Момент впрыска топлива дизельном двигателе: Опережение впрыска (Diesel)

Опережение впрыска (Diesel)

О том, что опережение впрыска топлива для дизельных двигателей очень важно, объяснять никому не надо. Естественно, для каждой частоты вращения двигателя оптимальным будет какое-то определенное значение угла опережения, например, для холостого хода 800 об/мин – это 3°, 1000 об/мин — 4°, 1500 об/мин — 5° и т.д. Для достижения такой зависимости, которая, кстати, не является линейной, в корпусе ТНВД есть специальный механизм. Впрочем, это просто поршень (иногда в литературе его именуют таймером), который перемещается внутри ТНВД давлением топлива и через специальный поводок на тот или иной угол разворачивает специальную шайбу с волновым профилем. Будет поршень задвинут дальше –  волна шайбы чуть раньше набежит на плунжер, тот начнет движение и раньше начнет подавать топливо к форсунке. Другими словами, угол опережения впрыска зависит от давления топлива внутри корпуса ТНВД и от степени износа волнового профиля шайбы. С давлением топлива, как правило, никаких проблем не бывает. Ну, разве что засорится топливный фильтр, заклинит в открытом состоянии плунжерок редукционного клапана  или западут лопасти питающего насоса (внутри ТНВД).(РИС 38, РИС39)


 


               


 


                                рис. 38                                                                                        рис.39


Рис. 38. Чтобы полностью проверить редукционный клапан, его можно вывернуть из ТНВД. Плунжер внутри этого редукционного клапана не должен быть заклинен. Так это или не так, можно проверить, надавив на плунжер спичкой. Под воздействием руки плунжер должен легко перемещаться, сжимая пружину.

Рис. 39. Выкручивать редукционный клапан на уже снятом насосе не сложно. Проделать то же, не снимая  ТНВД, уже сложнее.


Все эти проблемы возникают довольно редко и легко вычисляются. Оценить состояние топливного фильтра можно легко и однозначно, если перевести двигатель на внешнее питание, то есть под капот двигателя поместить пластиковую бутылку с дизельным топливом, а трубки питания ТНВД и «обратки» отсоединить от своих штатных мест и опустить в эту бутылку. После этого запускаем двигатель и проверяем его работу. Можно даже проехать несколько километров. Если в поведении двигателя ничего не изменилось, значит, топливный фильтр и все, что расположено дальше, к топливному баку, исправно. Кстати, если в бутылку с топливом добавить 30-50%  любого моторного масла, то ТНВД будет вынужден подавать более густое топливо (смесь солярки с маслом). И если в ТНВД есть какой-то износ (например, плунжерных пар), износ этот как бы станет сказываться в меньшей степени, и работа двигателя станет лучше. Например, двигатель в горячем состоянии запускается очень тяжело. Причиной этого часто является недостаточный объем подаваемого топлива вследствие износа главной плунжерной пары. И если с густым топливом  этот дефект (тяжелый запуск) почти исчезнет, можно с уверенностью снимать ТНВД и менять ему изношенную пару. Хотя в этом случае в ТНВД обычно надо менять все, и его проще выкинуть, чем чинить и потом регулировать. Впрочем, об этом уже выше писалось.

Состояние редукционного клапана (может находиться в заклиненном состоянии) и питающего насоса, можно оценить, используя насос ручной подкачки топлива. Если работа двигателя изменится после того, как вы при работающем двигателе начнете качать ручным насосом, т.е. начнете вручную поднимать давление в корпусе ТНВД, значит или клапан, или насос неисправен. Редукционный клапан легко вывернуть, не снимая ТНВД, и проверить. Только на большинстве дизельных двигателей фирмы «Mitsubishi» для этого приходится тонким зубилом удалять уголок кронштейна, после чего головка редукционного клапана становится доступной для специального ключа. Кстати, этот редукционный клапан можно вывернуть и с помощью длинного бородка (зубильца), не используя ключ. (РИС.40)


Рис. 40. Поднять давление в корпусе ТНВД можно путем осаживания заглушки (1) редукционного клапана (2) тонким бородком. В результате этих ударов пружина (3) сильнее надавит на плунжер (4) и тот перекроет отверстие для  сброса топлива (5). Чтобы вернуть заглушку обратно (снизить давление в корпусе ТНВД), надо  сильнее пробить заглушку вниз, чтобы она сжала пружину полностью и надавила на плунжер таким образом, чтобы вытолкнуть стопор (6). После этого и плунжер и пружина легко вываливаются. Дальше надо перевернуть редукционный клапан и тонким бородком пробить заглушку обратно. Далее все собрать на место и повторить попытку регулировки давления.


Там все уплотнения сделаны на резиновых колечках (ториках) и сильной затяжки не требуется. Если этот клапан целый, его плунжер не заклинен в открытом положении, то следует подозревать неисправность питающего насоса. При условии, что при подкачке топлива работа двигателя становится ровнее. Правда, если из линии перелива (обратки) при работе двигателя льется топливо с пузырьками воздуха, то в первую очередь надо устранить  подсос воздуха. Потому что если будет подсос воздуха, то сложно создать требуемое давление в ТНВД, даже с полостью исправным питающим насосом. Но проблемы с подсосом воздухом – это отдельная тема. Тут только заметим, что подсос воздуха, даже при внешнем питании, т.е. когда канистра с топливом находится выше ТНВД, возможен через сальник ТНВД и через не плотности центральной заглушки на чугунной части ТНВД. Эта заглушка используется для точной установки ТНВД по углу подачи топлива (ее вывинчивают, устанавливают микрометрическую головку и меряют ход плунжера, эта процедура описана почти во всех руководствах по ремонту ТНВД). При полностью исправном ТНВД, даже если он был ранее завоздушен, через 10 минут работы двигателя в линии перелива пузырьков воздуха нет.

Итак, угол опережения впрыска зависит от оборотов двигателя. Для экономии топлива, достижения высокой мощности и в плане экологии будет лучше, если этот угол опережения будет изменяться с учетом и других условий работы двигателя, таких, как величина нагрузки на двигатель, давление наддува, температура и др. Но полностью учет всех этих условий возможен только у ТНВД с электронным управлением. У обычных механических учитывается только давление топлива в корпусе ТНВД и, на более современных агрегатах, температура охлаждающей жидкости двигателя. Поршень в нижней части ТНВД перемещается в зависимости от давления топлива и через специальный стальной «палец» немного разворачивает профильную шайбу (эту же шайбу принудительно поворачивает поводок от механизма прогревного устройства). В результате волновой выступ шайбы будет раньше набегать на плунжер, и тот раньше начнет свое движение. Вся эта система была рассчитана и сделана на заводе и худо-бедно справлялась со своими обязанностями. До тех пор, пока не начался интенсивный износ. Интенсивным он стал потому, что в ТНВД  стало поступать топливо без смазки (наше «сухое» зимнее топливо, так же как и керосин, почти не содержит тяжелых фракций, которые и обеспечивают смазку всех трущихся деталей), топливо с воздухом и просто грязное топливо (с абразивом). Впрочем, обычная старость тоже делает свое дело. В результате выступ на шайбе начинает чуть позже набегать на плунжер и тот в свою очередь начинает чуть позже свое движение. Другими словами начинается более поздний впрыск. Начало этого явления выглядит так. Двигатель работает на холостом ходу и, вследствие разного износа форсунок, немного трясется. Добавляем ему оборотов. Примерно на 1000 об/мин двигатель перестает трястись и как бы замирает – работает ровненько – ровненько. Еще повышаем обороты. И вдруг в диапазоне 1500 – 2000 об/мин появляются вздрагивания. Эти вздрагивания (тряска) могут появляться как при плавном, но интенсивном, так и при медленном повышении оборотов. Во время тряски из выхлопной трубы идет синий дым. Когда двигатель полностью прогреется, тряска в районе 1500 – 2000 об/мин исчезает. Это в самом начале развития дефекта. Потом тряска не пропадает и после прогрева двигателя. Точно такая же тряска появляется, если поднять давление впрыска на форсунках. В этом случае, если ТНВД изношен, тоже получится поздний впрыск топлива. Избавляемся мы от этого явления, повернув корпус ТНВД на более ранний впрыск. Иногда приходится доворачивать ТНВД почти до упора. Но прежде чем это сделать, послушайте работу двигателя. Когда у дизельного двигателя слишком ранний впрыск, он начинает работать более жестко (еще говорят, что у него стучат клапана). И если вы убедитесь, что оборотов за 50-100 до начала тряски эта жесткая составляющая в акустическом фоне дизеля исчезла, значит точно надо поворачивать ТНВД. Тут следует заметить, что у изношенных дизелей зазор поршень – цилиндр очень большой и поэтому они начинают работать жестко даже при абсолютно правильном угле опережения впрыска. Использование для установки опережения впрыска стробоскопа в нашем случае не совсем оправдано. Не будем говорить о том, что стробоскопы более уверенно ловят своим микрофоном стук уже сильно изношенной форсунки. Если же форсунка  в приличном состоянии, а трубка подачи топлива закреплена штатно, лампа стробоскопа, как правило, дает сбои. Установить с помощью стробоскопа можно опережение впрыска при холостом ходе. Именно это опережение дается в технической документации. Но износ  в ТНВД неравномерный. И очень часто установив опережение по метке с помощью стробоскопа при оборотах холостого хода, мы не избавляемся от тряски на оборотах, вызванной поздней подачей топлива. Поэтому мы и рекомендуем выставлять опережение  на слух. При том износе, который имеют эксплуатируемые нами дизеля, это более приемлемый способ. Ведь только таким образом можно скомпенсировать поздний впрыск, вызванный низким давлением топлива в корпусе ТНВД из-за износа питающего насоса. Это почти то же самое, что и регулировка опережения зажигания у бензинок. Вы можете с помощью приборов установить опережение зажигания только при оборотах холостого хода (а другого и не предлагается руководствами по ремонту), но из-за неисправности, например, центробежного регулятора, машина ехать не будет. Ясно дело, что его надо чинить или менять. Но можно, повернув трамблер, выставить на слух приемлемый угол опережения зажигания. Разница только в том, что у бензиновых двигателей критерием правильности установки опережения зажигания без использования приборов будут детонационные стуки и мощность двигателя, а у дизелей – тряска, дымность и стуки в двигателе.

Выше уже упоминалось, что большинство проблем ТНВД происходят из-за всяческого рода утечек и протечек. Износился, например, плунжер, возникла протечка, вот и не создает он давление. А если заменить топливо более густым? Тогда повышенные зазоры в сопрягаемых деталях как бы станут меньше. И ТНВД заработает так, будто у него и нет никакого износа. Сделать топливо густым очень просто. Добавьте, как говорилось выше, в него любого моторного масла. Конечно, ездить так не хочется – слишком дорогое топливо получается (да и хлопотно это, постоянно приготавливать густое топливо). Но для проверки состояние ТНВД (как и для успешной продажи сильно подержанного автомобиля на базаре) этот прием полезен. В холодное время года мы, из-за природной лени, для того, чтобы сделать топливо густым, просто охлаждаем ТНВД. Например, приходит машина с дизельным двигателем с жалобой на то, что плохо заводится, если постоит минут пять, но двигатель еще горячий. Мы заводим эту машину (действительно, иногда приходится крутить стартером секунд 30), прогреваем ее еще минут 10 и глушим. После этого открываем ей капот и снегом охлаждаем ТНВД. В течение тех же 5 минут. Если после этой операции двигатель запустится лучше, чем в первый раз, уже можно говорить о сильном износе ТНВД. Конечно, оба эти трюка (с густым топливом и с охлаждением ТНВД) не описываются в заводских руководствах по ремонту двигателя и, поэтому их нельзя считать очень уж научными. В тех руководствах измеряется объем подачи топлива при запуске (есть в технических данных такой параметр – объем подачи при скорости вращения 200 об/мин) и проверить этот параметр в домашних условиях тоже несложно. Для этого надо выкрутить все свечи накаливания и снять трубку с одной форсунки. Потом на эту трубку надеть корпус одноразового медицинского шприца и стартером покрутить двигатель. Естественно, считая «пшики». 200 «пшиков», это, конечно, много. Достаточно и 50, а потом полученный результат сравнить с техническими данными. При этом можно считать, что объем впрыска при 200 об/мин для всех японских дизелей, если у них одинаковый объем, будет один и тот же. Если объем вашего двигателя чуть другой, несложно составить пропорцию с объемом дизеля, данные на который у вас имеются. Все это мы тоже проделываем, когда горячий двигатель плохо заводится, хотя, как следует из практики, можно все проверить и проще. Используя снег и моторное масло. Другими словами, если работа ТНВД с густым топливом становится более приемлемой, надо проверять объем впрыска. Лучше, конечно, это все сделать на стенде (там можно провести проверить все режимы работы у ТНВД), но в режиме запуска (т.е. при 200 об/мин) проверку можно сделать и в гараже.

Итак, если у дизельного двигателя есть тряска в районе 1500 – 2000 об/мин, сопровождаемая к тому же синим цветом выхлопных газов, надо  ремонтировать топливную систему. И в частности, сделать впрыск топлива раньше. Для этого в простейшем случае надо повернуть ТНВД на более ранний впрыск.


Корниенко Сергей, г. Владивосток, диагност

© Легион-Автодата


Союз автомобильных диагностов

Опережение момента впрыска топлива

Наиболее важными критериями для оптимизации работы дизельного двигателя являются следующие:

  • низкая токсичность выхлопных газов;
  • низкий шум от процесса сгорания;
  • низкий удельный расход топлива.

Момент времени, в который ТНВД начинает подавать топливо, называется началом подачи (или закрывания канала). Этот момент времени подбирается в соответствии с периодом задержки воспламенения (или просто задержкой воспламенения). Они являются переменными параметрами, которые зависят от конкретного рабочего режима. Период задержки впрыска определяется как период между началом подачи и началом впрыска, а период задержки воспламенения — как период между началом впрыска и началом сгорания. Начало впрыска определяется как угол поворота коленчатого вала в области ВМТ, в которой форсунка впрыскивает топливо в камеру сгорания.

Начало сгорания определяется как момент воспламенения топливо-воздушной смеси, на который может влиять начало впрыска. У ТНВД регулировка начала подачи (закрывания канала) в зависимости от числа оборотов лучше всего осуществляется с помощью устройства опережения впрыска.

Назначение устройства опережения впрыска

Из-за того, что устройство опережения впрыска непосредственно изменяет момент начала подачи, оно может быть определено как регулятор начала подачи. Устройство опережения впрыска (называемое еще муфтой опережения впрыска) эксцентрикового типа преобразует приводной крутящий момент, поступающий к ТНВД, в то же самое время, осуществляя свои регулирующие функции. Крутящий момент, требуемый ТНВД, зависит от размера насоса, количества плунжерных пар, количества впрыскиваемого топлива, давления впрыска, диаметра плунжера и формы кулачка. Тот факт, что крутящий момент привода имеет непосредственное влияние на характеристики опережения впрыска, следует учитывать при конструировании наряду с возможной отдачей мощности.

Функции регулятора

Основной задачей каждого регулятора числа оборотов является ограничение максимальных оборотов двигателя. Другими словами, регулятор должен обеспечивать, чтобы обороты двигателя никогда не превышали максимальных значений, предусмотренных заводом-изготовителем. В зависимости от его типа, регулятор может иметь и другие функции, такие как поддержание определенных оборотов двигателя, например, на холостом ходу или поддержание диапазона оборотов между низкими и высокими оборотами холостого хода (максимальными). Регулятор может также иметь другие функции и функции, выполняемые электронным регулятором (EDC), являются гораздо более широкими, чем функции у механического (центробежного) регулятора.

Различные требования, предъявляемые к регуляторам, стали причиной развития различных типов регуляторов, перечисленных ниже: регуляторы максимальных оборотов. Эти регуляторы разработаны только для ограничения максимальных оборотов двигателя; регуляторы минимальных и максимальных оборотов.

Кроме максимальных оборотов эти регуляторы также управляют низкими оборотами холостого хода, регуляторы изменяемых оборотов. Эти регуляторы кроме максимальных оборотов и низких оборотов холостого хода также управляют оборотами в промежуточной области, комбинированные регуляторы. Они представляют собой комбинацию регулятора максимальных и минимальных оборотов и регулятора изменяемых оборотов, регуляторы для стационарных силовых установок. Они разработаны для двигателей генераторных установок в соответствии с немецким стандартом DIN 6280. Кроме своей основной задачи, этот регулятор также имеет несколько других функций управления. Они включают в себя автоматическую подачу и отсечку дополнительного топлива, требуемого для запуска и изменение подачи топлива при полной нагрузке в зависимости от оборотов двигателя (управление крутящим моментом), от давления нагнетаемого воздуха или атмосферного давления. Для выполнения этих задач требуется дополнительное оборудование.

Конструкция устройства опережения впрыска

Устройство опережения впрыска для рядного ТНВД устанавливается непосредственно на конце кулачкового вала ТНВД. В основном различаются между собой устройства опережения впрыска открытого типа и закрытого типа.

Устройство опережения впрыска закрытого типа имеет собственный резервуар для смазывающего масла, который делает устройство независимым от системы смазки двигателя. Открытая конструкция подсоединена непосредственно к системе смазки двигателя. Корпус устройства прикреплен винтами к зубчатой шестерне, а компенсирующие и регулировочные эксцентрики установлены в корпусе так, что они свободно поворачиваются. Компенсирующие и регулировочные эксцентрики направляются штифтом, который жестко соединен с корпусом. Кроме более низкой цены, «открытый» тип имеет еще преимущество в том, что ему нужно меньше места, и он более эффективно смазывается.

Проверка равномерности подачи топлива по отдельным цилиндрам

Осуществляют при помощи менископа с мерной стеклянной трубкой или контрольной подачей топлива в мензурку. Для этого отсоединяют форсуночную трубку от форсунки, устанавливают рукоятку управления топливным насосом на номинальную подачу, прокачивают топливный насос один раз, направляя струю топлива в мензурку. Проведя эту операцию со всеми насосами, определяют равномерность подачи топлива в каждый цилиндр. В случае нарушения подачи, разворачивая плунжер относительно втулки (у золотниковых насосов) или меняя длину промежуточных толкателей привода отсекательных клапанов, устанавливают номинальную подачу топлива.

Принцип работы устройства опережения впрыска

Устройство опережения впрыска приводится в движение зубчатой шестерней, которая установлена в кожухе привода газораспределительного механизма двигателя. Соединение между входом и выходом для привода (ступицей) осуществляется через блокировочные пары эксцентриковых элементов.

Наибольшие из них, регулировочные эксцентриковые элементы (4) расположены в отверстиях в стопорном диске (8), который, в свою очередь, крепится болтами к элементу привода (1). Компенсирующие эксцентриковые элементы (5) установлены в регулировочные эксцентриковые элементы (4) и направляются ими и болтом в ступицы (6). С другой стороны, болт ступицы непосредственно соединен со ступицей (2). Грузики (7) соединены с регулировочным эксцентриковым элементом и удерживаются в исходных положениях пружинами с переменной жесткостью.

Рис. а) В начальном положении; b) Низкие обороты; с) Средние обороты; d) Конечное положение при высоких оборотах; а — угол опережения впрыска.

Регулировка зажигания дизельного двигателя – инструкция для решительных

Дизельного двигателя может производиться и самостоятельно. Для начала следует поднять крышку капота и зафиксировать ее на опорной стойке. Сверху слева на задней части двигателя необходимо найти маховик (массивное колесо), на корпусе кожуха которого расположено механическое устройство. Шток этого устройства требуется сначала приподнять и развернуть на 90 градусов, затем опустить в прорезь, которая находится на корпусе.

Теперь снимите грязезащитный щиток, для этого на кожухе маховика ключом 17 мм нужно открутить два болта (проще подобраться к этому месту из-под машины). В отверстие маховика через прорезь кожуха следует вставить металлический стержень и поворачивать коленвал двигателя. Направить его нужно слева направо, пока его ход не будет застопорен штоком фиксатора сверху

.

Теперь самое время посмотреть на вал привода насоса для горючего, он расположен сверху от развала блока цилиндров (ось, от которой ряды цилиндров расходятся). Если установочная шкала приводной муфты (фланца, который служит для передачи вращений от приводного вала) ТВНД повернута вверх, то в этом случае риску на фланце топливного насоса следует совместить с нулевой меткой привода и затянуть два крепежных болта. Если установочная шкала приводной муфты не повернута вверх, тогда потребуется приподнять стопор, а коленвал двигателя повернуть на один оборот, и следом все вышеперечисленные действия необходимо повторить в том же порядке.

Как только болты приводной муфты затянули, нужно поднять вверх стопор маховика, повернуть на 90 градусов и опустить в паз. На кожухе маховика снизу можно вернуть на свое место грязезащитный щиток (крепится болтами). Теперь капот автомобиля пора закрыть, работа закончена. Остается завести автомобиль и проверить четкость срабатывания системы.

ТНВД размера М

Рис. ТНВД размера М

Рис. 1. Нагнетательный клапан; 2. Гильза; 7. Кулачковый вал; 8. Кулачок.

ТНВД размера М является самым маленьким насосом в ряду рядных ТНВД. Он имеет корпус из легкого сплава и укреплен на двигателе с помощью фланца. Доступ к внутренней части насоса возможен после снятия пластины основания и боковой крышки, и поэтому насос размера М определяется как ТНВД открытого типа. Пиковое давление впрыска ограничивается величиной 400 бар.

После снятия боковой крышки насоса количество подаваемого топлива плунжерных пар может быть отрегулировано и установлено на одинаковом уровне. Индивидуальная регулировка осуществляется перемещением зажимных деталей на тяге управления (4).

При работе установка плунжеров насоса и вместе с ними количества подаваемого топлива регулируется тягой управления в диапазоне, определяемом конструкцией насоса. Тяга управления ТНВД размера М является круглым стальным стержнем с плоскостью, на котором установлены зажимные элементы (5) с проточками. Рычаги (3) плотно соединяются с каждой втулкой управления, а стержень, приклепанный к его концу, входит в проточку зажимного элемента тяги управления. Эта конструкция известно как рычажное управление.

Плунжеры ТНВД находятся в непосредственном контакте с роликовыми толкателями (6), а регулировка предварительного хода осуществляется подбором роликов с соответствующими диаметрами для толкателя.

Смазка ТНВД размера М осуществляется путем обычной подачи масла от двигателя. ТНВД размера М выпускается с 4,5 или 6 плунжерными парами (4-, 5- или 6-цилиндровый ТНВД) и предназначен только для дизельного топлива.

И снова про угол впрыска на 4JB1-TC

Комрады, нужен совет. Двигатель после капиталки, пробег 3 часа на хх. Двигло стоит на поддоне в гараже. Подключен стартер, подано 12В на клапан отсечки и топливо из бака через фильтр. Ну и радиатор подключил. Механические датчики температуры ОЖ и давления масла. Больше ничего. Заводится с полоборота. Первые 10 секунд холодный мотор подтраивает с белым дымом. Потом работает ровно и бездымно. Горячий на хх сразу работает ровно, не троит. Если добавить оборотов, то начинает то ли подтраивать, то ли захлебывается. С прогревом картина не меняется. Проверил компрессию: 29-29-29-29. Проверил ГРМ — все по меткам, взаимное положение шкивов верное, стопорные болты закручиваются. Может угол впрыска? Выставляю впрыск по мануалу индикатором часового типа. Все выставил согласно книги — 0.5 мм. Подключил стробоскоп — впрыск вроде как поздний. Проверял как по 1-ому, так и по 4-ому цилиндру. Пытался отрегулировать — ТНВД упирается в крайнее положение. Регулировки не хватает. Ремень на зуб переставлять? Так вроде 0.5мм по индикатору выставилось. Почему стробоскоп показывает поздний впрыск? ТНВД и форсунки отдавал в сервис на переборку, регулировку, замену распылителей. Сказали, что все хорошо, плунжерная пара в норме. Вчера повторно снял трубки и отрегулировал впрыск по индикатору. Не думаю, что что-то изменится. Пойду проверять.

ТНВД размера А

Рис. ТНВД размера А

Рядные ТНВД размера А с большим диапазоном подачи следуют непосредственно после ТНВД размера М. Этот насос также имеет корпус из легкого сплава и может быть соединен с двигателем фланцем или на раме. ТНВД типа А также имеет «открытую» конструкцию, а гильзы (2) насоса вставлены прямо сверху в алюминиевый корпус, причем нагнетательный клапан (1) в сборе запрессован в корпус ТНВД с помощью держателя клапана. Давление уплотнения, которое намного больше гидравлического давления при подаче, должно поглощаться корпусом ТНВД. По этой причине пиковое давление впрыска ограничивается величиной 600 бар.

В отличие от ТНВД типа М, ТНВД типа А снабжен регулировочным винтом (с контргайкой) (7) в каждом роликовом толкателе (8) для установки предварительного хода.

Для регулировки количества подаваемого топлива с помощью управляющей рейки (4) ТНВД типа А, в отличие от ТНВД типа М, оснащен управлением с помощью шестерни вместо рычажного управления. Зубчатый сегмент, зажатый на втулке управления (5) плунжера, находится в зацеплении с управляющей рейкой и для регулировки плунжерных пар на одинаковую подачу фиксирующие винты нужно отпустить, а втулку управления повернуть относительно зубчатого сегмента и, таким образом, относительно управляющей рейки.

Все регулировочные работы на этом типе ТНВД должны проводиться на насосе, установленном на стенде и с открытым корпусом. Подобно ТНВД М, ТНВД типа А имеет боковую подпружиненную крышку, которую для получения доступа к внутренней части ТНВД нужно снять.

Для смазки ТНВД соединяется с системой смазки двигателя. ТНВД типа А выпускается в вариантах с числом цилиндров до 12, и, в отличие от ТНВД типа М, подходит для работы на топливах различного типа (а не только на дизельном).

Сгорание топлива в дизеле

Задержка самовоспламенения.

Впрыснутое в цилиндр топливо воспламеняется не сразу. Сначала частички его испаряются, перемешиваются с воздухом и смесь нагревается до температуры самовоспламенения. Процесс этот сложный, многосторонний. Следовательно, после впрыска частичек топлива в цилиндр происходит задержка воспламенения вызванная физическими и химическими подготовительными процессами. Время, прошедшее от момента попадания частичек в цилиндр до начала горения называется периодом задержки самовоспламенения.

Период задержки самовоспламенения составляет 0,001-0,005 с. Если предполагать, что двигатель работает с частотой вращения 750 об./мин., то его коленвал поворачивается на 1º примерно за 0,002 с. , значит за период задержки самовоспламенения кривошип повернётся на угол от 5 до 25º.

Это обстоятельство вынуждает делать впрыск топлива с опережением, т.е. до того как кривошип поршень придёт в ВМТ.

Угол, на который кривошип не доходит до ВМТ, в момент начала впрыска топлива называется – Углом опережения подачи топлива– это важнейший параметр регулировки двигателя у судовых дизелей он составляет 15-33º.

Протекание процесса сгорания.

d – точка начала подачи топлива;

@0 – угол опережения подачи топлива;

@i – угол поворота коленвала за период задержки воспламенения или (период задержки воспламенения).

с – точка начала горения за период задержки воспламенения (угол @i) в цилиндр поступило какое-то количество топлива, составляющее обычно 15-50% от цикловой подачи, т.е. от дозы, впрыскиваемой за цикл.

Топливо воспламеняется следовательно температура и давление резко возрастают участок (сz). Топливо поступающее в цилиндр по окончании задержки спокойно сгорает, попадая так сказать в огненную среду.

Поршень в это время движется вниз объём над ним увеличивается и давление существенно не меняется участок (z1, z).

(z – z0) – участок показывает процесс расширения (топливо на этом участке догорает).

Участок (сz´) характерен интенсивным нарастанием давления от Рс до Рz. Если скорость нарастания будет больше чем 400-600 кПа/ град. П.К.В. (4-6 кгс/см2),то нагрузка на поршень будет ударной, в цилиндре возникнет стук, такая работа двигателя называется жёсткой

.
Жёсткая работа крайне вредна и влияет на износ подшипников, вызывает деформацию и поломку поршневых колец.
Жёсткость работы двигателя зависит от скорости нарастания давления после самовоспламенения, а эта скорость – от количества топлива, поступившего в цилиндр за период задержки самовоспламенения. Короче жёсткость работы дизеля зависит от величины периода задержки самовоспламенения: чем он больше, тем жестче будет работа дизеля.

Значит, для обеспечения мягкой работы дизеля следует стремиться к уменьшению периода задержки самовоспламенения (регулировка — установить раньше угол – опережения подачи топлива).

Уменьшению периода задержки самовоспламенения способствует повышение температуры сжатого в цилиндре воздуха. Холодный дизель работает со «стуками» в цилиндре, после нагрева «стуки» исчезают.

Мягкая работа двигателя возможна при хорошей плотности поршня в цилиндре, при заданной степени сжатия и при поддержании двигателя в тёплом – горячем состоянии.

Жёсткая работа дизеля возможна при зависании иглы распылителя (форсунка) – низкое качество распыления.

Жёсткость работы дизеля зависит от самовоспламеняемости топлива – это качество характеризуется цетановым числом. Его определяют сравнением самовоспламеняемости исследуемого топлива и двух эталонных углеводородов:первый имеет минимальный период задержки самовоспламенения, второй значительный. (Сравнение производят на специальном одноцилиндровом двигателе с переменной степенью сжатия). Сначала определяют степень сжатия при которой исследуемое топлива самовоспламеняется при положении поршня строго в ВМТ.

Затем подбирают эквивалетную смесь цетана и альфаметилнафталина, т.е. такую, которая при том же угле опережения подачи топлива и при той же степени сжатия самовоспламеняется при положении поршня в В.М.Т.

Цетановым числом топливаназывается процентное содержание цетана в такой его смеси с альфаметилнафталином, которая эквивалентна топливу по воспламеняемости.Если, например в эквивалентной смеси цетана содержится 45%, а альфаметилнафталина 55%, то цетановым числом топлива будет 45.

Достаточно мягкая работа быстроходных дизелей при цетановом числе 45. тихоходные могут работать при цетановом числе ниже 40.

Повышение цетанового числа сверх 55, вызывает уменьшение полноты сгорания топлива. Черезмерное сокращение периода задержки самовоспламенения приводит к вялому протеканию процесса сгорания, что снижает КПД.

ТНВД размера WM

Рис. ТНВД размера WM

Рядный ТНВД размера (типа) MW был разработан для удовлетворения потребности в повышенном давлении. ТНВД MW является рядным ТНВД закрытого типа, а его пиковое давление впрыска ограничивается величиной 900 бар. Он также имеет корпус из легкого сплава и крепится к двигателю с помощью рамы, плоского основания или фланца.

Конструкция ТНВД MW заметно отличается от конструкции ТНВД типов А и М. Основная разница состоит в использовании плунжерной пары, включающей в себя гильзу (3), нагнетательный клапан и держатель нагнетательного клапана. Она собрана вне двигателя и вставлена сверху в корпус ТНВД. На ТНВД MW держатель нагнетательного клапана вкручен непосредственно в гильзу, которая выступает вверх. Предварительный ход регулируется с помощью регулировочных шайб, которые вставляются между корпусом и гильзой с клапаном в сборе. Регулировка однородной подачи отдельных плунжерных пар производится снаружи ТНВД поворотом плунжерных пар. Фланцы крепления плунжерных пар (1) для этой цели снабжены пазами.

Рис. 1. Фланец крепления для плунжерной пары; 2. Нагнетательный клапан; 3. Гильза; 4. Плунжер; 5. Управляющая рейка; 6. Втулка управления; 7. Роликовый толкатель; 8. Кулачковый вал; 9. Кулачок.

Положение плунжера ТНВД остается неизменным, когда гильза в сборе с нагнетательным клапаном (2) поворачивается. ТНВД типа MW выпускается в версиях с числом гильз до 8 (8-цилиндровый) и подходит для различных способов крепления. Он работает на дизельном топливе, а смазка осуществляется через систему смазки двигателя.

Проверка нулевой подачи топливных насосов

Нулевая подача гарантирует остановку дизеля при положении рукоятки управления топливными насосами на положении «Стоп» без применения средств аварийной остановки дизеля.

Для проверки и установки нулевой подачи, а также для проведения других контрольных операций с топливной аппаратурой применяется специальный прибор — менископ.

Отсоединив от нагнетательного штуцера топливного насоса форсуночную трубку, устанавливают на ее место менископ (рис. 169), который крепится накидной гайкой 4 к штуцеру топливного насоса 5 и состоит из металлической трубки 3, соединенной со стеклянной трубкой 1 резиновым дюритом 2. Затем специальным приспособлением заставляют плунжер контролируемого насоса при положении рукоятки на номинальной подаче совершить несколько рабочих ходов для заполнения менископа примерно до середины стеклянной трубки топливом. В случае отсутствия приспособления для ручного привода топливного насоса необходимо валоповоротным устройством провернуть на несколько оборотов коленчатый вал, чтобы «заставить» работать топливный насос. При этом с целью предупреждения попадания топлива в остальные цилиндры необходимо отсоединить все форсуночные трубки или открыть контрольные краники на форсунках. После заполнения менископа топливом необходимо установить рукоятку топливных насосов в положение «Стоп» и совершить один рабочий ход плунжером; если уровень топлива (положение мениска) в менископе не меняется, то насос топливо не подает. Таким же образом контролируют нулевую подачу всех насосов.

Если при положении рукоятки топливных насосов на «Стоп» уровень топлива в менископе увеличивается, это говорит о разрегулировке привода воздействия на отсечной клапан насоса (для клапанных насосов) или о развороте плунжера у золотниковых топливных насосов. Во всех случаях необходимо, руководствуясь инструкцией завода-строителя, отрегулировать нулевую подачу насоса.

Впрыск дизельного топлива

Впрыск дизельного топлива

Магди К. Хайр, Ханну Яаскеляйнен

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите под номером , чтобы просмотреть полную версию этого документа.

  • Компоненты системы впрыска топлива
  • Система впрыска насос-линия-форсунка
  • Системы насос-форсунок и насосов
  • Система впрыска топлива Common Rail

Abstract : Целью системы впрыска топлива является подача топлива в цилиндры двигателя при точном контроле момента впрыска, распыления топлива и других параметров. К основным типам систем впрыска относятся насос-линия-форсунка, насос-форсунка и система Common Rail. Современные системы впрыска достигают очень высокого давления впрыска и используют сложные электронные методы управления.

  • Основные принципы
  • Распространенные архитектуры систем впрыска дизельного топлива
  • Система впрыска топлива/топливные взаимодействия
  • Электронное управление впрыском топлива

Назначение системы впрыска топлива

Работа дизельных двигателей во многом зависит от конструкции их системы впрыска. На самом деле, самые заметные достижения в дизельных двигателях стали результатом превосходной конструкции системы впрыска топлива. Хотя основной целью системы является подача топлива в цилиндры дизельного двигателя, именно то, как это топливо подается, влияет на производительность двигателя, выбросы и шумовые характеристики.

В отличие от своего аналога двигателя с искровым зажиганием, система впрыска дизельного топлива подает топливо под чрезвычайно высоким давлением впрыска. Это означает, что конструкции компонентов системы и материалы должны быть выбраны так, чтобы выдерживать более высокие нагрузки, чтобы работать в течение длительного времени, что соответствует целевым показателям долговечности двигателя. Для эффективного функционирования системы также требуется более высокая точность изготовления и жесткие допуски. Помимо дорогих материалов и производственных затрат, дизельные системы впрыска характеризуются более сложными требованиями к управлению. Все эти функции составляют систему, стоимость которой может составлять до 30% от общей стоимости двигателя.

Основной задачей системы впрыска топлива является подача топлива в цилиндры двигателя. Чтобы двигатель эффективно использовал это топливо:

  1. Топливо должно впрыскиваться в надлежащее время, то есть время впрыска должно контролироваться и
  2. Необходимо подавать правильное количество топлива для удовлетворения потребности в мощности, т. е. необходимо контролировать дозирование впрыска.

Однако подавать точно отмеренное количество топлива в нужное время для достижения хорошего сгорания еще недостаточно. Дополнительные аспекты имеют решающее значение для обеспечения надлежащей работы системы впрыска топлива, в том числе:

  • Распыление топлива — обеспечение распыления топлива на очень мелкие частицы топлива является основной целью проектирования систем впрыска дизельного топлива. Мелкие капли обеспечивают возможность испарения всего топлива и его участия в процессе горения. Любые оставшиеся капли жидкости очень плохо сгорают или выбрасываются из двигателя. В то время как современные системы впрыска топлива способны обеспечивать характеристики распыления топлива, намного превышающие то, что необходимо для обеспечения полного испарения топлива в течение большей части процесса впрыска, некоторые конструкции систем впрыска могут иметь плохое распыление в течение некоторых коротких, но критических периодов фазы впрыска. Окончание процесса закачки является одним из таких критических периодов.
  • Массовое смешивание — Хотя распыление топлива и полное испарение топлива имеют решающее значение, обеспечение достаточного содержания кислорода в испаряемом топливе в процессе сгорания не менее важно для обеспечения высокой эффективности сгорания и оптимальной работы двигателя. Кислород обеспечивается всасываемым воздухом, захваченным в цилиндре, и достаточное количество должно быть вовлечено в топливную струю, чтобы полностью смешаться с доступным топливом в процессе впрыска и обеспечить полное сгорание.
  • Использование воздуха — Эффективное использование воздуха в камере сгорания тесно связано с объемным смешиванием и может быть достигнуто за счет сочетания проникновения топлива в плотный воздух, сжатый в цилиндре, и деления общего количества впрыскиваемого топлива на число самолетов. Необходимо предусмотреть достаточное количество форсунок, чтобы вовлечь как можно больше доступного воздуха, избегая при этом перекрытия струй и образования зон с высоким содержанием топлива и дефицитом кислорода.

Основные функции системы впрыска дизельного топлива графически представлены на рис. 1.

Рисунок 1 . Основные функции системы впрыска дизельного топлива

Определение терминов

Для описания компонентов и работы систем впрыска дизельного топлива используется множество специализированных понятий и терминов. Некоторые из наиболее распространенных из них включают [922] [2075] :

Форсунка относится к части корпуса форсунки/узла иглы, которая взаимодействует с камерой сгорания двигателя. Такие термины, как сопло P-типа, M-типа или S-типа, относятся к стандартным размерам параметров сопла в соответствии со спецификациями ISO.

Держатель форсунки или Корпус инжектора относится к части, на которой монтируется форсунка. В обычных системах впрыска эта деталь в основном выполняла функцию крепления форсунки и предварительного натяжения пружины иглы форсунки. В системах Common Rail он содержит основные функциональные части: сервогидравлическую схему и гидропривод (электромагнитный или пьезоэлектрический).

Инжектор обычно относится к держателю форсунки и узлу форсунки.

Начало впрыска (SOI) или время впрыска — это время начала впрыска топлива в камеру сгорания. Обычно выражается в градусах угла поворота коленчатого вала (CAD) относительно ВМТ такта сжатия. В некоторых случаях важно различать указанную SOI и фактическую SOI . SOI часто определяется легко измеряемым параметром, таким как время, в течение которого электронный триггер отправляется на инжектор, или сигнал от датчика подъема иглы, который указывает, когда игольчатый клапан инжектора начинает открываться. Точка в цикле, где это происходит, является указанной SOI. Из-за механической реакции форсунки может быть задержка между указанным КНИ и фактическим КНИ, когда топливо выходит из сопла форсунки в камеру сгорания. Разница между фактическим SOI и показанным SOI составляет задержка форсунки .

Начало поставки. В некоторых топливных системах впрыск топлива координируется с созданием высокого давления. В таких системах началом подачи считается момент, когда насос высокого давления начинает подавать топливо к форсунке. На разницу между началом подачи и SOI влияет продолжительность времени, за которое волна давления проходит между насосом и инжектором, а также длина линии между насосом высокого давления и инжектором и скорость звука. в топливе. Разницу между началом родов и SOI можно обозначить как задержка впрыска .

Конец впрыска (EOI) — это время в цикле, когда прекращается впрыск топлива.

Количество впрыскиваемого топлива — это количество топлива, подаваемое в цилиндр двигателя за рабочий такт. Его часто выражают в мм 3 /ход или мг/ход.

Продолжительность впрыска — период времени, в течение которого топливо поступает в камеру сгорания из форсунки. Это разница между EOI и SOI, связанная с объемом впрыска.

Схема впрыска. Скорость впрыска топлива часто меняется в течение периода впрыска. На рис. 2 показаны три распространенные формы скорости: загрузочная, линейная и квадратная. Скорость открытия и скорость закрытия относится к градиентам скорости впрыска во время открытия и закрытия игольчатого сопла соответственно.

Рисунок 2 . Общие формы скорости закачки

Множественные события инъекции. В то время как обычные системы впрыска топлива используют один впрыск для каждого цикла двигателя, новые системы могут использовать несколько событий впрыска. На рис. 3 определены некоторые общие термины, используемые для описания событий множественной инъекции. Следует отметить, что терминология не всегда последовательна. Событие основного впрыска обеспечивает основную часть топлива для цикла двигателя. Один или несколько впрысков перед основным впрыском, предварительный впрыск , обеспечивают небольшое количество топлива перед основным впрыском. Предварительный впрыск может также обозначаться как предварительный впрыск . Некоторые называют предварительный впрыск, который происходит за относительно долгое время до основного впрыска, предварительным впрыском, а тот, который происходит за относительно короткое время до основного впрыска, — предварительным впрыском. Инъекции после основных инъекций, постинъекция , может произойти сразу после основной инъекции ( близкая постинъекция ) или через относительно долгое время после основной инъекции ( поздняя постинъекция ). Постинъекции иногда называют постинъекциями . Несмотря на значительные различия в терминологии, близкая постинъекция будет называться постинъекцией, а поздняя постинъекция — постинъекцией.

Рисунок 3 . Множественные события инъекции

Срок разделенный впрыск иногда используется для обозначения стратегий множественного впрыска, когда основной впрыск разделяется на два меньших впрыска примерно одинакового размера или на меньший предварительный впрыск, за которым следует основной впрыск.

В некоторых системах впрыска топлива может произойти непреднамеренный повторный впрыск, когда форсунка на мгновение снова открывается после закрытия. Их иногда называют вторичными впрысками .

Давление впрыска не используется последовательно в литературе. Это может относиться к среднему давлению в гидравлической системе для систем Common Rail или к максимальному давлению во время впрыска (пиковое давление впрыска) в обычных системах.

Основные компоненты топливной системы

Компоненты системы впрыска топлива

За некоторыми исключениями, топливные системы можно разделить на две основные группы компонентов:

  • Компоненты стороны низкого давления — Эти компоненты служат для безопасной и надежной подачи топлива из бака в систему впрыска топлива. К компонентам стороны низкого давления относятся топливный бак, топливный насос и топливный фильтр.
  • Компоненты стороны высокого давления —Компоненты, которые создают высокое давление, дозируют и подают топливо в камеру сгорания. К ним относятся насос высокого давления, топливная форсунка и топливная форсунка. Некоторые системы могут также включать аккумулятор.

Форсунки для впрыска топлива можно разделить на дырчатые или дроссельные игольчатые, а также на закрытые или открытые. Закрытые форсунки могут приводиться в действие гидравлически с помощью простого пружинного механизма или с помощью сервоуправления. Открытые форсунки, а также некоторые новые конструкции форсунок с закрытыми форсунками могут приводиться в действие напрямую.

Измерение количества впрыскиваемого топлива обычно осуществляется либо в насосе высокого давления, либо в топливной форсунке. Существует ряд различных подходов к измерению топлива, в том числе: измерение давления с постоянным временным интервалом (PT), измерение времени при постоянном давлении (TP) и измерение времени/хода (TS).

Большинство систем впрыска топлива используют электронику для управления открытием и закрытием форсунки. Электрические сигналы преобразуются в механические силы с помощью привода определенного типа. Обычно эти приводы могут быть либо электромагнитными соленоидами, либо активными материалами, такими как пьезоэлектрическая керамика.

Основные компоненты системы впрыска топлива обсуждаются в отдельной статье.

###

Система впрыска насос-линия-форсунка

Система впрыска насос-линия-форсунка

Магди К. Хайр

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите под номером , чтобы просмотреть полную версию этого документа.

Abstract : В системах впрыска дизельного топлива насос-линия-форсунка (P-L-N) насос соединяется с форсункой через топливопровод высокого давления. В системе P-L-N могут использоваться линейные, распределительные/роторные и насосы-форсунки. В «классическом» варианте система управляется механически с помощью специализированных компонентов, таких как регулятор. В более новых версиях ряд параметров контролируется электронным способом. Система PLN вытесняется другими типами систем впрыска топлива в новых конструкциях двигателей.

  • Введение
  • Встроенная насосная система
  • Система управления встроенным насосом
  • Система распределителя/роторного насоса
  • Системы P-L-N с электронным управлением

Система насос-линия-форсунка (P-L-N), также называемая системой насос-труба-форсунка, на протяжении многих десятилетий была доминирующим типом системы впрыска дизельного топлива практически во всех дизельных двигателях. В то время как система PLN была заменена системами впрыска топлива типа Common Rail и насос-форсунки в новых конструкциях двигателей для рынков с наиболее строгими стандартами выбросов, эта топливная система остается популярной на рынках с менее строгими стандартами выбросов. Из-за своей исторической значимости знание системы P-L-N необходимо для понимания принципов и текущей эволюции системы впрыска дизельного топлива.

Система впрыска насос-линия-форсунка так называется для создания высокого давления топлива в насосном элементе, передачи импульса давления топлива через линию впрыска высокого давления, а затем распыления этого топлива в цилиндр через сопло форсунки [ 113] . Были разработаны различные конфигурации P-L-N с различными техническими и/или экономическими обоснованиями. Большинство систем P-L-N можно разделить на три категории в зависимости от типа впрыскивающего насоса:

  • Линейные насосы
  • Агрегатные насосы
  • Распределительные (роторные) насосы

Рядные насосы , обслуживающие многоцилиндровые двигатели, содержат столько насосных элементов, сколько цилиндров в двигателе. Насос обычно приводится в движение коленчатым валом и расположен в центре узла двигателя. Разработчики двигателя и топливной системы стремятся расположить насос таким образом, чтобы все линии впрыска были одинаковой длины между ТНВД и входом в форсунки. В сильно пульсирующих системах и волнах давления, распространяющихся по узким трубам, динамикой трубопровода может быть трудно управлять, что может привести к неустойчивому поведению впрыска на сопле. Пытаясь свести к минимуму осложнения, связанные с динамикой линии, дизайнеры стремятся сделать общую длину линии как можно короче. В некоторых случаях самая короткая линия может оказаться слишком длинной для эффективной работы встроенного насоса. Это относится к крупным морским и стационарным электростанциям, где размер двигателя не позволяет использовать короткие линии впрыска. Примеры такого применения включают двигатели DDC/MTU Series 2000 и MTU/DDC Series 4000. В старых версиях этих двигателей 9Системы насосов 0051 и использовались для поддержания коротких линий впрыска между насосом и форсункой. Каждый насосный агрегат установлен на двигателе в непосредственной близости от обслуживаемого им цилиндра и приводится в действие распределительным валом двигателя. Поскольку в системе с насосом с насосом используется отдельный насос для каждого цилиндра, эта конфигурация фактически находится где-то посередине между системами PLN и системами с насос-форсунками; мы обсудим насосную систему насос-форсунки в документе «Насос-форсунка».

Насосные элементы высокого давления, состоящие из комбинаций плунжера и цилиндра, изготовлены из высокопрочной инструментальной стали, а между скользящими/вращающимися частями соблюдаются чрезвычайно жесткие допуски. Эта высокоточная механическая обработка требуется для всех механических компонентов системы впрыска, чтобы поддерживать точное дозирование и синхронизацию впрыска в пределах 1° угла поворота коленчатого вала. Стоимость таких топливных систем довольно высока, и ее трудно оправдать, особенно для двигателей небольших легковых автомобилей. Решение этой проблемы распределительный насос , в котором один центральный насосный элемент используется для создания высокого давления впрыска. Это топливо под высоким давлением затем вводится в коллекторную головку или узел распределителя, который направляет его к соответствующей форсунке и цилиндру в соответствии с порядком работы двигателя. Сокращение количества насосных элементов для применения в многоцилиндровом дизельном двигателе до одного снижает стоимость дорогостоящих высокоточных деталей насосного элемента и делает его стоимость более подходящей для рынка небольших автомобилей.

В течение нескольких десятилетий в системах впрыска P-L-N использовалось механическое управление. Были разработаны сложные механические устройства, такие как регуляторы и устройства управления синхронизацией, наддувом и крутящим моментом, для управления частотой вращения двигателя и рядом других параметров. С конца 1970-х годов система P-L-N была модернизирована посредством эволюционного процесса, в котором первоначальными шагами было простое использование электрических компонентов для воспроизведения функций, которые ранее выполнялись механическими компонентами. Внедрение электроники в индустрию дизельных двигателей шло медленно, в основном из-за отрицательных финансовых последствий, а также из-за сомнений в надежности электроники в тяжелых условиях эксплуатации дизельного двигателя. Неуверенность в том, действительно ли электроника потребуется для соблюдения норм выбросов, помогая поддерживать хорошие характеристики двигателя, еще больше задержала продвижение к внедрению электроники в дизельных топливных системах для тяжелых условий эксплуатации. Однако нормы выбросов продолжали ужесточаться, что вынуждало предъявлять более высокие требования к системе впрыска топлива.