наиболее важных показателей в расчете сил и средств, требуемых для тушения пожара в резервуаре, определения запаса пенообразователя.
|
2.2.2.
|
Главными факторами, определяющими нормативную интенсивность подачи раствора пенообразователя, являются:
физико-химические свойства горючего;
физико-химические свойства пенообразователя и самой пены;
условия горения и тепловой режим в зоне пожара к моменту начала пенной атаки;
способ и условия подачи пены на тушение.
|
2.2.3.
|
В табл. 2.1 и 2.2 приведены нормативные интенсивности подачи раствора пенообразователя для тушения нефти и нефтепродуктов в резервуарах.
|
2.2.4.
|
При расчете сил и средств нормативная интенсивность выбирается по табл. 2.1 и 2.2 с учетом времени свободного развития пожара.
Нормативную интенсивность подачи раствора пенообразователя при подаче пены на поверхность горючей жидкости следует увеличивать в 1,5 раза при свободном развитии пожара от 3 до 6 ч, в 2 раза при свободном развитии пожара от 6 до 10 ч и в 2,5 раза при свободном развитии пожара более 10 ч.
|
Таблица 2.1
Нормативные интенсивности подачи пены средней кратности для тушения пожаров в резервуарах
Вид нефтепродукта | Нормативная интенсивность подачи раствора пенообразователя, л/(м²×с) | |
Фторированные пенообразователи | Пенообразователи общего назначения | |
Нефть и нефтепродукты с Твсп = 28°С и ниже ГЖ, нагретые выше Твсп | 0,05 | 0,08 |
Нефть и нефтепродукты с Твсп более 28°С | 0,05 | 0,05 |
Стабильный газовый конденсат | 0,12 | 0,30 |
Бензин, керосин, дизельное топливо, полученные из газового конденсата | 0,10 | 0,15 |
Таблица 2. 2
Нормативная интенсивность подачи пены низкой кратности для тушения нефти и нефтепродуктов в резервуарах
Вид нефтепродукта | Нормативная интенсивность подачи раствора пенообразователя, л/(м²×с) | |||||
Фторсодержащие пенообразователи (за исключением AFFF и FFFP) | Фторсинтетические пенообразователи типа AFFF | Фторпротеиновые пенообразователи типа FFFP | ||||
на поверхность | в слой | на поверхность | в слой | на поверхность | в слой | |
Нефть и нефтепродукты с Твсп = 28°С и ниже | 0,08 | 0,12 | 0,07 | 0,10 | 0,07 | 0,10 |
Нефть и нефтепродукты с Твсп более 28°С | 0,06 | 0,10 | 0,05 | 0,08 | 0,05 | 0,08 |
Стабильный газовый конденсат | 0,10 | 0,20 | 0,10 | 0,12 | 0,10 | 0,14 |
Бензин, керосин, дизельное топливо, полученные из газового конденсата | 0,08 | 0,12 | 0,08 | 0,10 | 0,08 | 0,10 |
2.
|
Для определения количества пеногенераторов, требуемых для тушения пожара, следует использовать номограмму прил. 3.
|
2.2.6.
|
Пену средней кратности следует получать с помощью пеногенераторов типа ГПС, а низкой кратности — с помощью стволов низкократной пены. Тактико-техническая характеристика отечественной пеногенерирующей аппаратуры и техники приведена в прил. 4 (табл. 1).
|
2.2.7.
|
При тушении пожаров горючих жидкостей в обваловании допускается применение пены низкой кратности, получаемой из синтетических пенообразователей общего и специального назначения. Нормативная интенсивность подачи раствора синтетического пенообразователя общего назначения должна составлять 0,15 л/(м²×с).
|
2.3.
|
Применение других веществ и способов пожаротушения
|
2.
|
При тушении пожаров в резервуарах с вязкими и легкозастывающими продуктами (мазут, масла и нефть) возможно применение распыленной воды для охлаждения поверхностного слоя горящей жидкости до температуры ниже их температуры вспышки. Необходимым условием тушения распыленной водой является низкая среднеобьемная температура горючего (ниже температуры вспышки). Интенсивность подачи распыленной воды следует принимать л/(м²×с).
|
2.3.2.
|
Для тушения проливов в обваловании и межсвайном пространстве под резервуаром, локальных очагов горения на задвижках, фланцевых соединениях, в зазоре между стенкой резервуара и плавающей крышей допускается применение огнетушащих порошковых составов с интенсивностью подачи для нефти и нефтепродуктов 0,3 л/(м²×с), для газового конденсата — 0,5 кг/(м²×с). Главную роль в механизме тушения порошками играет ингибирование пламени.
основное тушение пеной с дотушиванием порошком отдельных очагов горения;
основное тушение порошком небольших очагов горения, затем подача пены для предотвращения повторного воспламенения.
Интенсивность во всех случаях такая же, как и при индивидуальном использовании этих веществ.
Применение комбинированного метода тушения требует дополнительных сил и средств. Поэтому он целесообразен, как правило, в тех случаях, когда тушение одним огнетушащим веществом не достигается.
Основные характеристики огнетушащих порошков общего назначения приведены в прил. 5.
|
2.4.
|
Особенности тушения пожаров в резервуарах подслойным способом
|
2.
|
Тушение пожара подачей пены в основание резервуара может быть осуществлено двумя способами. Первый заключается в подаче низкократной пены снизу на поверхность горящей жидкости через эластичный рукав, который защищает пену от непосредственного контакта с нефтепродуктом. Такая защита пены необходима, поскольку для ее получения применяется обычный пенообразователь общего назначения. Второй способ — подача низкократной пены непосредственно в слой горючей жидкости — стал возможным после появления фторсодержащих пленкообразующих пенообразователей, пены которых инертны к нефти и нефтепродуктам. Он является более надежным и простым в исполнении.
Преимущество подслойного способа перед традиционным, где пену подают сверху, заключается в защищенности пеногенераторов и пеновводов от взрыва паровоздушной смеси. Важно, что при реализации подслойного способа личный состав пожарных подразделений и техника находятся за обвалованием и меньше подвергаются непосредственной опасности от выброса или вскипания горящей нефти.
|
2.4.2.
|
При ликвидации пожаров в резервуарах, оборудованных системой подслойного тушения, подача пены низкой кратности осуществляется непосредственно в слой нефтепродукта через пенопроводы системы пожаротушения, находящиеся в нижней части резервуара, с помощью передвижной пожарной техники.
Система подслойного тушения включает протяженную линию трубопроводов для подачи пенообразующего раствора к пеногенераторам и далее низкократной пены по пенопроводам через стенкурезервуара внутрь, непосредственно в нефтепродукт, через систему пенных насадков.
|
2.4.3.
|
Тушение пожаров подачей пены в слой горючего возможно только при использовании специальных пенообразователей, обладающих инертностью к нефтепродуктам и способных образовывать пленку на поверхности горючей жидкости.
Нормативные интенсивности подачи раствора пенообразователя выбираются в соответствии с табл. 2.2.
|
Рис. 2.1. Общий вид высоконапорного пеногенератора для получения пены низкой кратности
Рис. 2.2. Схема внутреннего устройства пеногенератора
2.4.4.
|
Пена низкой кратности образуется в высоконапорных пеногенераторах, устанавливаемых за обвалованием. Общий вид высоконапорного пеногенератора для подачи пены низкой кратности в слой горючего представлен на рис. 2.1 и 2.2. Тактико-технические характеристики пеногенераторов приведены в прил. 4.
|
В этом же разделе:
- Введение
- Термины и определения
- 1. Возникновение и развитие пожаров в резервуарах и резервуарных парках
- 3. Тушение пожаров в резервуарах и резервуарных парках
- 4.
Организационно-подготовительные мероприятия
- 5. Меры безопасности
- Литература
- Приложение 1. Классификация резервуаров и резервуарных парков
- Приложение 2. Основные характеристики отечественных и зарубежных пенообразователей
- Приложение 3. Номограмма для определения ориентировочного расхода раствора пенообразователя и количества генераторов
- Приложение 4. Характеристики пеногенерирующей аппаратуры и техники для получения пены
- Приложение 5. Основные характеристики огнетушащих порошков общего назначения
- Приложение 6. Особенности тушения пожаров в резервуарных парках в условиях низких температур
- Приложение 7. Прогнозирование развития пожара в резервуарной группе от лучистой энергии факела пламени
- Приложение 8. Особенности откачки ГЖ из резервуаров
| Главная / Справочники / Статьи / Пожар класса «B» — горение жидких веществ
Пожары класса В
Легковоспламеняющиеся и горючие жидкости Легковоспламеняющиеся жидкости — это жидкости с температурой вспышки до 60°С и ниже. Горючие жидкости — это жидкости, температура вспышки которых превышает 60°С. К горючим жидкостям относятся кислоты, растительные и смазочные масла, температура вспышки которых превышает 60°С. Характеристики горючести: Горят и взрываются при смешивании с воздухом и воспламенении не сами легковоспламеняющиеся и горючие жидкости, а их пары. При соприкосновении с воздухом начинается испарение этих жидкостей, скорость которого увеличивается при нагревании жидкостей. Для снижения опасности пожара их следует хранить в закрытых емкостях. При использовании жидкостей надо следить, чтобы воздействие воздуха на них было по возможности минимальным. Взрывы воспламеняющихся паров наиболее часто происходят в отграниченном пространстве, таком, как контейнер, танк. Сила взрыва зависит от концентрации и природы пара, количества паровоздушной смеси и типа емкости, в которой находится смесь. Температура вспышки — это общепринятый и наиболее важный, но не единственный фактор, определяющий опасность, которую представляет легковоспламеняющаяся или горючая жидкость. Степень опасности жидкости определяется также температурой воспламенения, диапазоном воспламеняемости, скоростью испарения, химической активностью при загрязнении или под воздействием теплоты, плотностью и скоростью диффузии паров. Скорости горения и распространения пламени различных легковоспламеняющихся жидкостей несколько отличаются друг от друга. Скорость выгорания бензина составляет 15,2 — 30,5 см, керосина — 12,7 — 20,3 см толщины слоя в час. Например, слой бензина толщиной 1,27 см выгорит через 2,5 — 5 мин. Продукты сгорания При сгорании легковоспламеняющихся и горючих жидкостей, кроме обычных продуктов сгорания, образуются некоторые специфические, свойственные именно этим жидкостям продукты сгорания. Жидкие углеводороды горят обычно оранжевым пламенем и выделяют густые облака черного дыма. Спирты горят чистым голубым пламенем, выделяя небольшое количество дыма. Горение некоторых терпенов и эфиров сопровождается бурным кипением на поверхности жидкости, тушение их представляет значительную трудность. Обычное местонахождение на судне Легковоспламеняющиеся и горючие жидкости всех типов перевозятся танкерами в качестве наливного груза, а также в переносных емкостях, в том числе с размещением их в контейнерах. На каждом судне имеется большое количество горючих жидкостей в виде мазута и дизельного топлива, которые используются для обеспечения движения судна и выработки электроэнергии. Мазут и дизельное топливо становятся особенно опасными, если перед подачей к форсункам производится их подогрев. При наличии в трубопроводах трещин эти жидкости вытекают и оказываются под воздействием источников воспламенения. Значительное растекание этих жидкостей приводит к очень сильному пожару. К числу других мест, где имеются легковоспламеняющиеся жидкости, относятся камбузы, различные мастерские и помещения, в которых используются или хранятся смазочные масла. Тушение При возникновении пожара следует быстро перекрыть источник легковоспламеняю-щейся или горючей жидкости. Тем самым будет приостановлено поступление горючего вещества к огню, а люди, занятые борьбой с огнем, смогут воспользоваться одним из нижеперечисленных способов тушения пожара. Для этой цели используют слой пены, закрывающий горящую жидкость и препятствующий поступлению кислорода к огню. Кроме того, к районам, где происходит горение, может подаваться пар или углекислый газ. Посредством отключения вентиляции можно уменьшить поступление кислорода к пожару. Охлаждение. Необходимо охлаждать емкости и районы, находящиеся под воздействием пожара, с помощью распыленной или компактной струи воды из водопожарной магистрали. Замедление распространения пламени. Для этого на поверхность горения нужно подавать огнетушащий порошок. В связи с тем, что одинаковых пожаров не бывает, трудно установить единую методику их тушения. Однако при тушении пожаров, связанных с горением легковоспламеняющихся жидкостей, необходимо руководствоваться следующим. 1. При небольшом растекании горящей жидкости следует использовать порошковые или пенные огнетушители либо распыленную струю воды. 2. При значительном растекании горящей жидкости надо применять порошковые огнетушители при поддержке пожарных рукавов для подачи пены или распыленной струи. Защиту оборудования, находящегося под воздействием огня, следует осуществлять с помощью струи воды 3. При растекании горящей жидкости по поверхности воды необходимо прежде всего ограничить растекание. Если это сделать удалось, нужно создать слой пены, покрывающий огонь. Кроме того, можно пользоваться распыленной струей воды большого объема. 4. Для предотвращения выхода продуктов сгорания из смотровых и мерительных лючков необходимо использовать пену, порошок, высокоскоростную или низкоскоростную распыленную струю воды, подаваемую горизонтально поперек отверстия, пока его нельзя будет закрыть. 5. Для борьбы с пожарами в грузовых танках следует применять палубную систему пенотушения и (или) систему углекислотного тушения или систему паротушения, если они имеются. Для тяжелых масел можно использовать водяной туман. 6. Для тушения пожара на камбузе надо употреблять углекислотные или порошковые огнетушители. 7. Если горит оборудование, работающее на жидком топливе, необходимо применять пену или распыленную воду. Краски и лаки Хранение и использование большинства красок, лаков и эмалей, кроме тех, которые имеют водяную основу, связано с высокой пожарной опасностью. Масла, содержащиеся в масляных красках, сами по себе не являются легковоспламеняющимися жидкостями (льняное масло, например, имеет температуру вспышки выше 204°С). Но в состав красок обычно входят воспламеняющиеся растворители, температура вспышки которых может составлять всего 32°С. Все остальные компоненты многих красок также являются горючими. То же относится к эмалям и масляным лакам. Даже после высыхания большинство красок и лаков продолжают оставаться горючими, хотя воспламеняемость их значительно снижается при испарении растворителей. Воспламеняемость сухой краски фактически зависит от воспламеняемости ее основы. Характеристики горючести и продукты сгорания Жидкая краска горит очень интенсивно, при этом выделяется много густого черного дыма. Горящая краска может растекаться, так что пожар, связанный с горением красок, напоминает горение масел. В связи с образованием плотного дыма и выделением токсичных паров при тушении горящей краски в закрытом помещении следует пользоваться дыхательными аппаратами. Пожары красок часто сопровождаются взрывами. Поскольку краски обычно хранятся в плотно закрытых банках или барабанах вместимостью до 150 — 190 л, пожар в районе их хранения может легко вызвать нагревание барабанов, в результате чего эти емкости способны разорваться. Краски, содержащиеся в барабанах, мгновенно воспламеняются и при воздействии воздуха взрываются. Обычное местонахождение на судне Краски, лаки и эмали хранятся в малярных, расположенных в носовой или кормовой части судна под главной палубой. Малярные должны быть изготовлены из стали или полностью обшиты металлом. Эти помещения могут обслуживаться стационарной системой углекислого тушения или другой одобренной системой. Тушение Поскольку жидкие краски содержат растворители с низкой температурой вспышки, для тушения горящих красок вода непригодна. Для тушения пожара, связанного с горением большого количества краски, необходимо применять пену. Воду можно использовать, чтобы охладить окружающие поверхности. При возгорании небольших количеств краски или лака можно употреблять углекислотные или порошковые огнетушители. Для тушения сухой краски можно пользоваться водой. Воспламеняющиеся газы. В газах молекулы не связаны друг с другом, а находятся в свободном движении. Вследствие этого газообразное вещество не имеет собственной формы, а принимает форму той емкости, в которую оно заключено. Любой газ, который горит при нормальном содержании кислорода в воздухе; называется воспламеняющимся газом. Как и другие газы и пары, воспламеняющиеся газы горят только тогда, когда их концентрация в воздухе находится в пределах диапазона горючести и смесь подогревается до температуры воспламенения. Как правило, воспламеняющиеся газы хранят и перевозят на судах в одном из следующих трех состояний: сжатом, сжиженном и криогенном. Сжатый газ — это газ, который при нормальной температуре полностью находится в газообразном состоянии в емкости под давлением. Сжиженный газ — это газ, который при нормальных температурах частично находится в жидком, а частично в газообразном состоянии в емкости под давлением. Криогенный газ — это газ, который сжижен в емкости при температуре значительно ниже нормальной при низких и средних давлениях. Основные опасности Опасности, которые представляет газ, находящийся в емкости, отличаются от тех, которые возникают при выходе его из емкости. Рассмотрим каждую из них в отдельности, хотя они могут существовать одновременно. Опасности ограниченного объема. При нагревании газа в ограниченном объеме его давление возрастает. При наличии большого количества теплоты давление может повыситься настолько, что станет причиной утечки газа или разрыва емкости. Кроме того, при соприкосновении с огнем может произойти уменьшение прочности материала емкости, что также способствует ее разрыву. Для предотвращения взрывов сжатых газов на танках и баллонах устанавливают предохранительные клапаны и плавкие вставки. При расширении в емкости газ вызывает открывание предохранительного клапана, в результате чего снижается внутреннее давление. Нагруженное пружиной устройство вновь закроет клапан, когда давление снизится до безопасного уровня. Может использоваться также вставка из плавящегося металла, которая при определенной температуре будет расплавляться. Взрыв может произойти при отсутствии предохранительных устройств или в случае, если они не сработают. Причиной взрыва также может быть быстрое повышение давления в емкости, когда предохранительный клапан не в состоянии обеспечить снижение давления с такой скоростью, которая предотвратила бы создание давления, способного вызвать взрыв. Танки и баллоны могут, кроме того, взрываться при снижении их прочности в результате соприкосновения пламени с их поверхностью. Воздействие пламени на стенки емкости, находящиеся выше уровня жидкости, опаснее, чем соприкосновение с той поверхностью, которая контактирует с жидкостью. Разрыв емкости. Сжатый или сжиженный газ обладает большим запасом энергии, сдерживаемой емкостью, в которой он находится. При разрыве емкости эта энергия освобождается обычно очень быстро и бурно. Газ выходит, а емкость или ее элементы разлетаются. Разрывы емкостей, содержащих сжиженные воспламеняющиеся газы, под воздействием пожаров нередки. Этот тип разрушения называется взрывом расширяющихся паров кипящей жидкости. При этом, как правило, разрушается верхняя часть емкости, в том месте где она соприкасается с газом. Сила взрыва зависит главным образом от количества испаряющейся жидкости при разрушении емкости и массы ее элементов. Большинство взрывов происходит, когда емкость заполнена жидкостью от 1/2 до примерно 3/4 ее высоты. Небольшая емкость, не имеющая изоляции, может взорваться через несколько минут, а очень большая емкость, даже если она не охлаждается водой, — лишь через несколько часов. Неизолированные емкости, в которых находится сжиженный газ, можно защитить от взрыва, подавая на них воду. В верхней части емкости, где находятся пары, должна поддерживаться водяная пленка. Опасности, связанные с выходом газа из ограниченного объема. Эти опасности зависят от свойств газа и места их выхода из емкости. Все газы, кроме кислорода и воздуха, представляют опасность, если они вытесняют требуемый для дыхания воздух. Особенно это касается газов, не имеющих запаха и цвета, таких как азот и гелий, поскольку нет никаких признаков их появления. Токсичные или ядовитые газы опасны для жизни. Если они выходят наружу вблизи пожара, то преграждают доступ к огню людям, которые ведут с ним борьбу, или вынуждают их пользоваться дыхательными аппаратами. Кислород и другие газы-окислители являются невоспламеняющимися, но они могут вызывать воспламенение горючих веществ при температуре ниже обычной. Попадание газа на кожу вызывает обморожение, которое может иметь серьезные последствия при длительном воздействии. Кроме того, при воздействии низких температур многие материалы, такие как углеродистая сталь и пластмассы, становятся хрупкими и разрушаются. Выходящие из емкости воспламеняющиеся газы представляют опасность взрыва и пожара или того и другого одновременно. Выходящий газ при скоплении и смешивании с воздухом в ограниченном пространстве взрывается. Газ будет гореть, не взрываясь при скоплении газовоздушной смеси в количестве, недостаточном для взрыва, или при очень быстром воспламенении, или если он находится в неограниченном пространстве и может рассеиваться. Свойства некоторых газов. Далее рассмотрены наиболее важные свойства некоторых воспламеняющихся газов. Этими свойствами объясняется различная степень тех опасностей, которые возникают в случае скопления газов в ограниченном объеме или при их растекании. Ацетилен. Этот газ перевозится и хранится, как правило, в баллонах. В целях безопасности внутри баллонов с ацетиленом помещают пористый заполнитель — обычно диатомовую землю, имеющую очень небольшие поры или ячейки. Кроме того, заполнитель пропитывается ацетоном — воспламеняющимся материалом, который легко растворяет ацетилен. Таким образом, баллоны с ацетиленом содержат значительно меньше газа, чем это кажется. Выход ацетилена из баллона может сопровождаться взрывом или пожаром. Ацетилен возгорается легче, чем большинство воспламеняющихся газов, и горит более быстро. Это способствует усилению взрывов и создает трудности для вентиляции, позволяющей предотвратить взрыв. Ацетилен лишь немного легче воздуха, поэтому при выходе из баллона он легко перемешивается с воздухом. Безводный аммиак. Состоит из азота и водорода и используется в основном для производства удобрений, в качестве холодильного агента и источника водорода, необходимого при термической обработке металлов. Это довольно токсичный газ, но присущие ему резкий запах и раздражающее действие служат хорошим предупреждением о его появлении. Сильные утечки этого газа стали причиной быстрой гибели многих людей до того, как они смогли покинуть район его появления. Безводный аммиак перевозится в грузовых автомобилях, железнодорожных вагонах-цистернах и баржах. Он хранится в баллонах, цистернах и в криогенном состоянии в изолированных емкостях. Взрывы расширяющихся паров кипящей жидкости в неизолированных баллонах, содержащих безводный аммиак, редки, что объясняется ограниченной воспламеняемостью газа. Если такие взрывы все же происходят, то обычно они бывают связаны с пожарами других горючих веществ. При выходе из баллона безводный аммиак может взрываться и гореть, но его высокий нижний предел взрываемости и низкая теплота сгорания значительно снижают эту опасность. Выход большого количества газа при использовании его в системах охлаждения, а также хранение при необычайно высоком давлении могут привести к взрыву. Этилен. Представляет собой газ, состоящий из углерода и водорода. Обычно он применяется в химической промышленности, например, при изготовлении полиэтилена; в меньших количествах используется для дозревания фруктов. Этилен перевозится в сжатом виде в баллонах и в криогенном состоянии в теплоизолированных грузовых автомобилях и железнодорожных вагонах-цистернах. Большинство баллонов с этиленом защищено от избыточного давления разрывными диафрагмами. Баллоны с этиленом, применяемые в медицине, могут иметь плавкие вставки или комбинированные предохранительные устройства. Для защиты цистерн применяют предохранительные клапаны. Баллоны могут разрушаться под воздействием пожара, но не расширяющихся паров кипящей жидкости, поскольку жидкости в них нет. При выходе этилена из баллона возможны взрыв и пожар. Этому способствуют широкий диапазон воспламеняемости и высокая скорость горения этилена. В раде случаев, связанных с выходом в атмосферу большого количества газа, происходят взрывы. Сжиженный природный газ. Представляет собой смесь веществ, состоящих из углерода и водорода, основным компонентом которых является метан. Сжиженный природный газ перевозится в криогенном состоянии на судах-газовозах. Хранится в изолированных емкостях, защищенных от избыточного давления предохранительными клапанами. Выход сжиженного природного газа из баллона в закрытое помещение может сопровождаться взрывом и пожаром. Данные испытаний и опыт показывают, что взрывов сжиженного природного газа на открытом воздухе не происходит. Сжиженный нефтяной газ Данный газ является смесью веществ, состоящих из углерода и водорода. Промышленный сжиженный нефтяной газ — это, как правило, пропан или нормальный бутан либо их смесь с небольшими количествами других газов. Он нетоксичен, но является удушающим веществом. Используется в основном в качестве топлива в баллонах для бытовых нужд. Сжиженный нефтяной газ перевозится в виде сжиженного газа в неизолированных баллонах и цистернах на грузовых автомобилях, в железнодорожных вагонах-цистернах и на судах-газовозах. Выход сжиженного нефтяного газа из емкости может сопровождаться взрывом и пожаром. Поскольку этот газ используется в основном в помещениях, взрывы происходят чаще, чем пожары. Опасность взрыва усиливается в связи с тем, что из 3,8 л жидкого пропана или бутана получается 75 — 84 м3 газа. При выходе большого количества сжиженного нефтяного газа в атмосферу может произойти взрыв. Обычное местонахождение на судне Сжиженные воспламеняющиеся газы, такие как сжиженные нефтяной и природный газы, перевозят наливом на танкерах. Тушение Пожары, связанные с возгоранием воспламеняющихся газов, можно тушить с помощью огнетушащих порошков. Для некоторых видов газов следует применять углекислый газ и хладоны. При пожарах, вызванных возгоранием воспламеняющихся газов, большую опасность для людей, ведущих борьбу с огнем, представляет высокая температура, а также то обстоятельство, что газ будет продолжать выходить и после тушения пожара, а это может вызвать возобновление пожара и взрыв. Порошок и распыленная струя воды создают надежный тепловой экран, в то время как углекислый газ и хладоны не могут создать барьера для теплового излучения, образующегося при горении газа. Рекомендуется дать газу возможность гореть до тех пор, пока его поток нельзя будет перекрыть у источника. Не следует делать попыток потушить пожар, если это не приведет к прекращению потока газа. До тех пор, пока поток газа к пожару нельзя остановить, усилия людей, ведущих борьбу с пожаром, следует направить на защиту окружающих горючих материалов от: воспламенения под воздействием пламени или высокой температуры, возникающей во время пожара. Пожар, связанный с горением сжиженных воспламеняющихся газов, таких как сжиженные нефтяной и природный газы, может быть взят под контроль и потушен посредством создания плотного слоя пены на поверхности растекшегося горючего вещества. |
Последние достижения в области межфазной генерации солнечного пара: производство чистой воды и не только
У вас не включен JavaScript. Пожалуйста, включите JavaScript
чтобы получить доступ ко всем функциям сайта или получить доступ к нашему
страница без JavaScript.
Выпуск 12, 2023 г.
Из журнала:
Журнал химии материалов A
Последние достижения в области межфазной генерации солнечного пара: производство чистой воды и не только
Шудун
Ю,
* и
Юхэн
Гу, б
Сюйцзян
Чао, с
Гуанхань
Хуанг д
и
Дахуа
Шоу* до
Принадлежности автора
*
Соответствующие авторы
и
Школа передового производства, Университет Сунь Ятсена, Шэньчжэнь 518107, Китай
Электронная почта:
yushd6@mail. sysu.edu.cn
б
Школа моды и текстиля, Гонконгский политехнический университет, Хунг Хом, Коулун, Гонконг 999077, Китай
Электронная почта:
[email protected]
с
Школа машиностроения, Северо-Западный политехнический университет, Сиань 710072, Китай
д
Государственная лаборатория прецизионных электронных технологий и оборудования для производства, Гуандунский технологический университет, Гуанчжоу 510006, Китай
и
Научно-исследовательский институт интеллектуальной энергетики, Гонконгский политехнический университет, Хунг Хом, Коулун, Гонконг 999077, Китай
ф
Центр интеллектуальной одежды будущего, Гонконгский политехнический университет, Хунг Хом, Коулун, Гонконг 999077, Китай
Аннотация
rsc.org/schema/rscart38″> Генерация межфазного солнечного пара (ISVG) была впервые предложена в 2014 году и привлекает все больше и больше внимания академических кругов из-за значительного повышения эффективности испарения по сравнению с предыдущими конструкциями нижнего и объемного нагрева. При значительных усилиях в этом направлении текущая скорость испарения системы может достигать 4 кг м −2 h −1 при одном солнечном облучении. Чтобы не отставать от современных разработок систем ISVG, мы готовим эту обзорную статью, чтобы обобщить последние разработки в этой области. В этом обзоре мы сначала представляем составные элементы системы ISVG, а именно подложки и фототермические материалы. После этого выделено несколько методов изготовления систем ISVG, позволяющих создавать комплексные архитектуры ISVG. Центральные части этого обзора включают принципы проектирования и стратегии оптимизации систем ISVG, стратегии отказа от соли и конденсации.
- Эта статья входит в тематические подборки:
Журнал химии материалов Последние обзорные статьи и #MyFirstJMCA
Варианты загрузки Пожалуйста, подождите. ..
Информация о товаре
- ДОИ
- https://doi.org/10.1039/D2TA10083E
- Тип изделия
- Обзор статьи
- Отправлено
- 30 декабря 2022 г.
- Принято
- 13 фев 2023
- Впервые опубликовано
- 13 фев 2023
Скачать цитату
J. Mater. хим. А , 2023, 11 , 5978-6015
BibTexEndNoteMEDLINEProCiteReferenceManagerRefWorksRIS
Разрешения
Запросить разрешения
Социальная деятельность
Получение данных из CrossRef.
Загрузка может занять некоторое время.
Прожектор
Объявления
Страница не найдена — Американская ассоциация покрытий
Все
Страницы
Новости
ПокрытияТехнология
События
Загрузки и PDF-файлы
Архивы КТ
Ошибка 404
Мы не смогли найти
https://www.paint.org/wp-content/uploads/2021/09/jctapr97-gebhard.pdf
Вот некоторый контент, который может соответствовать тому, что вы ищете, или вы можете выполнить поиск.
бумага
Разработка метода ASTM ускоренного сопротивления налипанию грязи
Полное название: Совместная разработка ускоренного метода сопротивления налипанию грязи ASTM с корреляцией с естественным атмосферным воздействием на открытом воздухе Кит Алдерфер, Джеймс Махер, Парта Маджумдар и Джефф Суини, The Dow […]
Правила категории продукта
Рыночные данные
ACA предлагает своим членам множество возможностей для демонстрации своих компаний и продуктов — от печатной и цифровой рекламы в нашем журнале и мобильных приложениях до нашего веб-сайта Paint. org — все средства массовой информации предназначены для предоставления последней информации о покрытиях мировой индустрии покрытий. через самые инновационные платформы.
Кроме того, благодаря индивидуальным и интегрированным маркетинговым возможностям на наших мероприятиях, в том числе на ведущей в отрасли выставке закупок — выставке American Coatings SHOW, ACA поможет вам охватить самую влиятельную аудиторию высокоактивных лиц, принимающих решения.
Два столпа подготовки поверхности
Синтия А. Госселин, журналист The ChemQuest Group Колин Мейсон однажды написал: «Прекрасная суперяхта в гавани, с блестящей окраской, сверкающими элементами из нержавеющей стали, сверкающей яркой отделкой и безупречным […]
Верхние покрытия с низким содержанием летучих органических соединений, использующие смолы со сверхвысоким сухим остатком
[…] ПРОДОЛЖИТЬ ЧТЕНИЕ В СЕНТЯБРЕ 2021 ЦИФРОВОЙ ВЫПУСК COATINGSTECH REFERENCES American Coatings Association. https://www.paint.org/ wp -content/uploads/dlm_uploads/2019/12/aim-voc-map-may-2019.pdf (по состоянию на 26 апреля 2021 г.). Калифорнийское управление по оценке опасностей для здоровья в окружающей среде. https://oehha.ca.gov/proposition-65/crnr/chemical-listed-efficient-june-28-2019-known-state-california-cause-cancer (по состоянию на апрель […]
Специальный отчет: Состояние лакокрасочной промышленности США в 2021 г.
Джордж Р. Пилчер, The ChemQuest Group, Inc. Многое произошло с прошлого года, когда я в последний раз обращался к докладу о состоянии лакокрасочной промышленности США в августе […]
ПХБ-11 и его присутствие в окружающей среде
[…] Объект. Презентация семинара по непреднамеренному производству ПХД в красках и пигментах.