Содержание
Назначение и приборы системы питания дизельного двигателя
Какое назначение системы питания дизельного двигателя?
Система питания дизельного двигателя служит для подвода воздуха и топлива в цилиндры двигателя в заданной пропорции и под заданным давлением и отвода отработавших газов из них.
Что входит в устройство системы питания дизельного двигателя автомобиля КамАЗ-5320?
Система питания дизельного двигателя автомобиля КамАЗ-5320 (рис.76) состоит из топливного бака 16; топливного фильтра 18 предварительной (грубой) очистки топлива; топливоподкачивающего насоса 2 с устройством 1 для ручной подкачки топлива; топливного насоса 4 высокого давления; форсунок 6; электромагнитного клапана 8; факельной свечи 10; фильтра 12 для окончательной (тонкой) очистки топлива; топливопроводов низкого 3 и высокого 5 давления; топливоотводящих (дренажных) трубопроводов 9, 11, 14 и 15 с тройником 17; топливопроводов 7 и 13 для подвода топлива соответственно к электромагнитному клапану и топливному насосу; воздушных фильтров; трубопровода для подвода воздуха в цилиндры двигателя и отвода отработавших газов из них; глушители шума выпуска отработавших газов; указателя уровня топлива в топливном баке; регулятора частоты вращения коленчатого вала; педали газа с системой тяг для управления рейкой топливного насоса; автоматической муфты опережения впрыска топлива.
Рис.76. Схема системы питания дизельного двигателя автомобиля КамАЗ-5320.
На отдельных двигателях устанавливают турбокомпрессор для подачи воздуха в цилиндры двигателя под давлением с целью повышения мощности двигателя и снижения токсичности отработавших газов.
Как работает система питания двигателя автомобиля КамАЗ-5320?
Во время работы двигателя топливо из топливного бака поступает по топливопроводу в фильтр предварительной очистки 18 (рис.76), очищается от грубых примесей и воды и топливоподкачивающим насосом под давлением 0,15-0,20 МПа по топливопроводу 3 подается в фильтры тонкой очистки 12, где окончательно очищается. Затем по топливопроводу 13 поступает в топливный насос высокого давления 4, который повышает давление топлива, дозирует его количество для каждого цилиндра в соответствии с порядком работы и нагрузкой двигателя и по топливопроводам 5 высокого давления подает в форсунки 6, которые впрыскивают топливо в цилиндры под давлением 18 МПа.
Впрыскнутое топливо смешивается в цилиндре с нагретым при такте сжатия воздухом и испаряется. Образовавшаяся горючая смесь самовоспламеняется и сгорает. Совершается такт рабочего хода, во время которого тепловая энергия преобразуется в механическую, и в виде крутящего момента передается на колеса автомобиля.
Избыточное топливо, а вместе с ним и проникший в систему питания воздух отводятся через перепускной клапан топливного насоса высокого давления и клапан-жиклер фильтра тонкой очистки по дренажным топливопроводам 11 и 14 в топливный бак 16. Топливо, просочившееся в полость пружины форсунки через зазор между корпусом распылителя и иглой, сливается в бак по дренажным топливопроводам 9 и 15 с тройником 17.
Электромагнитный клапан 8 топливопроводом 7 соединен с насосом высокого давления и служит для подачи топлива под давлением 0,06-0,08 МПа к факельным свечам 10, установленным во всех впускных трубопроводах для подогрева воздуха при пуске двигателя в холодное время года.
Система питания других дизельных двигателей устроена и работает так же, если она разделенного типа.
В чем особенности системы питания неразделенного типа и где она применяется?
Система питания дизельных двигателей неразделенного типа применяется на дизельных двухтактных двигателях ЯАЗ-204, ЯАЗ-206. В этой системе насос высокого давления и форсунка объединены в одном при боре, называемом насосом-форсункой, что позволило повысить давление впрыскиваемого топлива до 140 МПа при 2000 об/мин коленчатого вала. Однако работа такого двигателя более жесткая, что снижает срок его службы, в нем отсутствуют топливопроводы высокого давления. Регулятор частоты вращения коленчатого вала двухрежимный. Он устойчиво поддерживает минимальную частоту вращения коленчатого вала на холостом ходу и максимальную – на полных нагрузках двигателя.
***
Проверьте свои знания и ответьте на контрольные вопросы по теме «Система питания дизельного двигателя»
давление, двигатель, дизельный, насос, питание, система, топливный, топливо, топливопровод
Смотрите также:
Купить новый Kia Rio в Москве
Система питания топливом дизельного двигателя
Система питания топливом дизельного двигателя предназначена для размещения, очистки и своевременной подачи топлива в цилиндры двигателя в нужном количестве и под достаточным давлением на всех режимах его работы при любой температуре окружающего воздуха.
Дизельное топливо
Дизельное топливо является одним из продуктов переработки нефти. В нем содержатся различные углеводороды (парафины, нафтены, ароматические и др.). Число атомов углерода, входящих в молекулы дизельного топлива, достигает тридцати. Основное качество дизельного топлива — легкость воспламенения при соприкосновении с горячим воздухом. Воспламеняемость топлива характеризуется цетановым числом. Чем выше это число, тем менее стойки к окислению молекулы топлива и легче оно воспламеняется. У дизельного топлива цетановое число составляет 40 — 50 (чаще всего 45).
Важной характеристикой топлива также является его вязкость при различных температурах. Для обеспечения нормальной работы двигателя топливо не должно застывать при низкой температуре (до -60 °С). Кроме того, необходимо, чтобы топливо не было токсичным, обладало антикоррозионными и смазывающими свойствами, а также не создавало паровые пробки в топливопроводах при температурах до 50 °С.
Для автотракторных дизелей используется топливо марок А (арктическое), 3 (зимнее) и Л (летнее).
Наиболее широко распространено топливо марок З (при отрицательной температуре воздуха) и Л (при температурах выше 0 °С).
Требования к агрегатам и узлам системы питания
Ко всем агрегатам и узлам системы питания предъявляются следующие основные требования:
- герметичность
- малые масса и габариты
- надежность
- коррозионная стойкость
- малые гидравлические сопротивления
- простота
- низкая стоимость обслуживания
Топливопроводы и агрегаты системы питания топливом должны быть расположены в моторном отделении ТС таким образом, чтобы при их неисправности капающее топливо не попадало на детали, имеющие температуру, способную вызвать его воспламенение.
Общее устройство системы питания
Схема системы питания топливом мощного дизеля приведена на рисунке. В общем случае в систему питания топливом входят узлы, размещенные вне двигателя (на раме или в корпусе машины), и на двигателе. К первым относятся топливные баки бачок 7 для сбора топлива, предпусковой топливоподкачивающий насос 10, топливораспределительный кран 77, топливопроводы низкого давления и некоторые другие узлы.
Ко вторым в первую очередь относятся основной топливоподкачивающий насос 8, топливный насос высокого давления (ТНВД) 5, форсунки 4 и топливопроводы высокого давления.
При работе двигателя топливо из топливных баков забирается основным топливоподкачивающим насосом и под давлением 0,05…0,1 МПа подается к ТНВД. По пути из баков к насосу топливо проходит через топливораспределительный кран, предпусковой топливоподкачивающий насос и фильтр 9 грубой очистки. Если на ТС установлен только один топливный бак или несколько баков, сообщающихся друг с другом, то топливораспределительный кран отсутствует. Перед поступлением в ТНВД из насоса топливо очищается от мельчайших примесей в фильтре 3 тонкой очистки. Нагнетательные секции ТНВД, приводимого в действие от коленчатого вала двигателя, в определенные моменты согласно рабочему циклу и порядку работы двигателя подают топливо под высоким давлением (до 50 МПа и более) в необходимом количестве к форсункам. Через форсунки, ввернутые в головку блока цилиндров, топливо впрыскивается в камеры сгорания в те моменты, когда в цилиндрах завершается такт сжатия.
Рис. Схема системы питания топливом мощного дизеля:
1 — топливные баки; 2 — кран для выпуска воздуха; 3 — фильтр тонкой очистки; 4 — форсунки; 5 ТНВД; 6 — двигатель; 7 — бачок для сбора топлива; 8 — основной топливоподкачивающий насос; 9 — фильтр грубой очистки; 10 — предпусковой топливоподкачивающий насос; 11 — топливораспределительный кран; топливные трубопроводы обозначены сплошной линией; трубопроводы для удаления воздуха из системы обозначены пунктиром
Перед пуском двигателя заполнение системы топливом и подача его к ТНВД осуществляются с помощью предпускового топливоподкачивающего насоса. После пуска этот насос не функционирует.
Если в ТНВД и трубопроводы высокого давления, соединяющие его с форсунками, попадает воздух, то подача топлива в цилиндры нарушается. Следовательно, нарушается и нормальный режим работы двигателя. С целью предотвращения попадания воздуха в ТНВД на пути топлива к нему помещают воздухоотстойник, расположенный в самой высокой точке системы.
Обычно воздухоотстойник размещают в крышке фильтра тонкой очистки. Перед пуском двигателя в случае необходимости скопившийся в воздухоотстойнике воздух отводят в воздушные полости топливных баков 1 через кран (клапан) 2 для выпуска воздуха. Для этого при неработающем двигателе открывают кран (клапан) и с помощью предпускового насоса прокачивают систему. В этом случае топливо вытесняет воздух из воздухоотстойника в воздушную полость топливного бака через топливораспределительный кран (как показано на рисунке) или напрямую.
Топливный бак
Топливо, просочившееся в форсунках между иглой и распылителем, отводится по сливным трубопроводам в специальный бачок 7 или в какой-либо основной топливный бак.
Топливные баки служат для хранения топлива. Они могут иметь различную конфигурацию и вместимость в зависимости от конструкции конкретного ТС. Общая вместимость топливных баков определяется запасом хода машины (обычно не менее 500 км). Чаще всего баки изготавливает из листовой стали или высокопрочного пластика, стойкого к воздействию химически активного топлива.
Для предотвращения коррозии внутренние поверхности стальных баков покрывают бакелитовым лаком, оцинковывают или лудят. С целью увеличения жесткости баков на их стенках иногда выштамповывают желоба, а внутри устанавливают несплошные перегородки, которые к тому же уменьшают площадь свободной поверхности топлива и ослабляют его колебанияbqвремя движения ТС.
Наливные горловины топливных баков обычно снабжают сетчатыми фильтрами. В нижней части баков размещают отстойники. Если бак имеет значительную вместимость, то слив топлива осуществляется через отверстие с пробкой и шариковым клапаном, расположенное выше отстойника. В этом случае используется специальный ключ-трубка со шлангом. Воздушное пространство баков соединяется с атмосферой через дренажные трубки или другие специальные устройства, которые должны исключать возможность попадания огня во внутреннюю полость бака и вытекания топлива при резких толчках ТС, а также (по возможности) обеспечивать очистку воздуха, поступающего в баки.
Для замера количества топлива в баках раньше применялись измерительные стержни. В настоящее время для этой цели чаще всего используются электрические датчики поплавкового типа, посылающие электрический сигнал, пропорциональный уровню топлива, к соответствующему указателю на приборной панели ТС.
Топливоподкачивающий насос
Основной топливоподкачавающий насос обеспечивает бесперебойную подачу топлива из баков к ТНВД при работающем двигателе. Он обычно приводится в действие от коленчатого или распределительного вала двигателя. Может применяться и автономный электродвигатель, питаемый от генератора ТС. Использование электропривода обеспечивает равномерную подачу топлива независимо от частоты вращения коленчатого вала и возможность аварийного отключения всей системы. Существуют различные конструкции топливоподкачивающих насосов. Они могут быть:
- шестеренными
- плунжерными (поршневыми)
- коловратными (пластинчатого типа)
Как правило, применяются плунжерные и коловратное насосы.
Плунжерный топливоподкачивающий насос
Плунжерный топливоподкачивающий насос состоит из корпуса 5, плунжера 7 с пружиной 6, толкателя 10 с роликом 77, пружиной 9 и штоком 8, а также клапанов — впускного 4 и нагнетательного 1 с пружинами. Толкатель с плунжером могут перемещаться вверх-вниз. Перемещение вверх происходит при повороте эксцентрика 72, изготовленного как одно целое с кулачковым валом ТНВД; перемещение вниз обеспечивают пружины 6 и 9.
При сбегании выступа эксцентрика с ролика толкателя плунжер под действием пружины б перемещается вниз, вытесняя топливо, находящееся под ним, в нагнетательную магистраль насоса. В это время нагнетательный клапан закрыт, а впускной под действием разрежения над плунжером открыт, и топливо поступает из впускной магистрали в надплунжерную полость. При движении толкателя и плунжера вверх впускной клапан закрывается под действием давления топлива, а нагнетательный, наоборот, открывается, и топливо из надплунжерной полости поступает в нижнюю камеру под плунжером.
Таким образом, нагнетание топлива происходит только при движении плунжера вниз.
Если подачу топлива в цилиндры двигателя уменьшают, в выпускном трубопроводе насоса, а значит, и в полости под плунжером давление возрастает. В этом случае плунжер не может опуститься вниз даже под действием пружины 6, и толкатель со штоком перемещается вхолостую. По мере расходования топлива давление в нагнетательной полости понижается, и плунжер под действием пружины 6 опять начинает перемещаться вниз, обеспечивая подачу топлива.
Рис. Схема плунжерного топливоподкачиваюгцего насоса:
1 — нагнетательный клапан; 2 — корпус насоса ручной подкачки топлива; 3 — поршень насоса ручной подкачки топлива; 4 — впускной клапан; 5 — корпус топливоподкачивающего насоса; 6, 9 — пружины; 7 — плунжер; 8 — шток; 10 — толкатель; 11 — ролик; 12 — эксцентрик кулачкового вала
Рис. Схема коловратного топливоподкачивающего насоса:
1 — пружина редукционного клапана; 2 — редукционный клапан; 3 — перепускной клапан; 4 — пружина перепускного клапана; 5 — плавающий палец; 6 — пластина; 7 — ротор; 8 — направляющий стакан; А—В — камеры насоса
Плунжерный топливоподкачивающий насос обычно совмещен с насосом 2 ручной подкачки топлива.
Данный насос устанавливается на входе в основной топливоподкачивающий насос и приводится в действие вручную за счет перемещения поршня 3 со штоком. При движении поршня вверх под ним образуется разрежение, открывается впускной клапан, и топливо заполняет подплунжерное пространство. При перемещении поршня вниз впускной клапан закрывается, а нагнетательный открывается, позволяя топливу пройти далее по топливной магистрали.
Коловратный топливоподкачивающий насос
В мощных быстроходных дизелях применяются в основном коловратные топливоподкачивающие насосы. Ротор 7 насоса приводится во вращение от коленчатого вала двигателя. В роторе имеются прорези, в которые вставлены пластины 6. Одним (наружным) концом пластины скользят по внутренней поверхности направляющего стакана 8, а другим (внутренним) — по окружности плавающего пальца 5, расположенного эксцентрически относительно оси ротора. При этом они то выдвигаются из ротора, то вдвигаются в него. Ротор и пластины делят внутреннюю полость направляющего стакана на камеры А, Б и В, объемы которых при вращении ротора непрерывно меняются.
Объем камеры А увеличивается, поэтому в ней создается разрежение, под действием которого топливо засасывается из впускной магистрали. Объем камеры В уменьшается, давление в ней повышается, и топливо вытесняется в нагнетательную полость насоса. Топливо, находящееся в камере Б, переходит от входного отверстия стакана к выходному. При повышении давления в нагнетательной полости до определенного уровня открывается редукционный клапан 2, преодолевая усилие пружины 7, и излишек топлива перепускается обратно во впускную полость насоса. Поэтому в нагнетательной полости и выпускном трубопроводе поддерживается постоянное давление. Перед пуском, когда двигатель и, следовательно, основной топливоподкачивающий насос не работают, топливо через него может прокачиваться предпусковым топливоподкачивающим насосом. В этом случае открывается перепускной клапан 3, преодолевая усилие пружины 4. В закрытом положении тарелка этого клапана перекрывает отверстия в тарелке редукционного клапана.
Предпусковой топливоподкачивающий насос
Перед пуском двигателя заполнение системы топливом и подача его к ТНВД осуществляются с помощью предпускового топливоподкачивающего насоса 70.
Ранее были широко распространены насосы плунжерного и диафрагменного (мембранного) типов с ручным приводом. Однако в настоящее время все чаще применяются центробежные крыльчатые насосы с приводом от электродвигателя, питаемого электрической энергией аккумуляторной батареи. Они обеспечивают более быструю прокачку топлива, не требуют затрат мускульной энергии механика-водителя и могут использоваться в качестве аварийных при отказе основного топливоподкачивающего насоса.
Фильтры грубой и тонкой очистки топлива
Очистка топлива от механических примесей и воды происходит в фильтрах грубой 9 и тонкой 3 очистки. Фильтр грубой очистки, устанавливаемый перед основным топливоподкачивающим насосом 8, задерживает частицы размерами 20… 50 мкм, на долю которых приходится 80…90 % массы всех примесей. Фильтр тонкой очистки, помещаемый между основным топливоподкачивающим насосом и ТНВД, задерживает примеси размерами 2…20 мкм.
В настоящее время в силовых установках с дизелями применяют следующие типы фильтров грубой очистки:
- сетчатые
- ленточно-щелевые
- пластинчато-щелевые
У сетчатых фильтров фильтрующим элементом является металлическая сетка.
Из нее можно образовывать концентрические цилиндры, через стенки которых продавливается топливо, или дискообразные секции, нанизанные на центральную трубу с отверстиями в стенке, соединенную с выходным трубопроводом.
В ленточно-щелевом фильтре фильтрующим элементом служит гофрированный стакан с намотанной на него профильной лентой. Через щели между витками ленты, образованными за счет ее выступов, топливо из пространства, окружающего фильтрующий элемент, попадает во впадины между гофрированным стаканом и лентой, а затем — в полость между дном и крышкой стакана, откуда удаляется через выпускной трубопровод.
Фильтрующий элемент пластинчато-щелевого фильтра представляет собой полый цилиндр, составленный из одинаковых тонких кольцевых дисков с отгибными выступами. За счет этих выступов между дисками образуются зазоры. Топливо поступает к наружным и внутренним поверхностям цилиндра и, проходя через щели между дисками, очищается. Очищенное топливо через торцевые отверстия в дисках направляется в верхнюю часть фильтра к выходному отверстию.
Очень часто фильтр грубой очистки совмещают с отстойником для воды, находящейся в дизельном топливе. В этом случае необходимо периодически отворачивать пробку отстойника для удаления из него скопившейся воды.
В фильтрах тонкой очистки в качестве фильтрующих элементов обычно используют картонные элементы типа «многолучевая звезда» или пакеты из картонных и фетровых дисков. Реже применяют каркасы с адсорбирующей механические примеси набивкой (например, минеральной ватой), каркасы с тканевой или нитчатой обмоткой и др.
В процессе эксплуатации ТС топливные фильтры загрязняются, что приводит к увеличению их сопротивления. Чтобы подача топлива к ТНВД не прекратилась, необходимо фильтр грубой очистки периодически промывать, а фильтрующий элемент фильтра тонкой очистки заменять новым.
ТНВД. Устройство и принцип работы
Топливный насос высокого давления 5 предназначен для точного дозирования топлива и его подачи в форсунки 4 под необходимым давлением и в определенный момент.
В рядных двигателях такой насос помещают сбоку от двигателя, на верхней половине его картера. У V-образных двигателей его устанавливают в развале цилиндров. Существует множество типов ТНВД. В частности, на дизели сравнительно небольшой мощности, предназначенные для легковых автомобилей, как правило, устанавливают ТНВД распределительного типа с одним нагнетающим плунжером-распределителем. Однако мощные многоцилиндровые дизели чаще всего оборудованы многоплунжерными насосами. Пример такого ТНВД для шестицилиндрового V-образного дизеля представлен на рисунке.
Насос состоит из корпуса 5 с крышками, шести насосных секций, механизма привода насосных секций и механизма поворота плунжеров. Каждая насосная секция включает в себя плунжер 8, возвратную пружину 11 с опорными шайбами, нагнетательный клапан 3 с седлом, пружиной и упором, а также штуцер 2 и другие вспомогательные направляющие и крепежные детали. Механизм привода насосных секций состоит из кулачкового вала 7 и роликовых толкателей 6 с регулировочными болтами.
В механизм поворота плунжеров входят поворотные втулки 10 с зубчатыми венцами и зубчатая рейка 9 с втулками и ограничительным винтом. Вдоль секций в корпусе насоса высверлены два продольных канала 1 и 4, соединенных друг с другом поперечными каналами. Каждый плунжер очень точно подогнан к своей гильзе, что обеспечивает достижение высокого давления с наименьшей утечкой топлива через зазоры.
Рис. Топливный насос высокого давления:
1, 4 — продольные каналы; 2 — штуцер; 3 — нагнетательный клапан; 5 — корпус насоса; 6 — роликовый толкатель; 7 — кулачковый вал; 8 — плунжер; 9 — зубчатая рейка; 10 — поворотная втулка; 11 — возвратная пружина
Насос работает следующим образом. Кулачковый вал приводится во вращение от коленчатого вала двигателя с помощью зубчатой передачи (угловая скорость кулачкового вала в 2 раза меньше скорости коленчатого). Вращаясь, кулачковый вал перемещает своими кулачками роликовые толкатели 6, которые поднимают плунжеры вверх.
Обратный ход толкателей и плунжеров обеспечивается возвратными пружинами. К каналу 4 подводится топливо от топливоподкачивающего насоса, предварительно очищенное в фильтре тонкой очистки.
Когда плунжер находится в нижнем положении, топливо из канала 4 попадает в образовавшуюся надплунжерную полость. При движении плунжера вверх входное отверстие закрывается, и топливо под большим давлением проходит через нагнетательный клапан, штуцер и топливопровод высокого давления к форсунке.
Нагнетание топлива происходит до тех пор, пока надплунжерная полость не соединится со сливным каналом 1 с помощью осевых, радиальных и винтовых проточек в плунжере. При постоянном ходе плунжера, определяемом высотой выступа кулачка, количество подаваемого к форсунке топлива регулируется поворотом плунжера с помощью зубчатой рейки и поворотной втулки с зубчатым венцом. Винтовая проточка в плунжере выполнена так, что по мере его поворота изменяется расстояние от края перепускного отверстия, связанного с каналом 7, до края отсечной кромки винтовой проточки.
При этом длина рабочего хода плунжера, во время которого происходит нагнетание топлива, также изменяется.
Для того чтобы топливо, подаваемое в цилиндры, успевало своевременно сгорать, и двигатель развивал наибольшую мощность, необходимо при росте частоты вращения коленчатого вала несколько увеличивать угол опережения впрыскивания топлива.
Регулирование этого угла у насосов с механическим управлением обеспечивается специальной центробежной муфтой, которая устанавливается в корпусе ТНВД и пропорционально частоте вращения коленчатого вала смещает на некоторый угол кулачковый вал насоса в направлении его вращения.
Механизм всережимного регулятора
С ТНВД соединен механизм всережимного регулятора. Он автоматически поддерживает заданную водителем частоту вращения коленчатого вала, устанавливает минимальную частоту на холостом ходу, а также ограничивает максимальную частоту. Механизм регулятора представляет собой систему тяг, пружин и упоров, связанных с зубчатой рейкой ТНВД, перемещение которых зависит от частоты вращения кулачкового вала.
Форсунка
Форсунка служит для подачи топлива в цилиндр двигателя под высоким давлением в мелкораспыленном виде.
Типичная форсунка включает в себя корпус 5 с распылителем 3, направляющим штифтом 4 и накидной гайкой 2, иглу 1 распылителя со штоком б, пружину 7 с опорной шайбой, регулировочным винтом 9 и втулкой 8, колпачковую гайку 10 и топливоприемный штуцер 12 с сетчатым фильтром 11. Распылитель и игла должны быть очень точно подогнаны друг к другу. В верхней части распылителя имеются один кольцевой и несколько (чаще всего три) вертикальных топливных канала, а в нижней части — центральные входной и выходной каналы с распыляющими отверстиями. Диаметр этих отверстий составляет 0,2…0,4 мм. Игла своим нижним конусным концом закрывает выходной канал. Распылитель плотно прикрепляется к корпусу-форсунки с помощью накидной гайки. Топливный канал корпуса соединяется с кольцевым каналом распылителя через его вертикальные каналы. Правильное положение распылителя относительно корпуса обеспечивает направляющий штифт.
Рис. Форсунка:
1 — игла распылителя; 2 — накидная гайка; 3 — распылитель; 4 — направляющий штифт; 5 — корпус форсунки; 6 — шток; 7 — пружина; 8 — втулка; 9 — регулировочный винт; 10 — колпачковая гайка; 11 — сетчатый фильтр; 12 — топливоприемный штуцер
Топливо, подаваемое к форсунке по топливоприемному штуцеру, проходит через сетчатый фильтр и по топливным каналам корпуса в верхней части распылителя поступает в его кольцевую полость. По достижении необходимого давления в этой полости, действующего кроме прочего на конический поясок иглы, она поднимается вверх, преодолевая сопротивление пружины. В это время открывается выходной канал, и топливо через него и распыливающие отверстия поступает в камеру сгорания цилиндра двигателя.
После прекращения подачи топлива насосной секцией ТНВД и падения давления игла снова садится в свое седло, прекращая впрыскивание топлива. Просочившееся через неплотности топливо поступает в верхнюю часть форсунки и через отверстия в винте 9 и гайке 10 по специальному трубопроводу сливается в бачок 7 для сбора топлива.
Аккумуляторная система питания топливом
Современные жесткие требования к уровню выбросов вредных веществ двигателями внутреннего сгорания вынудили конструкторов дизелей искать новые решения в области топливной аппаратуры для них. Дело в том, что даже самые совершенные ТНВД не могут обеспечить такого давления топлива, при котором оно распылялось бы настолько мелко, что могло бы полностью сгореть в камере сгорания.
Неполное сгорание приводит к большему расходу топлива, а самое главное — к повышению в отработавших газах концентрации вредных веществ, в частности сажи. В связи с этим в настоящее время для дизелей с непосредственным впрыском все чаще применяется так называемая аккумуляторная система питания топливом.
Основное отличие такой системы от «классической» заключается в наличии общей топливной рампы (аккумулятора давления), в которой во время работы двигателя создается очень высокое давление.
Топливная рампа соединена трубопроводами высокого давления с электронно-управляемыми топливными форсунками, иглы которых перемещаются с помощью электромагнитов по сигналам от компьютера (электронного блока) управления двигателем.
Такая система питания топливом позволяет оптимизировать работу двигателя практически по всем параметрам.
Видео: Система питания дизеля
Дизельная электростанция – компоненты, работа и применение
Содержание
Что такое дизельная электростанция?
Дизельный двигатель использует дизельный двигатель для вращения генераторов и производства электроэнергии. Дизельный двигатель используется в качестве основного двигателя, и эта силовая установка известна как дизельная электростанция.
Благодаря сгоранию дизельного топлива вырабатывается энергия вращения. Генератор соединен с тем же валом дизельного двигателя. А генератор переменного тока используется для преобразования энергии вращения дизельного двигателя в электрическую энергию.
В большинстве случаев дизельная электростанция используется для выработки электроэнергии для мелкосерийного производства и на стороне нагрузки. Когда мощность сети недоступна, дизельный двигатель используется для питания нагрузки в аварийных условиях.
Как правило, дизельные электростанции мощностью от 2 до 50 МВт используются на центральных электростанциях для удовлетворения пикового спроса на паровых и гидроэлектростанциях. Но в настоящее время из-за высокой стоимости топлива дизельные двигатели не используются для таких целей.
- Связанный пост: Ветряная электростанция — ветряные турбины, генераторы, выбор площадки и схема генерации
Компоненты, рабочая и принципиальная схема дизельной электростанции
На приведенном ниже рисунке показана принципиальная схема дизельной электростанции.
Щелкните изображение, чтобы увеличить его
Различные компоненты или системы, используемые в дизельной электростанции, перечислены ниже.
- Дизельный двигатель
- Система впуска воздуха
- Выхлопная система
- Система водяного охлаждения
- Система подачи топлива
- Система смазки
- Система запуска дизельного двигателя
Дизельный двигатель
Дизельный двигатель является основным компонентом дизельной электростанции.
Он используется для выработки механической энергии в виде энергии вращения с помощью сгорания дизельного топлива. Генератор подсоединен к тому же валу, что и дизельный двигатель.
Существует два типа дизельных двигателей;
- Двухтактные двигатели
- Четырехтактные двигатели
В двухтактных двигателях за каждый оборот коленчатого вала развивается один рабочий такт. А в четырехтактных двигателях через каждые два оборота коленчатого вала развивается один рабочий такт.
По сравнению с четырехтактными двигателями двухтактные двигатели имеют низкое отношение веса к мощности, более компактны, легко запускаются и имеют низкие капитальные затраты. Но термодинамический КПД двухтактного двигателя меньше по сравнению с четырехтактным двигателем. Двухтактные двигатели требуют больше охлаждающей воды и потребляют больше смазочных материалов.
Четырехтактные двигатели более предпочтительны по сравнению с двухтактными для применения в малых генерациях и дизель-генераторных установках.
А для крупносерийного производства предпочтение отдается двухтактным двигателям. Требуемую мощность дизельной электростанции можно рассчитать по приведенному ниже уравнению.
Мощность станции = (Подключенная нагрузка × Коэффициент спроса) / (Коэффициент разнообразия)
Электростанция с дизельным двигателем мощностью менее 3 МВт используется в качестве резервных станций, а станции мощностью от 3 до 25 МВт используются в качестве станций базовой нагрузки. Как правило, в установках такого типа используются четырехтактные двигатели. Установки, используемые для установок с базовой нагрузкой, имеют мощность более 10 МВт, и для этих установок используются двухтактные двигатели.
- По теме: Почему мощность электростанции указана в МВт, а не в кВА?
Система впуска воздуха
Большой дизельной электростанции требуется воздух в диапазоне 4-8 м 3 /кВтч. В естественном воздухе содержится много частиц пыли, которые могут повредить цилиндры двигателей.
Поэтому в системах впуска воздуха используются воздушные фильтры.
Воздушные фильтры изготавливаются из ткани, дерева или войлока. В некоторых случаях используются фильтры с масляной ванной. В фильтрах с масляной ванной частицы пыли покрыты маслом. Конструкция системы впуска воздуха сделана таким образом, чтобы она вызывала минимальные потери давления при движении воздуха.
Высокие потери давления могут привести к увеличению расхода топлива и снижению мощности двигателя. Во избежание засорения воздушные фильтры необходимо периодически очищать. В силовых установках большой мощности между двигателем и системой впуска используется глушитель для снижения шумового загрязнения.
Выхлопная система
При сгорании дизельного топлива образуются газы. Система, которая используется для удаления этих газов, известна как выхлопная система. Выхлопная система предназначена для выброса газов из двигателя в атмосферу.
Выхлопные системы сконструированы таким образом, что удаляют газы без потери давления.
Если давление сбрасывается, требуется дополнительная работа для выхлопных газов. А это увеличит расход топлива и снизит мощность дизельных двигателей.
Для снижения уровня шума выхлопная система должна быть снабжена глушителями и глушителями. С помощью гибких выхлопных труб вибрация должна изолироваться от установки.
Выхлопную систему необходимо покрыть асбестом, чтобы избежать теплопередачи, и ее необходимо периодически очищать.
Система водяного охлаждения
Двигатель внутреннего сгорания работает за счет сжигания топлива с воздухом, а процентное использование энергии указано ниже;
- 30-37% – полезная работа
- 30-35% – переносятся выхлопными газами
- 0-12% – потери на излучение, конвекцию и теплопроводность
- 22-30% – потоки тепловой энергии от газов к стенкам цилиндра
Следовательно, в двигателе внутреннего сгорания 22-30% энергии теряется в виде тепловой энергии. А чтобы двигатель не перегревался, ему необходима система охлаждения.
Существует два типа систем охлаждения;
- Прямое охлаждение
- Косвенное охлаждение
Прямое охлаждение также известно как воздушное охлаждение, а непрямое охлаждение также известно как водяное охлаждение. Как правило, воздушное охлаждение используется для двигателей малой мощности. И он использует охлаждающие ребра и перегородки для отвода тепла от двигателя. Для двигателей большой и средней мощности используется система водяного охлаждения. В системе водяного охлаждения используется водяная рубашка, радиатор и патрубки.
- Связанный пост: Солнечная электростанция — типы, компоненты, схема и работа
Система подачи топлива
В дизельной электростанции, как следует из названия, в качестве топлива используется дизельное топливо. Система подачи топлива должна выполнять следующие функции.
- В зависимости от мощности двигателя и количества часов подачи требуется резервуар для хранения дизельного топлива.

- Перед подачей топлива в двигатель топливо должно быть отфильтровано и не должно содержать примесей.
- Необходим учет топлива.
- В зависимости от нагрузки в каждом цикле он должен впрыскивать точное количество топлива.
- Обеспечьте обратный путь к неиспользованному топливу.
- В многоцилиндровом двигателе требуется распыление топлива и равномерное распределение топлива по каждому цилиндру.
Существует три типа механических систем впрыска топлива;
- Система Common Rail
- Индивидуальная насосная система
- Распределительная система
Система смазки
В двигателе внутреннего сгорания расположение поршень-цилиндр относится к очень большому изменению температуры. Он работает при максимальной температуре около 2000˚ C или выше. При такой высокой температуре смазочный материал может превратиться в липкий материал. А это приводит к заеданию поршневых колец.
Двигатели работают в условиях высоких нагрузок и вызывают потери на трение в случае выхода из строя системы смазки. Следовательно, система смазки необходима для двигателя внутреннего сгорания и требует, чтобы достаточное количество масла достигало всех частей двигателя.
Система смазки предотвращает прямой контакт между двумя металлами и снижает износ движущихся частей. Перечисленные ниже компоненты двигателя внутреннего сгорания должны быть смазаны;
- Поршень и цилиндр
- Коренные подшипники коленчатого вала
- Кулачок, распределительный вал и его подшипники
- Концы подшипников шатуна
Существует три типа смазочных систем;
- Система смазки распылением или заправкой
- Система впрыска с мокрым картером
- Система впрыска с сухим картером
Связанная статья: Тепловая электростанция – компоненты, работа и выбор места
Система запуска дизельного двигателя
Во время запуска температура и давление в цилиндре недостаточны для инициирования сгорания.
Следовательно, запуск двигателя не способствует инициированию сгорания. Существует несколько методов запуска дизельного двигателя. Некоторые из этих методов перечислены ниже.
- Запуск вручную или пинком
- Электрический запуск
- Сжатый воздух
- Вспомогательный бензиновый двигатель
- Зажигание с горячей лампой
- Специальный картридж пусковой
Из этих методов электрический запуск является наиболее популярным методом запуска дизельного двигателя. В этом методе батарея используется с двигателем с последовательным возбуждением (стартер). Эта схема предназначена для работы на большом токе при низком напряжении. Пусковой двигатель соединен с маховиком двигателя через шестерни и обеспечивает крутящий момент до запуска двигателя.
- Связанный пост: Гидроэлектростанция — типы, компоненты, турбины и работа
Выбор места для дизельной электростанции
Ниже перечислены факторы, влияющие на выбор места для дизельной электростанции.
- Несущая способность: Дизель установлен на фундамент. Если несущая способность выбранной земли высока, то она не требует большой глубины для фундамента. И это сэкономит первоначальную стоимость силовой установки.
- Транспортное средство: Заводу требуется тяжелая техника. Следовательно, выбранное место должно иметь адекватное транспортное средство.
- Труд: Дизельная электростанция большой мощности требует нескольких рабочих.
- Наличие воды: Дизельной электростанции требуется вода для охлаждения.
- Будущее расширение: Есть дополнительные земли для будущего расширения.
- Наличие топлива: Эта установка требует большого объема топлива (дизельного топлива). Таким образом, место должно быть выбрано, где топливо легко доступно.
- Удаленность от населенного пункта: Работа дизельного двигателя загрязняет близлежащие территории.
Следовательно, завод должен быть расположен на значительном расстоянии от человека. - Расстояние от центра нагрузки: Во избежание потерь при передаче место следует выбирать рядом с центром нагрузки.
- По теме: Что такое атомная энергетика и как работает атомная электростанция?
Преимущества и недостатки дизельных электростанций
Преимущества
Преимущества дизельных электростанций перечислены ниже.
- При необходимости может быстро запускаться и останавливаться.
- Эта установка может быть расположена в любом месте, и ее легко установить для электростанции небольшой мощности.
- Не требует дополнительного места.
- Эта установка быстро реагирует на различные нагрузки.
- Вода требуется только для охлаждения. Таким образом, требуется очень небольшое количество воды.
- Тепловой КПД этой установки выше, чем у паровой электростанции.

- Дизельная электростанция может быть эффективно использована до 100 МВт.
- Требуется меньше рабочей силы.
- Может сжигать различные виды топлива.
- Меньше шансов возгорания.
Недостатки
Ниже перечислены недостатки дизельных электростанций.
- Стоимость генерации на единицу очень высока. Так как работа этого завода зависит от цены дизельного топлива. И цены на дизель высокие.
- Мощность дизельной электростанции меньше по сравнению с паровой электростанцией и гидроэлектростанцией.
- Создает шумовое загрязнение и выбросы углекислого газа при сгорании дизельного топлива.
- Требует больших затрат на обслуживание и смазку.
- Эта установка не способна обеспечить постоянную перегрузку.
- Срок службы этой установки меньше по сравнению с другими электростанциями.
Похожие сообщения:
- Что такое HVDC? Передача электроэнергии постоянного тока высокого напряжения
- Различия между передачей энергии HVAC и HVDC
- Преимущества передачи энергии HVDC по сравнению с HVAC
Применение дизельных электростанций
Применение дизельных электростанций:
1) Установка установки
Установка может быть легко установлена в сети энергосистемы.
Но если учесть экономические соображения, то мощность панта ограничивается от 5 МВт до 50 МВт. Эти пределы также зависят от грузоподъемности, наличия топлива, воды и места.
2) Электростанция пиковой нагрузки
Дизельная электростанция используется с теплоэлектростанциями и гидроэлектростанциями для удовлетворения пикового спроса. Это снижает удельные затраты на производство электроэнергии. Он может легко запускаться и останавливаться в зависимости от потребности и изменения нагрузки.
3) Аварийная установка
Дизельный двигатель можно использовать в качестве аварийной установки. Когда мощность сети недоступна, дизельный двигатель используется в качестве резервной установки на случай чрезвычайных ситуаций.
4) Мобильная установка
Дизельная электростанция малой и средней мощности может быть закреплена на грузовике или прицепе. Эта установка может использоваться как мобильная электростанция, и мы можем использовать эту установку для снабжения там, где электроэнергия недоступна.
Эта установка также используется в качестве аварийной станции при отключении электроэнергии.
5) Резервный агрегат
Эта установка может использоваться в качестве резервного агрегата с гидроэлектростанцией. Когда на гидроэлектростанции недостаточно воды, для удовлетворения потребности в электроэнергии дизельная электростанция работает параллельно с гидроэлектростанцией.
6) Электростанция для небольших предприятий
Эта установка может использоваться для краткосрочной работы небольших предприятий, где важна надежность электроснабжения в течение всего дня.
7) Детская станция
В некоторых районах, где сеть недоступна, или в любом развивающемся районе, где нет достаточной нагрузки для подключения к сети, дизельная электростанция используется в качестве временного решения для подачи электроэнергии . И удалить, когда сетка подключена.
Похожие сообщения:
- Что такое электричество? Типы, источники и производство электроэнергии
- Что такое электроэнергия? Виды электроэнергии и их единицы
- Калькулятор потребления энергии и мощности – Калькулятор кВтч
- FACTS — Гибкая система передачи переменного тока — Типы контроллеров и устройств FACTS
- Почему передача электроэнергии кратна 11, т.
е. 11 кВ, 22 кВ, 66 кВ и т. д.? - Эффект короны и разряд в линиях электропередачи и энергосистеме
- Почему кабели и линии электропередач не закреплены на опорах и опорах ЛЭП?
- Разница между системой передачи переменного и постоянного тока и линиями электропередач
- Проектирование и монтаж подстанций СВН/СВН и СВН/ВН
URL Скопировано
Дизельный генератор — Энергетическое образование
Энергетическое образование
Меню навигации
ИСТОЧНИКИ ЭНЕРГИИ
ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ
ЭНЕРГЕТИЧЕСКОЕ ВОЗДЕЙСТВИЕ
ИНДЕКС
Поиск
Дизельный генератор, принадлежащий и эксплуатируемый Yukon Energy в Уайтхорсе, Юкон, Канада [1]
Дизельные генераторы — это очень полезные машины, которые производят электричество за счет сжигания дизельного топлива.
Эти машины используют комбинацию электрического генератора и дизельного двигателя для выработки электроэнергии. Дизельные генераторы преобразуют часть химической энергии, содержащейся в дизельном топливе, в механическую энергию посредством сгорания. Эта механическая энергия затем вращает кривошип для производства электричества. Электрические заряды индуцируются в проводе при перемещении его через магнитное поле. В приложении электрического генератора два поляризованных магнита обычно создают магнитное поле. Затем вокруг коленчатого вала дизель-генератора много раз наматывается проволока, которая помещается между магнитами и находится в магнитном поле. Когда дизельный двигатель вращает коленчатый вал, провода перемещаются в магнитном поле, что может индуцировать электрические заряды в цепи. Общее эмпирическое правило заключается в том, что дизельный генератор будет использовать 0,4 л дизельного топлива на произведенный кВтч. Используемый дизельный двигатель по существу представляет собой двигатель внутреннего сгорания.
В отличие от бензинового двигателя, дизельный двигатель использует теплоту сжатия для воспламенения и сжигания топлива, впрыскиваемого в камеру впрыска. Как правило, дизельные двигатели имеют самый высокий тепловой КПД среди всех двигателей внутреннего сгорания, что позволяет достичь приблизительного процента КПД Карно. Дизельные двигатели могут работать на многих производных сырой нефти. Топливо, которое дизельный двигатель может использовать для сгорания, включает природный газ, спирты, бензин, древесный газ и дизельное топливо. [2]
Универсальность
Дизельные генераторы используются во многих областях по всему миру. Обычно их устанавливают в сельской местности, где они подключены к электросети и могут использоваться как основной источник питания или как резервная система. Дизельные генераторы также можно использовать для компенсации пиковых потребностей в электроэнергии в сети, поскольку их можно быстро включать и выключать без задержки. Генераторы, используемые в жилых помещениях, могут иметь мощность от 8 до 30 кВт, а генераторы, используемые в коммерческих целях, могут иметь мощность от 8 до 2000 кВт.

Следовательно, завод должен быть расположен на значительном расстоянии от человека.
е. 11 кВ, 22 кВ, 66 кВ и т. д.?