Ротор электродвигателя из чего состоит: Трехфазный асинхронный двигатель

Содержание

Ротор и статор электродвигателя: определение, виды, назначение

Рано или поздно человек, интересующийся электротехникой, слышит упоминания о роторе и статоре, и задается вопросом: «Что это такое, и в чем отличие этих устройств?» Простыми словами, ротор и статор – это две основные части, расположенные в электродвигателе (устройстве по преобразованию электрической энергии в механическую). Без них существование современных двигателей, а значит и большинства электрических приборов на их основе, было бы невозможным. Статор является неподвижной частью устройства, а ротор – подвижной, они вращаются в разные стороны относительно друг друга. В этой статье мы подробно разберем конструкцию этих деталей и их принцип действия, чтобы после прочтения статьи у читателей сайта Сам Электрик больше не осталось вопросов по данному поводу.

  • Что такое ротор
  • Что такое статор
  • Статор и ротор в асинхронных двигателях
  • Короткозамкнутый ротор
  • Фазный ротор

Что такое ротор

Ротор, еще его иногда называют якорь, это подвижная, то есть вращающаяся часть в генераторе или электродвигателях, которые повсеместно применяются в бытовой и промышленной технике.

Если рассматривать ротор двигателя постоянного тока или универсального коллекторного двигателя, то он состоит из нескольких основных узлов, а именно:

  1. Сердечник. Он выполнен из множества штампованных тонких металлических пластин, изолированных друг от друга специальным диэлектриком или же просто оксидной пленкой, которая проводит ток гораздо хуже, чем чистый металл. Сердечник набирается из них и представляет собой «слоеный пирог». В результате электроны не успевают разогнаться из-за маленькой толщины металла, и нагрев ротора гораздо меньше, а эффективность всего устройства выше за счет уменьшения потерь. Данное конструктивное решение принято для уменьшения вихревых токов Фуко, которые неизбежно возникают при работе двигателя из-за перемагничивания сердечника. Этот же метод борьбы с ними используется и в трансформаторах переменного тока.
  2. Обмотки. Вокруг сердечника особым образом намотана медная проволока, покрытая лаковой изоляцией для предотвращения появления короткозамкнутых витков, которые недопустимы. Вся обмотка дополнительно пропитана эпоксидной смолой или лаком для фиксации обмоток, чтобы они не повреждались при вибрациях от вращения.
  3. Обмотки ротора могут подключаться к коллектору – специальному блоку с контактами, надежно закрепленному на валу. Эти контакты называются ламелями, они выполнены из меди или ее сплава для лучшей передачи электрического тока. По нему скользят щетки, обычно выполненные из графита, и в нужный момент на обмотки подается электрический ток. Это называется скользящий контакт.
  4. Сам вал является металлическим стержнем, на его концах расположены посадочные места под подшипники качения, он может иметь резьбу или выемки, пазы под шпонку для крепления шестерен, шкивов или других деталей, приводимых в движение электродвигателем.
  5. На валу также размещается крыльчатка вентилятора, чтобы двигатель охлаждал сам себя и не приходилось бы устанавливать дополнительное устройство для отвода тепла.

Стоит отметить, что не у всякого ротора есть обмотки, которые, в сущности, представляют собой электромагнит. Вместо них могут применяться постоянные магниты, как в бесщеточных двигателях постоянного тока. А у асинхронного двигателя с короткозамкнутым ротором обмоток в привычном виде вовсе нет, вместо них используются короткозамкнутые металлические стержни, но об этом ниже.

Что такое статор

Статор – это неподвижная часть в электродвигателе. Обычно он совмещен с корпусом устройства и представляет собой цилиндрическую деталь. Он так же состоит из множества пластин для уменьшения нагрева из-за токов Фуко, в обязательном порядке покрытых лаком. На торцах располагаются посадочные места под подшипники скольжения или качения.

Конструкция называется пакет статора, она впрессовывается в чугунный корпус устройства. Внутри этого цилиндра вытачиваются пазы под обмотки, которые, так же как и для ротора, пропитываются специальными составами, чтобы тепло равномернее распределялось по устройству, и обмотки не терлись друг об друга от вибрации.

Обмотки статора могут подключаться разными способами в зависимости от назначения и типа электрической машины. Для трехфазных электродвигателей применимы типы подключения звезда и треугольник. Они представлены на схеме:

Для выполнения подключений на корпусе устройства предусмотрена специальная распределительная коробка («борно»). В эту коробку выведены начала и концы трех обмоток и предусмотрены специальные клеммники различных конструкций, в зависимости от мощности и назначения машины.

Существуют серьезные отличия в работе двигателей при разном соединении обмоток. Например, при подключении звездой двигатель будет стартовать плавнее, однако нельзя будет развить максимальную мощность. При присоединении треугольником, электродвигатель будет выдавать весь крутящий момент, заявленный производителем, но пусковые токи в таком случае достигают высоких значений. Электросеть может быть просто не рассчитана на такие нагрузки. Использование устройства в этом режиме чревато нагревом проводов, и в слабом месте (это места соединения и разъемы) провод может отгореть и привести к пожару. Главным преимуществом асинхронных двигателей является удобство в смене направления их вращения, нужно просто поменять местами подключения двух любых обмоток.

Статор и ротор в асинхронных двигателях

Трехфазные асинхронные двигатели имеют свои особенности, ротор и статор в них отличаются от использованных в других типах электродвигателей. Например, ротор может иметь две конструкции: короткозамкнутый и фазный. Рассмотрим особенности строения каждого из них по подробнее. Однако для начала давайте вкратце разберемся, как работает асинхронный двигатель.

В статоре создается вращающееся магнитное поле. Оно наводит на роторе индуцируемый ток и тем самым приводит его в движение. Таким образом ротор всегда пытается «догнать» вращающееся магнитное поле.

Необходимо также упомянуть о такой важной особенности асинхронного двигателя, как скольжение ротора. Это явление заключается в разности частот вращения ротора и магнитного поля, создаваемого статором. Объясняется это как раз тем, что ток индуцируется в роторе только при его движении относительно магнитного поля. И если бы частоты вращения были одинаковы, то этого движения бы просто не происходило. В результате ротор пытается «догнать» по оборотам магнитное поле, и если это происходит, то ток в обмотках перестает индуцироваться и ротор замедляется. В этот момент сила, действующая на него, растет, он начинает опять ускоряться. Так и получается эффект стабилизации частоты вращения, за что эти электродвигатели и пользуются большой востребованностью.

Короткозамкнутый ротор

Он также представляет собой конструкцию, состоящую из металлических пластин, выполняющих функцию сердечника. Однако вместо медной обмотки там установлены стержни или пруты, не касающиеся друг друга и накоротко замкнутые между собой металлическими пластинами на торцах. При этом стержни не перпендикулярны пластинам, а направлены под углом. Это делается для уменьшения пульсаций магнитного поля и момента. Таким образом получаются витки, замкнутые накоротко, от сюда и название.

 

Фазный ротор

Главное отличие фазного ротора от короткозамкнутого заключается в наличии трехфазной обмотки, уложенной в проточки сердечника и соединяющейся в особом коллекторе с тремя кольцами вместо ламелей. Эти обмотки обычно соединяются «звездой». Такие электродвигатели более трудоемки в производстве за счет усложнения конструкции, однако их пусковые токи ниже, чем у двигателей с короткозамкнутым ротором, а также они лучше поддаются регулировке.

Надеемся, что после прочтения данной статьи у вас больше не осталось вопросов о том, что такое ротор и статор электродвигателя и какой у них принцип работы. Напоследок рекомендуем просмотреть видео, в котором наглядно рассмотрен данный вопрос:

Материалы по теме:

  • Чем отличается постоянный ток от переменного
  • Что такое электрическое поле
  • Как выбрать частотный преобразователь для двигателя

Adblock
detector

Фазный ротор электродвигателя


Широкое распространение асинхронного электродвигателя (АД) вызвано его надежностью и простотой конструкции. Статор такого двигателя стандартный, представляет собой изготовленный из пластин электростатической стали полый цилиндр с трехфазной обмоткой. Ротор же может быть короткозамкнутым и фазным. Последний вариант получил более широкое распространение по ряду причин, хотя его конструкция намного сложнее, чем у короткозамкнутого ротора.


 

Конструкция фазного ротора


 


Фазный ротор  АД конструктивно напоминает его статор. Основа ротора набирается из пластин электростатической стали, которые насаживаются на вал. Конструкция имеет продольные пазы, в которые укладываются витки катушек фазной обмотки. Количество фаз ротора строго соответствует количеству фаз статора. Для подключения обмотки ротора к цепи, на валу последнего устанавливаются 3 контактных кольца, к которым подведены концы обмотки, находящиеся в соприкосновении с токопроводящими щетками. В свою очередь щетки имеют выходы в коробку корпуса, что позволят подключать внешнее дополнительное сопротивление.


В зависимости от напряжения сети, фазы обмотки соединяются “треугольником” или “звездой”. Оси катушек двухполюсного электродвигателя смещены на 120 градусов относительно друг друга.


Контактные кольца изготавливаются из латуни или стали. На вал они посажены с обязательной изоляцией между собой. Щетки расположены на щеткодержатле, изготовлены из металлографита, к кольцам прижимаются посредством пружин.

Зачем нужно добавочное сопротивление?


Добавочное сопротивление служит для запуска двигателя с нагрузкой на его валу. Как только достигаются номинальные обороты вала, сопротивление отключается за ненадобность, а кольца закорачиваются. В противном случае работа электродвигателя будет нестабильной, возникнут потери КПД.


Роль добавочного внешнего сопротивления, как правило, выполняет ступенчатый реостат. В этом случае двигатель будет разгонятся тоже ступенчато. Часто используются устройства, способные поднять КПД двигателя, при этом избавляя щетки от излишнего трения о кольца. После разгона устройство поднимает щетки и замыкает кольца.


Для реализации автоматического пуска электродвигателя используется подключенная индуктивность к обмотке ротора. Дело в том, что в тот момент, когда осуществляется пуск, в роторе показатели индуктивности и частоты тока максимальны. При разгоне двигателя эти показатели падают, а в конечном итоге двигатель выходит на нормальный рабочий режим.

Отличие короткозамкнутого ротора от фазного


В короткозамкнутом роторе электродвигателя, в отличие от фазного варианта, нет обмоток. Их заменяют замкнутые с торцов между собой кольцами стержни, изготовленные из алюминия или меди. Визуально конструкция такого ротора напоминает беличье колесо, от чего он и получил свое название — “беличья клетка”.


Короткозамкнутый ротор приводится во вращение за счет наведения тока магнитным полем статора. Чтобы исключить пульсирование магнитного поля в роторе, стержни “беличьей клетки” располагаются параллельно между собой, но под наклоном относительно оси вращения. АД с короткозамкнутым ротором обладают высокой надежностью за счет отсутствия щеток, которые со временем перетираются. Кроме того, их стоимость меньше, чем у вариантов с фазным ротором.

Преимущества и недостатки электродвигателя с фазным ротором


Широкое распространение АД с фазным ротором получил за счет ряда серьезных преимуществ перед другими машинами подобного рода. Среди них следует отметить большой вращающий момент при запуске, а также относительно постоянную скорость вращения даже при высоких нагрузках. Такие электродвигатели для запуска требуют меньший пусковой ток, а конструкция позволяет использовать автоматические пусковые устройства. Кроме того, эти электрические машины хорошо переносят продолжительные перегрузки.


Как и любой электрический механизм, электродвигатели с фазным ротором имеют ряд недостатков:

  • Чувствительность к перепадам напряжения;
  • Большие габаритные размеры
  • Высокая стоимость;;
  • Более сложная конструкция за счет цепи ротора с добавочным сопротивлением;
  • Меньшие показатели коэффициента мощности и КПД (относительно АД с короткозамкнутым ротором).

  Область применения электродвигателей с фазным ротором


Ад с фазным ротором, за счет высокого крутящего момента, низких пусковых токов и способности долговременно работать при повышенных нагрузках, используются там, где необходима большая мощность электродвигателя, но нет необходимости плавно регулировать скорость вращения в широких диапазонах. Кроме того, эти машины отлично приспособлены под пуск с нагрузкой на валу.


За счет высокой производительности, наиболее часто АД с фазным ротором используются на различном серьезном, тяжелом силовом оборудовании, например, подъемных кранах, лифтовых приводах, станках, различных подъемниках. Иными словами, эти двигатели используются там, где есть необходимость запуска под нагрузкой, а не на холостом ходу.

  Проверка электродвигателя с фазным ротором


Как известно, электродвигатели с фазным ротором имеют обмотки как на статоре, так и на роторе, что повышает вероятность выхода из строя именно одной из них.


Для проверки обмоток статора трехфазного АД на целостность, необходимо добраться до клемм их подключения. Затем нужно произвести замеры сопротивлений между фазными клеммами по отдельности, предварительно сняв перемычки. Если сопротивление какой-либо обмотки меньше, чем у других, это свидетельствует о замыкании между ее витками. В этом случае двигатель отдается на перемотку.


Для проверки обмоток ротора, необходимо отыскать выводы от контактных колец. Затем нужно убедиться, что сопротивления обмоток совпадают. Если конструкция электродвигателя предусматривает наличие системы отключения обмоток ротора, отсутствие контакта может быть обусловлено именно поломкой данного механизма, а не обрывом витков.


О наличие какой-либо неисправности АД могут свидетельствовать следующие факторы:

  • Снижение скорости вращения при нагрузке. Характерно для высокого сопротивления в цепи ротора, слабого контакта в его обмотке, низкого напряжения электросети
  • Разворачивание АД, когда цепь ротора разомкнута – КЗ в обмотке ротора
  • Чрезмерное равномерное повышение температуры двигателя – длительная перегрузка АД или его недостаточное охлаждение
  • Нагрев статорной обмотки местного характера – двойное замыкание катушек статора на корпус или между фазами, КЗ между витками, неверное подключение катушек в фазе между собой
  • Нагрев стали статора местного характера – нарушение изоляции между листами стали, их оплавление и выгорание, замыкание
  • Посторонний шум при работе АД. Может быть вызван как выходом из строя подшипников, так и недостаточной запрессовкой активной стали. Определяется на слух по характеру постороннего шума
  • Перегорание в обмотке якоря предохранителей, отсутствие контакта в подводящей проводке, выход из строя реостата


 Для самостоятельной диагностики и исправления неисправностей электродвигателя необходимыми являются хотя-бы минимальные познания в устройстве АД и электрических цепях в целом. Все же крайне не рекомендуется самостоятельно заниматься ремонтом электродвигателя с фазным ротором, так как это может привести к поражению электрическим током.

Что такое ротор электродвигателя? Типы и состав

Ротор — это компонент, который вращается в электрической машине. Одно и то же определение справедливо независимо от того, является ли электрическая машина электродвигателем или электрогенератором.

В электродвигателе ротор работает вместе со статором (неподвижной частью) для передачи мощности электрической машины.

Помимо того, что этот термин является компонентом электродвигателя, этот термин обычно используется во вращающихся машинах, таких как турбины и центробежные насосы, в отличие от так называемого статора

Как формируется ротор электрической машины?

Ротор состоит из вала, образованного валом, поддерживающим набор катушек, намотанных на магнитный сердечник.

Этот вал вращается в магнитном поле, создаваемом магнитом, электромагнитом или проходя через другой набор катушек, намотанных на полюсные наконечники.

Набор этих полюсных наконечников называется статором. Статор остается неподвижным, и через него протекает электрический ток. В зависимости от двигателя ток может быть постоянным или переменным.

Если ротор должен использоваться в машинах переменного тока средней и большой мощности, их обычно изготавливают из листов электротехнической стали. Эти специальные листы помогают уменьшить потери, вызванные переменными магнитными полями, такими как явления гистерезиса или вихревые токи.

Типы роторов для двигателей переменного тока

Электродвигатели, работающие на переменном токе, могут работать с одним из следующих типов роторов:

  • С полюсными наконечниками этот тип ротора используется для синхронного двигателя или синхронного генератора переменного тока и полюсных наконечников получают:

    • Постоянные магниты, в этом случае двигатель или генератор переменного тока имеют вал двигателя с таким же количеством пар полюсов, как и пар полюсов статора, независимо от типа двигателя (трехфазный или однофазный).
      Единственным исключением являются трехфазные или двухфазные генераторы переменного тока для мотоциклов, где генераторы переменного тока не являются фактически трехфазными или двухфазными генераторами переменного тока, а являются трехфазными или двумя однофазными генераторами переменного тока, расположенными на равном расстоянии друг от друга, с учетом трех или двух пары полюсов. Следовательно, есть три или две синусоидальные волны, которые не находятся в противофазе.

    • Электромагниты, данные электромагниты питаются в зависимости от трехфазного или однофазного двигателя/генератора через трехфазную или однофазную сеть и эти расширения должны быть по одному на фазу и на полярную пару (поэтому в в случае трехфазного двухполюсного генератора переменного тока имеется три электромагнита, в случае трехфазного четырехполюсного генератора переменного тока — шесть электромагнитов).

Типы роторов для двигателей постоянного тока

Ротор универсальных двигателей или двигателей постоянного тока может быть:

  • Постоянные магниты; Система, используемая бесщеточным двигателем и шаговым двигателем

  • Обмотка; Система, используемая почти во всех двигателях постоянного тока и универсальных двигателях, различные катушки возбуждаются в определенном порядке с помощью щеточного коллектора.

    Конструкция сердечника электродвигателя 101: Материал, форма и характеристики

    Конструкция электрической машины в лучшем случае сложна. Это всегда компромисс между технологичностью и производительностью. Некоторые могут сказать, что это также баланс формы и производительности.

    В конструкции двигателя с осевым потоком теоретически поток будет двигаться в противоположном направлении, но на значительно меньшем уровне. Итак, вы определяете, как этого добиться — обрабатывая лишнее, тратя в процессе много материала.

    Сегодня двигатели с осевым потоком переходят к нетрадиционным конструкциям. В любом случае, материалы, которые вам понадобятся в вашей следующей конструкции электродвигателя , зависят от того, как двигатель должен работать, где он будет работать и так далее.

    Когда дело доходит до материалов для электродвигателя, вы можете выбрать либо электротехническую сталь, порошковый металл, либо вообще ничего. В этой статье основное внимание будет уделено электротехнической стали (также известной как стальные пластины), а также двум формам порошкового металла.

    Есть и другие статьи, которые прекрасно объясняют использование материалов для других компонентов двигателя, таких как вал. Сегодня мы сосредоточимся на трех «основных» элементах.

    Материал электродвигателя: проектирование компонентов ротора и статора 

    Промышленным электродвигателям требуются высокоэффективные материалы для эффективного преобразования электрической энергии в механическую. Давайте рассмотрим, где порошковая металлургия стоит с этими тремя ключевыми компонентами электродвигателя:

    • Статор
    • Ротор
    • Подшипники

    Как вы увидите, материал сердечника электродвигателя уже по колено в порошковом металле или, по крайней мере, имеет потенциал для использования преимуществ порошковой металлургии.

    Итак, из чего сделаны эти материалы для компонентов двигателя? Компоненты из порошкового металла для двигателей обычно состоят из железа, никеля и кобальта.

    • Железо является самым дешевым из трех, поэтому многие дизайнеры обращаются к нему в первую очередь.
    • Кобальт редко используется сам по себе, но иногда его добавляют к железу. Кобальт придает вашей части больше индукции насыщения.
    • Никель

    • дорог, но ценен для двигателей. Это повышает производительность, облегчая намагничивание компонента.

    Теперь обратимся к более широкой картине:

    Материал статора электродвигателя

    В статорах с традиционным стальным ламинированием потери в сердечнике высоки. это может снизить их эффективность в зависимости от использования двигателя и частоты. Если для вашей конструкции важно предотвратить потери в сердечнике, электротехническая сталь может оказаться неоптимальной.

    Многослойный материал сердечника статора также имеет двумерную индивидуальность. Ламинированный материал статора может создать красивую плоскую деталь, но что, если ваша конструкция не плоская или требует других наворотов?

    К счастью, есть более новая и эффективная замена. Можно включить магнитомягкий композит (SMC) для эффективной работы в тандеме с ротором.

    Магнитомягкие композиты представляют собой металлические порошки, которые легче намагничиваются и размагничиваются по сравнению с твердым магнитом.

    Комбинация сил

    Одной из уникальных возможностей является комбинирование магнитомягкого композита с пластинами из электротехнической стали. Существуют так называемые «гибридные» ситуации , когда вы получаете преимущества обоих . Правильно сконструированная комбинированная сборка позволяет использовать преимущества электротехнической стали (более низкие производственные затраты), добавляя при этом уникальные функции SMC (благодаря ее потрясающей способности формообразования).

    Если ваша текущая конструкция электродвигателя работает с КПД 60-70%, можете ли вы улучшить его с помощью SMC? Подумайте о долгосрочной экономии на счетах за электроэнергию , которую вы могли бы предложить конечному потребителю.

    У нас есть еще одна идея для тех, кто добавляет магниты в конструкцию ротора. Можете ли вы создать полностью двигатель на основе порошкового металла, полагаясь на спеченные магнитные порошки в качестве материала, к которому вы прикрепляете магниты? Теперь вы можете объединить две концепции дизайна — SMC и спеченный порошковый металл — используя все преимущества порошковой металлургии.

    Подробнее об этом ниже.

    Материал ротора электродвигателя

    Материал сердечника ротора обычно основан на пластинах из электротехнической стали. Внешняя и внутренняя части двигателя — ротор и статор — штампуются одновременно для минимизации брака . Традиционно, из чего бы вы ни штамповали статор, вы штампуете и ротор.

    Однако в новых двигателях инженеры обращают внимание на магниты на двигателе для повышения крутящего момента и характеристик шин.

    Мягкие магнитные композитные материалы НЕ рекомендуются для роторов, поскольку они разработаны в настоящее время. SMC не спекаются, и поэтому им не хватает прочности, чтобы выдерживать эти приложения.

    Но спеченные магнитомягкие материалы … они могут быть прекрасной альтернативой .

    Возможно, вас интересует разница между спеченными магнитомягкими материалами и SMC. А пока просто знайте, что магнитомягкие композиты не спекаются. (Мы обсудим больше позже. )

    Подшипники

    Подшипники являются основным продуктом традиционной порошковой металлургии. Это крупносерийная, недорогая работа, и они легко доступны в самых разных материалах и формах.

    Порошковые металлы используются в подшипниковой промышленности с 1930-х годов и являются проверенным материалом для многих смежных областей применения. Первоначально они начинались как бронза, но благодаря инновациям в порошковой металлургии в последующие годы можно использовать более экономичные материалы, такие как железо.

    В этих небольших металлических компонентах используется губчатое железо , спрессованное до низкой плотности , чтобы вы могли пропитать их смазочным маслом.

    Подшипники двигателя такие, какие они есть. Инновации происходят на уровне статора и ротора.

    Двигатели с радиальным потоком? Или что-то другое?

    Для обычных двигателей с радиальным магнитным потоком на 60 Гц магнитно-мягкие композиты не являются отличной альтернативой. … Но можем ли мы вместо этого использовать гибридный дизайн, чтобы оптимизировать его?

    Что делать, если вам не нужен простой радиальный дизайн? Что, если вам нужны другие полезные свойства материала, из которого изготовлен ваш электродвигатель? Это возможно с ламинированием электротехнической стали, но это будет намного сложнее. Теперь вам действительно нужно полностью сосредоточиться на магнитомягких композитах из-за их способности формообразования.

    SMC идеально подходят для новых конструкций или конструкций, в которых можно комбинировать SMC и ламинирование для получения преимуществ в производительности. Возможные варианты:

    • Двигатели с осевым и поперечным магнитным потоком для упрощенной или трехмерной обмотки статора и ротора
    • Мотор-колеса
    • Тихоходные двигатели

    Изображение выше — классический пример. Этот инверторный двигатель с прямым приводом в часах LG Signature находится прямо в рулевой рубке из мягкого магнитного композита. И когда вы разрабатываете новые конструкции ротора, начните спрашивать себя: «Можем ли мы также перевести их на порошковый металл?»

    В транспортном пространстве SMC предоставляют новые возможности формообразования и магнитов:

    • Электровелосипеды
    • Электросамокаты
    • Электромотоциклы
    • Подробнее

    SMC может помочь преодолеть разрыв, придав форму, которая наилучшим образом соответствует конструкции вашего электродвигателя.

    Роль спеченного металла

    Это преобразование конструкции может касаться не только SMC, но и спеченных магнитомягких материалов. Эта смежная с SMC ветвь порошковой металлургии предлагает более высокую прочность, чем SMC (в обмен на несколько меньшие магнитные характеристики).

    Электромагнитная конструкция постоянного тока представляет собой растущее применение спеченных магнитомягких материалов. Чем еще он отличается от других материалов?

    • Быстродействующие соленоиды
    • Стойкость к поверхностным повреждениям
    • Более высокая плотность для увеличения индукции насыщения

     

    Больше не нужно соглашаться на традиционные материалы электродвигателя

    Компоненты электродвигателя не должны быть компромиссом — по крайней мере, не в том виде, к которому вы привыкли.

    Поэкспериментируйте с идеей сочетания ламинирования кремнистой стали, магнитомягкого композита (для конструкций электродвигателей переменного тока) и спеченных магнитомягких материалов (для двигателей постоянного тока). Обязательно сообщите о своих конкретных потребностях в конструкции производителю оборудования для порошковой металлургии. Поставщик должен быть в состоянии определить жизнеспособность порошковых компонентов для вашего проекта.

    Вы можете узнать больше о SMC и конструкции электродвигателя, просмотрев бесплатный Центр ресурсов инженера  ниже:

    Ресурсы по проектированию электродвигателей переменного тока

    • Битва за эффективность и будущее электрификации: постоянный магнит против. Асинхронные двигатели

    • Дизайн автомобильной трансмиссии: крутящий момент + 3 других соображения и тенденции

    • КОМПОНЕНТ: электрическое ламинирование + сборка SMC

     

    (Примечание редактора: эта статья была первоначально опубликована в сентябре 2019 г.