Модуль зубчатой передачи это: Модуль зубчатого колеса | это… Что такое Модуль зубчатого колеса?

Содержание

Как вычислить модуль зубчатого колеса

Цилиндрические шестерни

Поперечный профиль зуба

Обычно шестерни имеют профиль зубьев с эвольвентной боковой формой. Так как эвольвентное зацепление имеет ряд преимуществ перед остальными: форма этих зубьев соответствует условиям их прочности, зубья легко изготовить и обработать, шестерни не чувствительны к точности установки. Тем не менее, существуют зубчатые передачи с циклоидальной формой профиля зубьев, а так же с шестернями с круговой формой профиля зубьев, например – передача Новикова. Помимо этого, применяется несимметричный профиль зуба, например в храповых механизмах.

Параметры эвольвентной шестерни:

Модуль шестерни (m

) – это основной параметр, который определяется из прочностного расчёта зубчатых передач. Чем сильнее нагрузка на передачу, тем больше значение модуля, единица измерения модуля – миллиметры.

Расчет модуля шестерни:

d

— диаметр делительной окружности

z

— число зубьев шестерни

d

a — диаметр окружности вершин темной шестерни

d

b — диаметр основной окружности – эвольвенты

d

f — диаметр окружности впадин темной шестерни

В машиностроении приняты стандартные значения модуля зубчатого колеса для удобства изготовления и замены зубчатых колёс, представляющие собой числа от 1 до 50.

Высота головки зуба – h

aP и высота ножки зуба –
h
fP в случае, так называемого, «нулевого» зубчатого колеса соотносятся с модулем
m
следующим образом:
h
aP =
m
;
h
fP =
1,2 m
, то есть:

Отсюда получаем, что высота зуба h = 2,2m

Так же можно практически вычислить модуль шестерни, при этом, не имея всех данных для определения модуля, по следующей формуле:

Продольная линия зуба

Прямозубые шестерни

Прямозубые шестерни – самый применяемый тип зубчатых колёс. Зубья расположены в радиальных плоскостях, линия контакта зубьев пары зубчатых колес параллельна оси вращения, как и оси обеих зубчатых колес (шестеренок) располагаются строго параллельно.

Косозубые шестерни

Косозубые шестерни – это модернизированная версия прямозубых шестерен. Зубья, в таком случае, расположены под углом к оси вращения. Зацепление зубьев этих шестерен происходит тише и плавнее, чем у прямозубых. Они применяются либо в малошумных механизмах, либо в тех которые требуют передачи большого крутящего момента на больших скоростях. К недостаткам этого типа шестерен можно отнести: увеличенную площадь соприкосновения зубьев, что вызывает значительное трение и нагрев деталей, а вследствие: потеря мощности и дополнительное использование смазочных материалов; так же механическая сила, направленная вдоль оси шестеренки, вынуждает применять упорные подшипники для установки вала.

Шевронные колёса

Шевронные шестерни решают проблему механической осевой силы, которая возникает в случае применения косозубых колес, так как зубья шевронных (елочных) колёс изготавливаются в виде буквы «V» (или же они образовываются стыковкой двух косозубых колёс со встречным расположением зубьев). Осевые механические силы обеих половин шевронной шестерни взаимно компенсируются, поэтому нет нет необходимости использования упорных подшипников для установки валов. Шевронная передача является самоустанавливающейся в осевом направлении, в следствии чего, в редукторах с шевронными колесами один из валов устанавливают на подшипниках с короткими цилиндрическими роликами – плавающих опорах.

Шестерни с внутренним зацеплением

Шестерни такого типа имеют зубья, нарезанные с внутренней стороны. При их использовании происходит одностороннее вращение ведущей и ведомой шестерен. В данной зубчатой передаче меньше затрат на трение, а значит выше КПД. Применяются зубчатые колеса с внутренним зацеплением в ограниченных по габаритам механизмах, в планетарных передачах, в шестеренных насосах, в приводе башни танка.

Винтовые шестерни

Шестерни имеют форму цилиндра с расположенными на нем зубьями по винтовой линии. Эти шестеренки используются на непересекающихся валах, которые располагаются перпендикулярно друг друга, угол между ними 90°.

Читать также: Как сделать самодельное точило

Секторные шестерни

Секторная шестерня – это часть (сектор) шестерни любого типа, она позволяет сэкономить в габаритах полноценной шестерни, так как применяется в передачах, где не требуется вращение этого зубчатого колеса (шестеренки) на полный оборот.

Шестерни с круговыми зубьями

Шестерни этого типа имеют линию зубьев в виде окружности радиуса, за счет этого контакт в передаче происходит в одной точке на линии зацепления, которая располагается параллельно осям шестерен. Передачи с круговыми зубьями «Передача Новикова» имеет лучшие ходовые качества, чем косозубые – высокую плавность хода и бесшумность, высокую нагрузочную способность зацепления, но при одинаковых условиях их ресурс работы и КПД ниже, к прочему изготовление этих шестерен значительно сложнее. Поэтому применение таких шестеренок ограниченно.

Кинематический и силовой расчеты зубчатой передачи.

Расчетная окружная скорость v, м/с, цилиндрической передачи

конической передачи где
ω — угловая скорость зубчатого колеса, рад/с; n — частота вращения зубчатого колеса, мин-1; dw — начальный диаметр цилиндрического зубчатого колеса, м; dwm — начальный средний диаметр конического зубчатого колеса, м.
Учитывая, что скорость точек начальных окружностей, находящихся в зацеплении зубчатых колес, одинакова, имеем v=ω1dw1/2=ω2dw2/2. Выражая диаметры dw1 и dw2 через модуль и соответствующие числа зубьев, получаем v=ω1(mz1/2)=ω2(mz2/2). Отсюда передаточное отношение i пары зубчатых колес (для одноступенчатой передачи) с учетом формулы

где
ω1, n1, dw1 z1 и T1 — соответственно угловая скорость, частота вращения, начальный диаметр, число зубьев и крутящий момент ведущего зубчатого колеса; ω2, n2, dw2 z2 и T2 — то же, ведомого зубчатого колеса; η — к. п. д. передачи.
Так как для конической зубчатой передачи передаточное отношение см. предыдущую формулу

то, как следует из рис. где
δ1 — для ведущего, а δ2 — для ведомого зубчатого колеса.
Отношение числа зубьев z2 колеса к числу зубьев z1 шестерни называется передаточным числом зубчатой передачи u.

Таким образом,

Если ведущим зубчатым колесом является шестерня, то для такой передачи передаточное отношение и передаточное число представляют собой одну и ту же величину. Рекомендуемые максимальные значения передаточного числа одноступенчатой зубчатой передачи:

  • Цилиндрической в закрытом корпусе: ≤12,5
  • Конической в закрытом корпусе: ≤6,3
  • Открытой: ≤15

Средние значения коэффициента полезного действия одноступенчатой зубчатой передачи на подшипниках качения в зависимости от конструкции и степени точности.

Закрытая 6-6 и 7-й степеней точности с жидкой смазкойЗакрытая 8-й степени точности с жидкой смазкойОткрытая с густой смазкой
Цилиндрическая0,980,970,96
Коническая0,970,960,94

Рис. 1
Окружная сила зубчатой передачи Ft: цилиндрической (рис. 1)

конической (рис. 2)
Рис. 2
Передаваемые зубчатыми колесами крутящие моменты определяют по формулам

и .

Так как силы трения между зубьями малы, то силу давления между ними F можно считать направленной по общей нормали к соприкасающимся поверхностям зубьев, т. е. по линии зацепления (см. рис. 1). Составляющие этой силы: в цилиндрических прямозубых (рис. 1) и шевронных передачах — окружная сила Ft и радиальная сила Fr; в конической прямозубой (рис. 2) и цилиндрической косозубой (рис. 3) передачах — окружная сила Ft радиальная сила Fr, и осевая сила Fa.
Рис. 3
Радиальная сила, действующая на зубчатое колесо прямозубой цилиндрической передачи (рис. 1),

косозубой (рис. 3), или шевронной, передачи конической прямозубой передачи (рис. 2)

Осевая сила, действующая на зубчатое колесо: цилиндрической косозубой передачи (рис. 3)

конической прямозубой передачи (рис. 2)

Сила давления между зубьями прямозубой цилиндрической передачи (рис. 1)
.

Зубчатая рейка

Зубчатая рейка является частью зубчатого колеса с бесконечным радиусом делительной окружности. Вследствие этого ее окружности представляют собой прямые параллельные линии. Эвольвентный профиль зубчатой рейки тоже имеет прямолинейное очертание. Это свойство эвольвенты является наиболее важным при изготовлении зубчатых колёс. Передачу с применением зубчатой планки (рейки) называют – реечная передача (кремальера), она используется для преобразования вращательного движения в поступательное и наоборот. Состоит передача из зубчатой рейки и прямозубого зубчатого колеса (шестеренки). Применяется такая передача в зубчатой железной дороге.

Что такое модуль зубчатого колеса

Современные шестерни далеко ушли от своих деревянных шестизубых предков, изготавливаемых механиками с помощью воображения и мерной веревочки. Конструкция передач намного усложнилась, тысячекратно возросли скорость вращения и усилия, передаваемые через такие передачи. В связи с этим усложнились и методы их конструирования. Каждую шестеренку характеризует несколько основных параметров

  • диаметр;
  • число зубьев;
  • шаг;
  • высота зубца;
  • и некоторые другие.

Одним из самых универсальных характеристик является модуль зубчатого колеса. Существует для подвида — основной и торцевой.

В большинстве расчетов используется основной. Он рассчитывается применительно к делительной окружности и служит одним из важнейших параметров.

Для расчета этого параметра применяют следующие формулы:

Параметры зубчатых колес

Модуль зубчатого колеса можно рассчитать и следующим образом:

где h — высота зубца.

где De — диаметр окружности выступов,а z — число зубьев.

Что же такое модуль шестерни?

это универсальная характеристика зубчатого колеса, связывающая воедино такие его важнейшие параметры, как шаг, высота зуба, число зубов и диаметр окружности выступов. Эта характеристика участвует во всех расчетах, связанных с конструированием систем передач.

Читать также: Рохля электрическая с подъемным механизмом

Основные параметры

Для обеспечения подвижности и работоспособности, конструкция отдельных деталей механической передачи должна быть согласована по размерам и геометрии. Для этого при описании подобных устройств принято использовать систему специальных параметров. В их число входят геометрические, массогабаритные и прочностные величины, закрепленные стандартами. Применение стандартных параметров позволяет сравнительно просто производить расчет унифицированных зубчатых передач и обеспечивает гарантированное сопряжение всех изделий между собой. Естественно, что для разных видов, параметры будут несколько отличаться. Далее рассматриваются термины, связанные с конструкцией эвольвентного цилиндрического колеса. Эти параметры, в своем большинстве, описывают основные характеристики и других вариантов колес.

В основе сечения зуба большинства шестерен лежит эвольвентный профиль, который получается на основе одноименной кривой. Его применение легко стандартизируется, характеризуется высокой технологичностью изготовления и низкими требованиями к качеству сборки механизма. Основными параметры эвольвентного зубчатого колеса считаются модуль зацепления и количество зубьев зубчатого колеса. При одном и том же наружном диаметре деталей значения этих величин могут существенно отличаться в разных вариантах конструкции.

Число зубьев определяет коэффициент передачи и геометрические размеры зубьев. На ведущем колесе редуктора оно выполняется меньшим, чем на ведомом. В итоге один нормальный оборот ведущей шестерни приводит к повороту ведомого колеса только на определенный угол. Отношение числа зубьев двух колес дает значение передаточного коэффициента. Размеры зубьев определяются как отношение их количества к длине окружности колеса. С целью упрощения расчетов и гарантированного обеспечения зацепления между разными колесами, предусмотрен дополнительный параметр, называемый модулем зацепления. Любые шестерни с одинаковым модулем обеспечивают взаимодействие между собой и могут использоваться для построения механизмов, без дополнительной обработки.

Сумма ширины зуба и впадины совместно дают шаг зубчатого колеса. Учитывая неравномерность профиля по радиусу и зависимость длины дуги от диаметра, в каждом колесе можно определить бесконечное число значений этого параметра. С целью стандартизации принято рассматривать шаг по делительной окружности, называемый так же окружным шагом. Отношение этого шага к числу пи дает модуль зацепления. В некоторых случаях для описания шестерен используют угловой шаг, измеряемый в градусах. Стандартами предусмотрены и несколько других угловых величин. Например, для упрощения настройки оборудования при изготовлении колес рассматривают угловую ширину зуба и угловую ширину впадины. Определяются они также на основе делительной окружности.

Формула расчета параметров прямозубой передачи

Чтобы определить параметры прямозубой шестеренки, потребуется выполнить некоторые предварительные вычисления. Длина начальной окружности равна π×D, где D — ее диаметр.

Расчет модуля зубчатого колеса

Шаг зацепления t – это расстояние между смежными зубами, измеренное по начальной окружности. Если это расстояние умножить на число зубов z, то мы должны получить ее длину:

проведя преобразование, получим:

Если разделить шаг на число пи, мы получим коэффициент, постоянный для данной детали зубчатой передачи. Он и называется модулем зацепления m.

размерность модуля шестерни — миллиметры. Если подставить его в предыдущее выражение, то получится:

выполнив преобразование, находим:

Отсюда вытекает физический смысл модуля зацепления: он представляет собой длину дуги начальной окружности, соответствующей одному зубцу колеса. Диаметр окружности выступов De получается равным

где h’- высота головки.

Высоту головки приравнивают к m:

Проведя математические преобразования с подстановкой, получим:

Диаметр окружности впадин Di соответствует De за вычетом двух высот основания зубца:

где h“- высота ножки зубца.

Для колес цилиндрического типа h“ приравнивают к значению в 1,25m:

Устройство зубчатого колеса

Выполнив подстановку в правой части равенства, имеем:

что соответствует формуле:

и если выполнить подстановку, то получим:

Иначе говоря, головка и ножка зубца относятся друг к другу по высоте как 1:1,25.

Следующий важный размер, толщину зубца s принимают приблизительно равной:

  • для отлитых зубцов: 1,53m:
  • для выполненных путем фрезерования-1,57m, или 0,5×t

Поскольку шаг t приравнивается к суммарной толщине зубца s и впадины sв, получаем формулы для ширины впадины

  • для отлитых зубцов: sв=πm-1,53m=1,61m:
  • для выполненных путем фрезерования- sв= πm-1,57m = 1,57m

Характеристики конструкции оставшейся части зубчатой детали определяются следующими факторами:

  • усилия, прикладываемые к детали при эксплуатации;
  • конфигурация деталей, взаимодействующих с ней.

Детальные методики исчисления этих параметров приводятся в таких ВУЗовских курсах, как «Детали машин» и других. Модуль шестерни широко используется и в них как один из основных параметров.

Для отображения шестеренок методами инженерной графики используются упрощенные формулы. В инженерных справочниках и государственных стандартов можно найти значения характеристик, рассчитанные для типовых размеров зубчатых колес.

Расчет параметров колеса и шестерни косозубой передачи.

Переходим к примеру с косозубой передачей и повторяем все действия, которые мы делали в предыдущем разделе.

Измерить угол наклона зубьев с необходимой точностью при помощи угломера или транспортира практически очень сложно. Я обычно прокатывал колесо и шестерню по листу бумаги и затем по отпечаткам транспортиром делительной головки кульмана производил предварительные измерения с точностью в градус или больше… В представленном ниже примере я намерил: βa1=19° и
βa2=17,5°.
Еще раз обращаю внимание, что углы наклона зубьев на цилиндре вершин
βa1иβa2– это не угол β, участвующий во всех основных расчетах передачи!!! Уголβ – это угол наклона зубьев на цилиндре делительного диаметра (для передачи без смещения).

Ввиду малости значений рассчитанных коэффициентов смещения уместно предположить, что передача была выполнена без смещения производящих контуров шестерни и зубчатого колеса.

Воспользуемся сервисом Excel «Подбор параметра». Подробно и с картинками об этом сервисе я в свое время написал здесь.

Выбираем в главном меню Excel «Сервис» — «Подбор параметра» и в выпавшем окне заполняем:

Установить в ячейке: $D$33

Значение: 0

Изменяя значение ячейки: $D$22

И нажимаем OK.

Получаем результат β=17,1462°,
xΣ(d)=0,x1=0,003≈0,x2=-0,003≈0!

Передача, скорее всего, была выполнена без смещения, модуль зубчатого колеса и шестерни, а также угол наклона зубьев мы определили, можно делать чертежи!

Исходные данные и замеры

На практике перед инженерами часто встает задача определения модуля реально существующей шестерни для ее ремонта или замены. При этом случается и так, что конструкторской документации на эту деталь, как и на весь механизм, в который она входит, обнаружить не удается.

Самый простой метод — метод обкатки. Берут шестерню, для которой характеристики известны. Вставляют ее в зубья тестируемой детали и пробуют обкатать вокруг. Если пара вошла в зацепление — значит их шаг совпадает. Если нет — продолжают подбор. Для косозубой выбирают подходящую по шагу фрезу.

Такой эмпирический метод неплохо срабатывает для зубчатых колес малых размеров.

Для крупных, весящих десятки, а то и сотни килограмм, такой способ физически нереализуем.

Результаты расчетов

Для более крупных потребуются измерения и вычисления.

Как известно, модуль равен диаметру окружности выступов, отнесенному к числу зубов плюс два:

Последовательность действий следующая:

  • измерить диаметр штангенциркулем;
  • сосчитать зубцы;
  • разделить диаметр на z+2;
  • округлить результат до ближайшего целого числа.

Зубец колеса и его параметры

Данный метод подходит как для прямозубых колес, так и для косозубых.

Зубчатые колеса, шестерни. Виды шестерен. Цилиндрические и конические шестерни. Расчет шестерни. Модуль шестерни.

Цилиндрические шестерни

Поперечный профиль зуба

Обычно шестерни имеют профиль зубьев с эвольвентной боковой формой. Так как эвольвентное зацепление имеет ряд преимуществ перед остальными: форма этих зубьев соответствует условиям их прочности, зубья легко изготовить и обработать, шестерни не чувствительны к точности установки. Тем не менее, существуют зубчатые передачи с циклоидальной формой профиля зубьев, а так же с шестернями с круговой формой профиля зубьев, например — передача Новикова. Помимо этого, применяется несимметричный профиль зуба, например в храповых механизмах.

Параметры эвольвентной шестерни:

Модуль шестерни (m) – это основной параметр, который определяется из прочностного расчёта зубчатых передач. Чем сильнее нагрузка на передачу, тем больше значение модуля, единица измерения модуля – миллиметры.

Расчет модуля шестерни:

d — диаметр делительной окружности

z — число зубьев шестерни

p — шаг зубьев

da — диаметр окружности вершин темной шестерни

db — диаметр основной окружности — эвольвенты

df — диаметр окружности впадин темной шестерни

haP+hfP — высота зуба темной шестерни, x+haP+hfP — высота зуба светлой шестерни

В машиностроении приняты стандартные значения модуля зубчатого колеса для удобства изготовления и замены зубчатых колёс, представляющие собой числа от 1 до 50.

Высота головки зуба — haP и высота ножки зуба — hfP в случае, так называемого, «нулевого» зубчатого колеса соотносятся с модулем m следующим образом: haP = m; hfP = 1,2 m, то есть:

Отсюда получаем, что высота зуба h = 2,2m

Так же можно практически вычислить модуль шестерни, при этом, не имея всех данных для определения модуля, по следующей формуле:

Продольная линия зуба

Прямозубые шестерни

Прямозубые шестерни — самый применяемый тип зубчатых колёс. Зубья расположены в радиальных плоскостях, линия контакта зубьев пары зубчатых колес параллельна оси вращения, как и оси обеих зубчатых колес (шестеренок) располагаются строго параллельно.

Косозубые шестерни

Косозубые шестерни – это модернизированная версия прямозубых шестерен. Зубья, в таком случае, расположены под углом к оси вращения. Зацепление зубьев этих шестерен происходит тише и плавнее, чем у прямозубых. Они применяются либо в малошумных механизмах, либо в тех которые требуют передачи большого крутящего момента на больших скоростях. К недостаткам этого типа шестерен можно отнести: увеличенную площадь соприкосновения зубьев, что вызывает значительное трение и нагрев деталей, а вследствие: потеря мощности и дополнительное использование смазочных материалов; так же механическая сила, направленная вдоль оси шестеренки, вынуждает применять упорные подшипники для установки вала.

Шевронные колёса

Шевронные шестерни решают проблему механической осевой силы, которая возникает в случае применения косозубых колес, так как зубья шевронных (елочных) колёс изготавливаются в виде буквы «V» (или же они образовываются стыковкой двух косозубых колёс со встречным расположением зубьев). Осевые механические силы обеих половин шевронной шестерни взаимно компенсируются, поэтому нет нет необходимости использования упорных подшипников для установки валов. Шевронная передача является самоустанавливающейся в осевом направлении, в следствии чего, в редукторах с шевронными колесами один из валов устанавливают на подшипниках с короткими цилиндрическими роликами — плавающих опорах.

Шестерни с внутренним зацеплением

Шестерни такого типа имеют зубья, нарезанные с внутренней стороны. При их использовании происходит одностороннее вращение ведущей и ведомой шестерен. В данной зубчатой передаче меньше затрат на трение, а значит выше КПД. Применяются зубчатые колеса с внутренним зацеплением в ограниченных по габаритам механизмах, в планетарных передачах, в шестеренных насосах, в приводе башни танка.

Винтовые шестерни

Шестерни имеют форму цилиндра с расположенными на нем зубьями по винтовой линии. Эти шестеренки используются на непересекающихся валах, которые располагаются перпендикулярно друг друга, угол между ними 90°.

Секторные шестерни

Секторная шестерня – это часть (сектор) шестерни любого типа, она позволяет сэкономить в габаритах полноценной шестерни, так как применяется в передачах, где не требуется вращение этого зубчатого колеса (шестеренки) на полный оборот.

Шестерни с круговыми зубьями

Шестерни этого типа имеют линию зубьев в виде окружности радиуса, за счет этого контакт в передаче происходит в одной точке на линии зацепления, которая располагается параллельно осям шестерен. Передачи с круговыми зубьями «Передача Новикова» имеет лучшие ходовые качества, чем косозубые – высокую плавность хода и бесшумность, высокую нагрузочную способность зацепления, но при одинаковых условиях их ресурс работы и КПД ниже, к прочему изготовление этих шестерен значительно сложнее. Поэтому применение таких шестеренок ограниченно.

Конические шестерни

Конические шестерни имеют различные виды, отличаются они по форме линий зубьев, с прямыми, с криволинейными, с тангенциальными, с круговыми зубьями. Применяются конические зубчатые передачи в машинах для движения механизма, где требуется передать вращение с одного вала на другой, оси которых пересекаются. Например, в автомобильных дифференциалах, для передачи момента от двигателя к колесам.

Зубчатая рейка

Зубчатая рейка является частью зубчатого колеса с бесконечным радиусом делительной окружности. Вследствие этого ее окружности представляют собой прямые параллельные линии. Эвольвентный профиль зубчатой рейки тоже имеет прямолинейное очертание. Это свойство эвольвенты является наиболее важным при изготовлении зубчатых колёс. Передачу с применением зубчатой планки (рейки) называют — реечная передача (кремальера), она используется для преобразования вращательного движения в поступательное и наоборот. Состоит передача из зубчатой рейки и прямозубого зубчатого колеса (шестеренки). Применяется такая передача в зубчатой железной дороге.

Звездочка

Шестерня-звезда — это основная деталь цепной передачи, которая используется совместно с гибким элементом — цепью для передачи механической энергии.

Коронная шестерня

Коронная шестерня – это особый тип шестерен, их зубья находятся на боковой поверхности. Такая шестерня работает, как правило, в паре с прямозубой или с барабаном (цевочное колесо), состоящим из стержней. Такая передача используется в башенных часах.

Модуль 4 Цилиндрические зубчатые рейки

Мы используем файлы cookie

Этот веб-сайт использует файлы cookie. Некоторые из них необходимы для работы веб-сайта, другие вы можете выбрать сами.

Вы можете изменить свои настройки в любое время с помощью ссылки «Cookies» в нижнем колонтитуле веб-сайта.

Ваши настройки

Технические файлы cookie
Мы используем их, например, для функции корзины, переключения валюты интернет-магазина или администрирования этих согласий. Но это также файл cookie Диспетчера тегов Google.

Интернет не работает должным образом без них. Поэтому их нельзя отключить в настройках

Статистические файлы cookie
Файлы cookie Google Analytics, а иногда также файлы cookie Microsoft Clarity

Они помогают нам с веб-разработкой и отладкой, спасибо! 🙂

Маркетинговые файлы cookie
Файлы cookie рекламной системы Google и файлы cookie Seznam Sklik

Повышают релевантность рекламных кампаний

TYMA CZSearchEshop Дерево категорий

Модуль 4 Цилиндрические зубчатые рейки представляют собой детали машин, которые в сочетании с соответствующим зубчатым колесом преобразуют вращательное движение в поступательное и передают механическую энергию от вала к движущимся частям или наоборот.

Поставляются в соответствующих редукторных модулях от M1 до M8 .

Осторожно

Зубчатые рейки должны иметь тот же модуль, что и цилиндрические зубчатые колеса редуктора.

Для более сложных и точных требований необходимо использовать специальные цилиндрические зубчатые колеса и зубчатые рейки, разработанные и изготовленные специализированными поставщиками непосредственно для применения.

подробнее

показать фильтр продукта

Зубчатая рейка

Нет в наличии

В течение 2 недель Обычное время, когда этот продукт готов к отправке. Фактическая доступность может отличаться из-за непредвиденных обстоятельств в исключительных случаях.

18,13€ без учета НДС

21,94€ вкл. НДС

Зубчатая рейка

Нет в наличии

В течение 2 недель Обычное время, когда этот продукт готов к отправке. Фактическая доступность может отличаться из-за непредвиденных обстоятельств в исключительных случаях.

35,94€ без учета НДС

43,49€ вкл. НДС

Зубчатая рейка

Нет в наличии

В течение 2 недель Обычное время, когда этот продукт готов к отправке. Фактическая доступность может отличаться из-за непредвиденных обстоятельств в исключительных случаях.

71,62€ без учета НДС

86,66€ вкл. НДС

Зубчатая рейка

Нет в наличии

В течение 2 недель Обычное время, когда этот продукт готов к отправке. Фактическая доступность может отличаться из-за непредвиденных обстоятельств в исключительных случаях.

20,37€ без учета НДС

24,64€ вкл. НДС

Зубчатая рейка

Нет в наличии

В течение 2 недель Обычное время, когда этот продукт готов к отправке. Фактическая доступность может отличаться из-за непредвиденных обстоятельств в исключительных случаях.

40.16€ без учета НДС

48,59€ вкл. НДС

Зубчатая рейка

Нет в наличии

В течение 2 недель Обычное время, когда этот продукт готов к отправке. Фактическая доступность может отличаться из-за непредвиденных обстоятельств в исключительных случаях.

79,81€ без учета НДС

96,57€ вкл. НДС

Зубчатая рейка

Нет в наличии

В течение 2 недель Обычное время, когда этот продукт готов к отправке. Фактическая доступность может отличаться из-за непредвиденных обстоятельств в исключительных случаях.

28,97€ без учета НДС

35,05€ вкл. НДС

Зубчатая рейка

Нет в наличии

В течение 2 недель Обычное время, когда этот продукт готов к отправке. Фактическая доступность может отличаться из-за непредвиденных обстоятельств в исключительных случаях.

57,97€ без учета НДС

70.14€ вкл. НДС

Зубчатая рейка

Нет в наличии

В течение 2 недель Обычное время, когда этот продукт готов к отправке. Фактическая доступность может отличаться из-за непредвиденных обстоятельств в исключительных случаях.

115,97€ без учёта НДС

140. 32€ вкл. НДС

Зубчатая рейка

Нет в наличии

В течение 2 недель Обычное время, когда этот продукт готов к отправке. Фактическая доступность может отличаться из-за непредвиденных обстоятельств в исключительных случаях.

47,19€ без учета НДС

57.10€ вкл. НДС

Зубчатая рейка

Нет в наличии

В течение 2 недель Обычное время, когда этот продукт готов к отправке. Фактическая доступность может отличаться из-за непредвиденных обстоятельств в исключительных случаях.

93,52€ без учета НДС

113.16€ вкл. НДС

Зубчатая рейка

Нет в наличии

В течение 2 недель Обычное время, когда этот продукт готов к отправке. Фактическая доступность может отличаться из-за непредвиденных обстоятельств в исключительных случаях.

186,92€ без учёта НДС

226.17€ вкл. НДС

Зубчатая рейка

Нет в наличии

В течение 2 недель Обычное время, когда этот продукт готов к отправке. Фактическая доступность может отличаться из-за непредвиденных обстоятельств в исключительных случаях.

284,88€ без учета НДС

344,71€ вкл. НДС

Зубчатые рейки цилиндрические предназначены для общего применения в машиностроении .

Стандартные цилиндрические зубчатые рейки, которые мы поставляем, в первую очередь предназначены для для базовых, более простых конструкций и технических решений для конвейеров , прессов, редукторов, деревообрабатывающих станков, сельскохозяйственных машин, но, конечно же, и для многих других применений.

Сталь C45 (ČSN 12050), шестерни незакаленные.

Пример:
OH M4x15x2000 (сталь)

Код Деталь Описание
ОХ

Зубчатая рейка

М4

Модуль

40

Сечение 40 × 40 мм

2000

Длина зубчатой ​​рейки в мм

Сталь

Материал зубчатой ​​рейки

Размеры и параметры цилиндрических зубчатых реек

Tyma CZ Data Sheets

Чешский и английский (PDF 164,76 КБ)

Скачать

Spur Gear из стали C45 с модулем Hub 10 12 зубной. к содержанию

Maedler Северная Америка

$0,00

0
Тележка

Поиск товаров

  • Описание

  • Дополнительная информация

Артикул 230
Кол-во зубьев 12
b [мм] 100
да [мм] 140
d [мм] 120
NL [мм] 40
НД [мм] 80
B H7 [мм] 30
ул. MD [Нм] 535
Вес [кг] 9,50

СТРАНИЦА ПРОДУКТА В КАТАЛОГЕ

CAD-ФАЙЛЫ (нажмите, чтобы загрузить)

Если вам нужна доработка или изготовление продукта на заказ, пожалуйста, свяжитесь с нами напрямую, чтобы отправить запрос.

Поставляемые 3D-модели, изображения и технические чертежи выполнены с разумной тщательностью. Тем не менее ответственность за точность и правильность этих данных исключена.

Ширина зуба 100 мм, со ступицей, прямые зубья

Материал: C45.

Фрезерованные зубья. Качество зубьев 8d25 DIN 3967. Угол заточки 20°.

324,27 $

Доставка в течение 1-2 недель

Цилиндрическая шестерня из стали C45 со ступичным модулем 10 12 зубьев ширина зуба 100 мм наружный диаметр 140 мм Артикул: 230 количество

87","25":"287.97","50":"267.97"}» data-minimum=»1″ data-product-name=»Spur gear made of steel C45 with hub module 10 12 teeth tooth width 100mm outside diameter 140mm SKU: 23901200″>

97″ data-tiered-price-exclude-taxes=»287.97″>

Количество Скидка (%) Цена
1 — 9

324,27 $

10 — 24 1,67 %

318,87 $

25 — 49 11,19 %

287,97 $

50+ 17,36 %

267,97 $

Артикул

230_3343

Рубрики Цилиндрические зубчатые колеса, Сталь 11SMnPb30/C45, Фрезерованные зубья, Модуль от 0,5 до 10, Цилиндрические зубчатые колеса, Сталь, Модуль 10, Цилиндрические зубчатые колеса, Система прямых зубьев, Цилиндрические зубчатые колеса, Зубчатые рейки, Внутренние зубчатые колеса, Храповые колеса

Теги Дюйм / Метрическая Метрическая, Кол-во зубьев 22, Вес [кг] 9, 50, ул. MD [Нм] 535

Maedler North America — ваш идеальный партнер во всем, что связано с технологиями трансмиссии.