Содержание
Система охлаждения в двигателях
Система охлаждения в двигателях
Система охлаждения в двигателях внутреннего сгорания предназначена для отвода тепла от узлов и деталей, нагреваемых горячими газами. Средняя температура газов внутри цилиндров обычно составляет 800—900°. При плохом охлаждении двигатель может быстро выйти из строя в результате перегрева цилиндров, поршней и клапанов. Особую опасность представляют выгорание смазки и заклинивание поршней в цилиндрах вследствие большого изменения их размеров.
Охлаждение двигателя не должно быть и чрезмерным, так как теряется полезное тепло и топливо плохо испаряется, трудно воспламеняется, медленно горит, вследствие чего мощность двигателя значительно снижается.
Применяют два способа охлаждения двигателей: жидкостное и воздушное. При жидкостном охлаждении тепло от стенок цилиндра передается жидкости (раствору или воде), которая отдает его воз-духу, а при воздушном охлаждении тепло от стенок цилиндра передается непосредственно воздуху.
Рекламные предложения на основе ваших интересов:
Дополнительные материалы по теме:
Жидкостный способ охлаждения заключается в следующем. Жидкость, заполняющая рубашку блок-картера и головки цилиндров, омывает стенки цилиндров и камер сгорания и отнимает от них тепло. Нагретая жидкость поступает в специальный охладитель (радиатор), где отдает тепло воздуху, а после охлаждения в радиаторе вновь поступает в рубашку блок-картера. Таким образом, в системе охлаждения непрерывно циркулирует жидкость, температура которой при работающем двигателе должна быть в пределах 80—90°.
Рис. 108. Жидкостные системы охлаждения:
а — термосифонная, б — принудительная; 1 — сердцевина радиатора, 2 — вентилятор, 3 — шторка, 4 — верхний бак радиатора, 5 — крышка заливной горловины, 6 — пароотводная трубка, 7 — верхний патрубок, 8 — рубашка головки цилиндров, 9 — рубашка блок-карте-ра, 10 — нижний патрубок, 11 — нижний бак радиатора, 12 — пробка сливного отверстия, 13 — паровоздушный клапан, 14 — термостат, 15 — термометр, 16 — водораспределительная труба, 17 — центробежный насос, 18 — водоотводная трубка
В зависимости от способа циркуляции различают две системы охлаждения: термосифонную и принудительную.
Втермосифонной системе охлаждения (рцс. 108, а) циркуляция осуществляется вследствие разности удельного веса холодной и горячей жидкости. При нагревании в рубашке двигателя плотность жидкости уменьшается и она по патрубку поднимается в верхний бак радиатора. В сердцевине радиатора жидкость охлаждается, плотность ее повышается и по патрубку она поступает в рубашку, вытесняя жидкость с меньшей плотностью.
Для повышения интенсивности охлаждения позади радиатора установлен вентилятор.
Преимущества термосифонной системы охлаждения следующие: простота устройства; незначительная интенсивность циркуляции жидкости при пуске и прогреве двигателя; саморегулирование интенсивности охлаждения в зависимости от нагрузки двигателя (при повышении нагрузки увеличивается нагрев жидкости, следовательно, ускоряется ее циркуляция).
Недостатком этой системы является медленная циркуляция воды, что вызывает необходимость увеличения емкости системь и веса двигателя. Недостаточная интенсивность циркуляции повышает испарение жидкости из системы, требует частой проверки уровня жидкости и пополнения системы.
В принудительной системе охлаждения (рис. 108, б) циркуляция создается насосом, который нагнетает жидкость в рубашку блок-картера цилиндров, откуда нагретая жидкость вытесняется в радиатор. После охлаждения в радиаторе она снова поступает к насосу. Разность температур нагретой и охлажденной жидкости не превышает 5—10°.
Интенсивность циркуляции жидкости и воздушного потока, создаваемого вентилятором, зависит главным образом от числа оборотов двигателя. Чтобы при понижении температуры окружающего воздуха и уменьшении нагрузки двигатель не переохлаждался, применяют различные устройства, регулирующие тепловой режим двигателя: термостаты, шторки и жалюзи радиатора.
Нагретые части камер сгорания и цилиндров усиленно охлаждают за счет подачи жидкости в водораспределительную труб, проходящую вдоль верхней части блока. В трубе сделаны отверстия для подачи жидкости в первую очередь к наиболее горячим частям блока цилиндров. Для этой же цели в головках цилиндров дизеля Д-108 установлены водораспределительные насадки-отражатели.
Если система охлаждения разобщается с атмосферой специальным паровоздушным клапаном, то ее называют закрытой. Такая система работает при давлении несколько выше атмосферного, и температура кипения жидкости в ней соответственно повышается. Поэтому в закрытой системе охлаждения испарение жидкости, а значит, и расход ее уменьшаются. Закрытая система охлаждения применяется на дизелях Д-108 и Д-48.
В воздушной системе охлаждения тепло от деталей двигателя отводят, обдувая их воздухом. Для увеличения поверхности охлаждения цилиндры и головки цилиндров двигателя делают с ребрами. В этих двигателях применяют принудительный обдув деталей воздухом вентилятором. От вентилятора воздушный поток поступает к охлаждаемым поверхностям через кожух (дефлектор), который направляет воздушный поток так, чтобы равномерно охлаждать нагретые детали.
Воздушная система охлаждения двигателя по сравнению с принудительной системой жидкостного охлаждения надежнее, проще и дешевле. Вес и габариты двигателя меньше.
К недостаткам воздушной системы охлаждения относятся неравномерное охлаждение деталей двигателя; потеря значительной части мощности (до 10%) на привод вентилятора; сравнительно высокая температура воздуха, идущего от двигателя.
Жидкостная система охлаждения включает радиатор, паровоздушные клапаны, термостат, водяной насос, вентилятор, термометр и трубы.
Радиатор (рис. 109) жидкостной системы служит для охлаждения нагретой жидкости путем отдачи тепла через стенки трубок окружающему воздуху. Он состоит из верхнего бака нижнего бака, сердцевины и деталей крепления. Сердцевины радиатора могут быть трубчатые или пластинчатые. На большинстве дизелей применяют трубчатые сердцевины, которые состоят из нескольких рядов вертикальных овальных (плоских) или круглых латунных трубок.
Рис. 109. Радиатор:
а — общий вид, б —трубчатая сердцевина, в — пластинчатая сердцевина: 1 — верхний бак, 2 — крышка, 3 — сердцевина, 4 — краник, 5, 7 — патрубки, 6 — нижний бак, в —трубки, 9 — пластины
Для увеличения поверхности охлаждения трубок и повышения их жесткости на трубки надеты и припаяны к ним тонкие латунные пластины.
У некоторых дизелей концы трубок у сердцевин немного выступают над крайними пластинами, так называемыми трубными досками, которые сделаны из более толстого, чем пластины листового металла.
Верхний и нижний баки крепят при помощи болтов к трубным доскам. В дизеле Д-108 сердцевину вместе с баками устанавливают на раму радиатора.
Интенсивность обдува регулируют при помощи шторки (дизели Д-20 и Д-108) или жалюзи (дизель Д-48).
Паровоздушный клапан (рис. 110) служит для отвода паров жидкости при закипании ее в радиаторе и для соединения радиатора с атмосферой при появлении в нем разряжения. У дизеля Д-108 паровоздушный клапан помещен в отдельном корпусе, который привернут к фланцу верхнего бака радиатора. У остальных двигателей он установлен в корпусе крышки горловины радиатора.
Паровой клапак дизеля Д-108, прижимаемый пружиной , открывается при повышении давления в радиаторе свыше 1,2— 1,3 кГ/см2. При этом пары выходят по трубке через отверстие.
Воздушный клапан, также находящийся под воздействием пружины, открывается при понижении давления в радиаторе ниже 0, 96—0,99 кГ/см2.
Воздух через отверстие и трубку покупает из атмосферы в радиатор, давление в котором выравнивается до нормального.
Рис. 110. Паровоздушные клапаны:
а — воздушный клапан дизеля Д-108, б — паровоздушный клапан дизеля Д-48; 1 — пружина парового клапана, 2 — отверстие для наружной паровоздушной трубки, 3 — воздушный клапан, 4 — внутренняя паровоздушная трубка, 5 — паровой клапан, 6 — фланец верхнего бака радиатора, 7 — верхний бак, 8 — корпус, 9— пароотводная трубка, 10 — паровой клапан, 11 — пружина парового клапана, 12 — запорная пружина, 13 — корпус крышки, 14 — горловина радиатора, 15, 16 — резиновые прокладки. 17 — пружина воздушного клапана, 18 — седло воздушного клапанц
Принцип работы паровоздушного клапана дизеля Д-48 одинаков с описанным.
Термостат служит для ускорения прогрева жидкости при запуске двигателя и автоматического поддержания ее температуры з определенных пределах.
На дизеле Д-108 установлено два одноклапанных термостата (рис.
111), а на дизеле Д-48 — по одному термостату с двумя клапанами.
Пружинная коробка припаяна к донышку обоймы и к крышке, к которой прикреплен стержень клапана. Отверстие служит для выхода воздуха из системы охлаждения при заполнении ее жидкостью. Внутреннее пространство коробки через отверстие в стержне клапана заполняют смесью из этилового спирта и дистиллированной воды. Отверстие в стержне закрывают пробкой. Действие термостата основано на свойстве спирта при повышении температуры переходить в насыщенные пары и изменять давление.
Если температура жидкости в системе охлаждения ниже 70°, то клапан закрыт. Жидкость при этом не циркулирует через радиатор и быстро нагревается в рубашке блока и головке. С повышением температуры от 70 до 85° давление паров внутри коробки возрастает, коробка растягивается и клапан 5 постепенно открывается. Через образовавшуюся щель между тарелкой клапана и седлом фланца жидкость поступает в радиатор, где и охлаждается. При понижении температуры охлаждающей жидкости действие повторяется в обратном порядке.
Насосы центробежного типа с относительно высокой производительностью при небольших габаритах устанавливают в системах с принудительным охлаждением.
Центробежный насос (рис. 112) состоит из корпуса , крыльчатки, закрепленной на валу, и уплотнительного устройства. Вал получает вращение от дизеля.
Жидкость по патрубку поступает внутрь корпуса , к центру крыльчатки. При вращении крыльчатки жидкость отбрасывается Центробежной силой к стенкам корпуса, откуда вытесняется в водяную рубашку двигателя через отводящий патрубок, расположенный касательно к корпусу.
У насоса двигателя Д-108 корпус крепят болтами к кронштейну, который вместе с фланцем прикреплен к кожуху распределительных шестерен. В корпусе вращается пятило-пастная чугунная крыльчатка, укрепленная на валу. В крыльчатке сделано пять разгрузочных отверстий, уменьшающих давление жидкости в полости перед втулкой. К фланцу корпуса насоса присоединяют трубу, подводящую жидкость из радиатора; к фланцу — перепускную трубу, подводящую жидкость из корпуса термостатов; к фланцу — трубу, отводящую, жидкость из насоса.
Рис. 111. Термостат дизеля Д-108:
1 — пружинная коробка, 2 — обойма, 3 — фланец, 4 — стержень, 5 — клапан, 6 — отверстие
Вал вращается на, двух бронзовых втулках. Втулку смазывают маслом, поступающим через отверстие во фланце, а втулку — графитовой набивкой, заложенной в канавки на внутренней поверхности втулки. Чтобы предотвратить вытекание масла в зазор между валиком и втулкой, во фланце установлен самоподжимной сальник.
На переднем конце валика укреплена приводная шестерня насоса. Она приводится во вращение от большой промежуточной распределительной шестерни. Чтобы жидкость не подтекала, на конец кронштейна навернута гайка с набивкой. Набивка представляет собой три витка асбестового шнура, пропитанного смесью масла и графита. Подтягивая гайку сальника, можно плотно прижимать набивку к валику.
Производительность насоса при температуре выходящей жидкости 90° и при 1050 об/мин коленчатого вала двигателя равна 12 800 л/ч.
Водяной насос дизеля Д-48 объединен в один агрегат с вентилятором (рис.
113).
Рис. 112. Водяной насос двигателя Д-108:
а — схема работы центробежного насоса, б — насос в разрезе, в — детали насоса; 1 — корпус, 2 — крыльчатка, 3 — вал, 4— подводящий патрубок, 5 — отводящий патрубок. 6 — шестерня привода, 7 — передняя втулка, 8 — упорный диск, 9 — фланец кронштейна, 10 — самоподвижной сальник, 11 — сальниковая набивка, 12 — гайка сальника, 13 — задняя втулка, 14 — кронштейн, 15, 17, 18 — фланцы корпуса, 16 — отверстие во фланце кронштейна
Зал насоса вращается в гпех бронзовых втулках запрессованных в корпус насоса. Задняя втулка на одном конце имеет буртик, который входит в прорезь корпуса На другом конце втулки сделана резьба, на которую навертывают гайку сальника.
На задний конец вала насажена крыльчатка, закрепленная на нем коническим штифтом. На переднем конце вала установлен поводок, закрепленный на валу штифтом. Вал насоса приводится во вращение от этого поводка. Он входит в литой паз с внутренней стороны крышки шкива вентилятора, а зазор между крыльчаткой и корпусом насоса должен быть в пределах 0,4—1 мм.
Если зазор больше 1 мм, то под крышку надо установить дополнительную прокладку, а если меньше 0,4 мм, то снять одну прокладку.
Крышка прикреплена к шкиву винтами с потайными головками. С крышкой соединена болтами крыльчатка вентилятора.
Рис. 113. Водяной насос и вентилятор дизеля Д-48:
1 — крыльчатка вентилятора, 2 — винт, 3 — болт, 4 — поводок вала насоса, 5 — штифт, б — гайка корпуса, 7 — распорная втулка, 8, 22 — шарикоподшипники, 9 — крышка шкива, 10 — пробка, 11 — шкив вентилятора, 12 — втулка, 13 — уплотнение, 14 — задняя опорная втулка, 15 — крыльчатка насоса, 16 — вал насоса, 17 — прокладка, 18 — корпус насоса, 19 — гайка сальника, 20 — сальник, 21 — патрубок, 23 — ремень вентилятора
Шкив вентилятора установлен на двух шарикоподшипниках, расположенных на цилиндрическом конце корпуса насоса и зажатых гайкой и распорной втулкой. Шкив вращается от шкива коленчатого вала через клиновидный ремень. Шарикоподшипники и передние бронзовые втулки вала насоса смазывают дизельным маслом, заливаемым через отверстие в шкиве, закрытое пробкой.
Вода (или другая жидкость) попадает в насос через патрубок, прикрепленный к корпусу двумя болтами. По каналу‘в корпусе вода поступает к крыльчатке насоса. Лопасти вращающейся крыльчатки увлекают за собой воду и под действием центробежной силы выбрасывают ее наружу. Через прямоугольное отверстие в стенке блока цилиндров вода поступает в продольный канал. В верхней части водяной насос резиновым патрубком соединен с корпусом термостата.
Система охлаждения дизеля Д-48 показана на рис. 114. В зависимости от этапа работы дизеля и температуры охлаждающей воды (или другой жидкости) ее циркуляция в системе охлаждения происходит различными путями.
В период работы пускового двигателя, до начала вращения коленчатого вала дизеля, происходит термосифонная циркуляция воды. Вода, нагреваемая в рубашке пускового двигателя, поднимается в головку и оттуда по трубопроводу поступает к боковой коробке верхней половины корпуса термостата.
Далее по обходному каналу вода протекает в нижнюю половину корпуса термостата и затем в головку блоков цилиндров дизеля.
Отсюда вода опять попадает в рубашку пускового двигателя.
Рис. 114. Система охлаждения дизеля Д-48:
1 — отводящий трубопровод пускового двигателя, 2 — рубашка охлаждения пускового двигателя, 3 — сливной кран блока цилиндров, 4 — рубашка охлаждения блока цилиндров, 5 — водяной насос, 6 — водоподводящий патрубок к водяному насосу, 7 — сливной кран радиатора, 5 — приводной ремень вентилятора, 9 —перепускной патрубок, 10 — вентилятор, 11 — жалюзи радиатора, 12 — радиатор, 13 — крышка заливной горловины с паровоздушным клапаном, 14 — пароотводная трубка, 15 — термостату 16 — термометр, 17 — рубашка охлаждения головки блока
Проходя через головку цилиндров, вода отдает тепло ее схенкам, облегчая этим пуск дизеля.
При прокручивании пусковым двигателем коленчатого вала дизеля, а также во время его работы, когда температура воды ниже 70°, она циркулирует по всей системе, исключая радиатор.
Насос нагнетает воду в продольный канал блока цилиндров и затем в рубашки цилиндров и головки дизеля.
Из головки часть воды поступает в рубашку пускового двигателя и оттуда по трубопроводу в верхнюю половину термостата. Другая часть воды из головки цилиндров дизеля попадает в нижнюю половину термостата. В нижней половине термостата оба потока воды соединяются и, омывая пружинную коробку, поступают к клапанам термостата.
При температуре ниже 70° основной клапан термостата закрыт, а вода через открытые вспомогательным клапаном боковые окна по обходному каналу снова подается к насосу. Такая циркуляция ускоряет прогрев дизеля.
Когда температура воды в системе превышает 70°, основной клапан начинает открываться и вода будет поступать как к насосу, так и к радиатору.
При установившемся тепловом режиме дизеля, когда температура воды поднимется выше 83°, основной клапан термостата открывается полностью и весь поток горячей воды направляется в верхний бак радиатора. Опускаясь по трубкам радиатора из верхнего бака в нижний, вода охлаждается. Вентилятор, отсасывая нагретый воздух от радиатора, способствует более интенсивному охлаждению воды.
Для отвода паров воды при ее закипании в радиаторе смонтированы паровой клапан, изготовленный заодно с заливной горловиной, и пароотводная трубка.
Температуру воды контролируют по дистанционному термометру, датчик которого установлен в патрубке верхнего бака радиатора. Воду сливают из системы через краны.
Система охлаждения дизеля Д-108 в основном такая же, как и система охлаждения дизеля Д-48.
В системе охлаждения дизеля У2Д6 (рис. 115) вместо термостатов предусмотрены краны. Открывая кран и закрывая кран, из системы выключают радиатор. Вода, нагнетаемая насосом, Циркулирует внутри двигателя и по перепускной трубе, на которой Установлен кран.
Рис. 115. Система охлаждения дизеля У2Д6:
1, 2 — краны, 3 — радиатор, 4 — водяной насос
Как контролировать состояние системы охлаждения двигателя
Система охлаждения двигателя в автомобиле выполняет защитную функцию. Её основное предназначение – предотвращение перегрева мотора и удержание его температуры в пределах рабочей, коей является 80-90 градусов.
Однако, случается, что и в ней возникают неисправности, предотвратить которые можно с помощью регулярного контроля состояния системы и её своевременного обслуживания.
На работу мотора оказывают влияние несколько факторов. В первую очередь, конечно, его исправность. Долголетие агрегату обеспечивает регулярное обслуживание, подразумевающее замену масла и проверку состояния прокладок, шлангов и патрубков, ведущих к нему. Некоторые из них являются частью охлаждающей системы, напрямую влияющие на температуру мотора.
Система охлаждения двигателя состоит из большого и малого кругов циркуляции тосола, по сути являющимися упомянутыми выше шлангами и патрубками, радиатора и термостата. Малейшее нарушение работы одного из узлов может привести к утечки охлаждающей жидкости и последующему за этим перегреву двигателя. Поэтому важно постоянно следить за температурой ОЖ с помощью датчика на панели приборов.
Контроль состояния системы охлаждения двигателя производится не реже одного раза в год.
Он подразумевает внимательный осмотр всех шлангов и их соединений, которые при обнаружении признаков устаревания заменяют на новые. Свидетельством износа того или иного узла будут служить следы утечки.
Для нормальной работы системы охлаждения необходимо регулярно проводить замену тосола. Обычно процедура производится в автосервисе не реже одного раза в три года. В случае необходимости её можно производить чаще. Делается это обычно после обнаружения неспособности жидкости справляться со своим предназначением, чаще всего это происходит зимой, когда плотность тосола становится ниже предельно допустимой и не выдерживает низкую температуру окружающего воздуха.
Замена тосола обычно производится в условиях автосервиса. Связано это с тем, что жидкость по своей сути ядовита и утилизировать её необходимо соответствующим образом. Тосол нельзя просто так вылить на землю, потому что это неизбежно навредит экологии. Тем не менее, соблюдая технику безопасности, произвести процедуру можно и самостоятельно.
Слив охлаждающей жидкости производится с помощью специального сливного крана. В случае его отсутствия можно отсоединить термостат и слить жидкость через ведущие к нему шланги. Сливать тосол следует на остывшем моторе, в противном случае из-за его высокой температуры можно получить ожог. Также необходимо внимательно следить за тем, чтобы химикат не попал на открытые участки кожи. Поэтому все работы следует проводить в защитных перчатках.
Заливают тосол также на холодном двигателе до максимальной отметки расширительного бачка. Перед началом восполнения его уровня рекомендуется включить печку, установив её на максимум. По окончании залива расширительный бачок следует плотно закрыть крышкой, после чего провести запуск двигателя, дождаться момента открытия термостата и проследить за уровнем тосола. Если он не упал, значит, система работает исправно.
Системы охлаждения двигателя | Horton
Жидкостная система охлаждения двигателя (принудительная циркуляция) является наиболее распространенной для приводов и вентиляторов Horton.
Эта система состоит из:
- Радиатора
- Водяной насос
- Термостат
- Привод вентилятора (или муфта вентилятора)
- Вентилятор
Радиатор
Несмотря на то, что существуют разные типы радиаторов, наиболее распространенный тип называется радиатором с решетчатой трубкой. Он состоит из трубок (для переноса жидкости), к которым прикреплены кольца или ребра для рассеивания тепла. Горячая вода по трубкам подается в верхний бак (верх радиатора) с помощью водяного насоса. Более холодная вода направляется из нижнего бака (нижняя часть радиатора) обратно в двигатель, чтобы циркулировать через блок двигателя по небольшим каналам. Жидкость, проходящая через блок двигателя, помогает отводить тепло, в дополнение к дополнительному воздуху, проходящему через него вентилятором и движением.
Водяной насос
Водяной насос обычно устанавливается в передней части двигателя и приводится в действие ремнем. Нижняя часть радиатора (нижний бак) соединена с всасывающей стороной насоса.
Шпиндель насоса приводится в движение ремнем, который соединяется со шкивом, установленным на конце коленчатого вала. Назначение насоса состоит в том, чтобы просто извлекать горячую и впрыскивать более холодную жидкость (часто смесь воды и охлаждающей жидкости на спиртовой основе) через радиатор и блок двигателя для достижения охлаждения.
Термостат
Термостат является частью циркуляционной системы. В зависимости от оптимальной температуры двигателя, он будет направлять больше или меньше жидкости (путем открытия и закрытия клапана) от радиатора к блоку цилиндров. Термостат радиатора работает в паре с термостатом привода вентилятора. Термостат привода вентилятора заставляет вентилятор вращаться быстрее или медленнее, в зависимости от потребности двигателя в охлаждении.
Привод вентилятора (или муфта вентилятора)
В некоторых приложениях и рабочих средах вентилятор радиатора некоторым образом крепится непосредственно к двигателю, часто с помощью шкива и ремня.
Таким образом, скорость его вращения определяется числом оборотов двигателя и механической конструкцией шкива/ремня. В более сложных системах охлаждения двигателя вращение вентилятора регулируется приводом вентилятора или муфтой вентилятора, которые включаются или отключаются от системы привода двигателя в зависимости от потребности в охлаждении. Два термина, «муфта вентилятора» и «привод вентилятора», являются взаимозаменяемыми, но обычно муфта вентилятора используется для обозначения конструкции с фрикционным диском, а привод вентилятора обычно используется для обозначения вязкой конструкции. Измерение температуры может осуществляться биметаллической сенсорной системой или электронным управлением.
Муфта вентилятора предназначена для поддержания двигателя в пределах установленных параметров рабочей температуры, обычно определяемых производителем. В то время как привод вентилятора приводится в действие двигателем, он предназначен для «свободного вращения», когда он не задействован, и включается (используя двигатель в качестве первичного двигателя) при повышении температуры двигателя.
Существует три основных типа приводов вентиляторов , каждый из которых имеет преимущества с точки зрения характеристик и цены: двухскоростные, двухскоростные и с переменной скоростью.
Вентиляторы
Вентиляторы различаются по многим параметрам, в том числе по материалу, из которого они сделаны, а также по способу изготовления или сборки. Они также различаются по диаметру, количеству лопастей, длине лопастей, шагу лопастей и типу втулки. Материалы включают нейлон или пластик, металл и гибридные материалы, такие как вентилятор Horton HTEC (термореактивный композит).
Литые вентиляторы являются наиболее распространенными и интенсивно используются как на дорогах, так и вне дорог. Обычно они изготавливаются из пластика или нейлона и имеют цельную конструкцию.
Модульные вентиляторы обычно используются для внедорожной техники и обеспечивают значительную гибкость конструкции. Одна и та же втулка может вмещать лопасти различной длины, шага лопасти, конфигурации лопасти и материала лопасти для оптимизации производительности.
Несколько вариантов концентраторов повышают их пригодность для многих приложений.
Металлические вентиляторы обычно используются во внедорожной технике, но также используются и в дорожных транспортных средствах. Прочные и относительно легкие, они могут быть изготовлены по индивидуальному заказу в соответствии с конкретными требованиями к воздушному потоку, размеру, длине лопасти, ширине лопасти, типу кожуха, зазору наконечника, диапазону скоростей передаточного числа шкива вентилятора и другим факторам.
Водяная система охлаждения двигателя внутреннего сгорания (водяная система рубашки охлаждения) Объяснение
Введение
Все двигатели внутреннего сгорания (IC) (четырехтактные и двухтактные ) требуют некоторой формы контроля температуры, чтобы они не перегревать и заедать . Некоторые двигатели имеют воздушное охлаждение , в то время как другие имеют водяное охлаждение .
Как правило, небольшие двигатели (мотоциклы, газонокосилки и т. д.) могут охлаждаться воздухом, в то время как все другие типы двигателей должны охлаждаться водой. Большие двигатели имеют водяное охлаждение по нескольким причинам:
- Воды много, и ее легко достать в большинстве мест.
- Вода может отводить больше тепла, чем воздух, поэтому обладает большей охлаждающей способностью.
- Вода может охлаждаться дистанционно, т.е. в месте, удаленном от двигателя. Это делает конструкцию системы охлаждающей воды более гибкой.
Температура охлаждающей воды приблизительно 80°C (176°F) и давление охлаждающей воды 3 бар ( 44 psi ) являются стандартными для большинства двигателей, работающих под нагрузкой.
Охлаждающая вода иногда упоминается как « вода рубашки охлаждения » из-за «водяной рубашки», окружающей камеру сгорания.
Компоненты системы водяного охлаждения
Система водяного охлаждения двигателя состоит из термостата , гильзы цилиндра , насоса охлаждающей воды и радиатора 5 2 5 5 (1 9005 9005).
Система водяного охлаждения двигателя
Для циркуляции охлаждающей воды по всему двигателю требуется насос охлаждающей воды . Насос напрямую соединен с двигателем и коленчатым валом , поэтому его частота вращения и выходное давление прямо пропорциональны частоте вращения двигателя. Большинство насосов соединены с двигателем с помощью ремня , шестерни или цепи , но это зависит от размера двигателя; в очень больших двигателях используются центробежные насосы , которые приводятся в действие электродвигателями .
Центробежный насос
Термостат регулирует температуру охлаждающей жидкости и, следовательно, температуру двигателя. Термостат может быстро прогревать двигатель, минуя радиатор , или охлаждать двигатель, распределяя охлаждающую воду по радиатору.
Его основная цель – не допустить перегрева двигателя.
Термостат двигателя
Радиатор рассеивает тепло и предотвращает перегрев двигателя. В автомобиле охлаждающей средой является воздух, но в более крупных двигателях в качестве охлаждающей среды часто используется жидкость. судовые двигатели используют морскую воду.
Радиатор двигателя
Гильза цилиндра обеспечивает равномерное распределение охлаждающей воды по гильзе цилиндра . Сгорание происходит внутри гильзы цилиндра ( пространство сгорания ), следовательно, это пространство является самой горячей частью двигателя и должно правильно охлаждаться. Охлаждающая вода поступает в основание рукава и выводится вверху.
Гильза цилиндра
Нравится эта статья? Тогда обязательно ознакомьтесь с нашим видеокурсом по двигателям внутреннего сгорания ! Курс включает тест , справочник , и вы получите сертификат по окончании курса.
Наслаждаться!
Когда охлаждающая вода (вода рубашки охлаждения) холодная, термостат шунтирует радиатор, и температура охлаждающей воды постепенно повышается, пока не достигнет оптимальной температуры.
Когда охлаждающая вода слишком горячая, термостат направляет ее к радиатору, где тепло рассеивается, чтобы двигатель не перегревался.
Щелкните здесь, чтобы узнать, как работает термостат.
Антифриз и тепловое расширение
В систему охлаждающей воды дозируется антифриз для предотвращения замерзания воды при отрицательных температурах ( ). Если охлаждающая вода замерзнет, двигатель, скорее всего, будет серьезно поврежден, поскольку вода расширится и создаст большие механические нагрузки на компоненты двигателя.
Блок цилиндров нередко трескается при замерзании охлаждающей воды.
Напорный бак установлен для учета теплового расширения охлаждающей воды , если в системе охлаждающей воды присутствует слишком много охлаждающей воды. Расширяющаяся жидкость обычно открывает клапан в верхней части радиатора и выходит в удаленное место хранения, т. е. в расширительный бак или расширительный бак и т. д. для защиты внутренних компонентов двигателя. Ингибиторы поддерживают чистоту теплообменных поверхностей двигателя и предотвращают образование накипи или ржавчины. Загрязнение поверхностей в системе водяного охлаждения снизит скорость теплопередачи и повысит риск перегрева двигателя из-за отсутствия охлаждения.
Компоненты 3D-модели
В этой 3D-модели показаны все основные компоненты, связанные с типичной системой водяного охлаждения двигателя, в том числе:
- Термостат
- Насос охлаждающей воды
- Радиатор (теплообменник)
- Напорный бак (расширительный бак)
- Гильза цилиндра
Дополнительные ресурсы
https://www.
