Машины постоянного тока коллекторные: Устройство коллекторных машин постоянного тока

Содержание

Устройство коллекторных машин постоянного тока

Характерным признаком коллекторных машин является наличие у них коллектора — механического преобразователя переменного тока в постоянный и наоборот. Необходимость в таком преобразователе объясняется тем, что в обмотке якоря коллекторной машины должен протекать переменный ток, так как только в этом случае в машине происходит непрерывный процесс электромеханического преобразования энергии. 

К коллекторным машинам постоянного тока относятся двигатель постоянного тока ДПТ и генератор постоянного тока ГПТ которые имеют одинаковую конструкцию и могут заменять друг друга то есть ДПТ может работать как ГПТ и наоборот. Разберем устройство коллекторных машин на примере двигателя постоянного тока.

  Коллекторная машина постоянного тока состоит из:

  1. Якоря (подвижная часть) который состоит из вала,обмотки якоря, коллектора, двух подшипников и сердечника. Сердечник — это цилиндр из штампованных листов электротехнической стали толщиной 0,5 мм покрытых электроизоляционным лаком. Такая сборная конструкция служит для уменьшения вихревых токов. В сердечнике есть пазы в которые вложены пазовые стороны обмотки якоря.
  2. Статора (4) (неподвижной части) — станина, главные полюса с полюсными катушками(2,3).

Статор конструктивно может быть выполнен двух видов:

  • сборный — состоит из цельной тянутой трубы и прикреплённым к ней внутри полюсов. Сердечник полюса выполнен в виде стального бруска либо из шихтованных пластин 0,5 — 1 мм. Обмотка полюса намотана вокруг сердечника. Обмотки полюсов соединены между собой последовательно и образуют обмотку возбуждения которая при подключении к источнику постоянного тока создаёт магнитное поле в магнитной системе двигателя.
  • цельный шихтованный — применяется в машинах мощностью 600 Вт и более. Он состоит из из пакета пластин электротехнической стали сложной конфигурации толщиной 0,35 — 0,5 мм.

Устройство щеточно коллекторного перехода.

Наиболее сложным и ненадежным местом коллекторной машины является щеточно коллекторный переход который состоит из щеток (которые крепятся в щеткодержатели) и коллектора который состоит из набора коллекторных пластин трапецеидального сечения, разделенных миканитовыми прокладками. Пластины из меди и миканита удерживаются в сжатом состоянии за нижнюю часть, имеющую форму «ласточкина хвоста», посредством стальных конусных колец 1 (рис. 13.2). Выступающая вверх часть коллекторных пластин 6, называемая «петушок», служит для присоединения секций обмотки якоря к пластинам коллектора. Коллекторные пластины изолируют от конусных колец миканитовыми манжетами 3, а от втулки 5 — миканитовым изолирующим цилиндром 4. Поверхность медных пластин каллектора в процессе работы машины постепенно истирается щетками. Что бы при этом миканитовые прокладки не выступали над рабочей поверхностью медных пластин, что могло бы привести к нарушению электрического контакта коллектора со щетками, приходится периодически выполнять «продораживаные» коллектора. Эта операция состоит в том, что между рабочими поверхностями коллекторных пластин фрезеруют пазы (дорожки) на глубину до 1,5 мм (рис. 13.4).

Достоинства и недостатки коллекторных машин постоянного тока.

Электрические машины постоянного тока используют как в качестве генераторов, так и двигателей. Наибольшее применение имеют двигатели постоянного тока, диапазон мощности которых достаточно широк: от долей ватта (для привода устройств автоматики) до нескольких тысяч киловатт (для привода прокатных станов, шахтных подъемников и других крупных механизмов).

Двигатели постоянного тока широко используют для привода подъемных устройств в качестве крановых двигателей и привода транспортных средств, а также в качестве тяговых двигателей.

Основные достоинства двигателей постоянного тока по сравнению с бесколлекторными двигателями переменного тока — хорошие пусковые и регулировочные свойства, возможность получения частоты вращения более 3000 об/мин, а недостатки — относительно высокая стоимость, некоторая сложность в изготовлении, пониженная надежность. Эти недостатки машин постоянного тока обусловлены наличием в них щеточно-коплекторного узла, который к тому же является источником радиопомех и пожароопасности. Но, несмотря на отмеченные недостатки, двигатели постоянного тока в некоторых случаях пока незаменимы, так как обладают большой перегрузочной способностью, хорошими пусковыми и регулировочными свойствами.

27.08.2014

Электрические машины,Машины постоянного тока,Двигатель постоянного тока,ДПТ,ГПТ,Генератор постоянного тока

Электрические машины постоянного тока

Машины постоянного тока. Электродвигатели и генераторы. – www.motors33.ru

1. Особенности коллекторных машин постоянного тока

Коллекторные машины — это в основном машины постоянного тока. Они выпускаются мощностью от долей ватта до десятков тысяч киловатт. Коллекторные машины переменного тока находят применение в качестве приводных двигателей лишь для узкого круга специальных механизмов небольшой мощности, например как приводы некоторых бытовых приборов, электрифицированного ручного инструмента, медицинского оборудования, т. е. в тех случаях, когда для питания двигателей используется однофазный и реже трехфазный переменный ток, а характеристики асинхронных машин не удовлетворяют требованиям приводного механизма.
Коллекторные машины постоянного тока используются как двигатели и как генераторы. В промышленности более распространены двигатели, что объясняется все возрастающим применением различных статических выпрямителей, обеспечивающих промышленные установки энергией постоянного тока.
Широкое распространение электродвигателей постоянного тока несмотря на их более высокую стоимость и сложность эксплуатации по сравнению с асинхронными двигателями, объясняется в первую очередь простыми и надежными способами регулирования частоты вращения, большими пусковыми моментами и перегрузочной способностью, чем у двигателей переменного тока. Наибольшее распространение двигатели постоянного тока получили в приводах, требующих глубокого регулирования частоты вращения (металлургическая промышленность, транспорт и т.

Рис. 1. Двигатель постоянного тока серии 2П:
1 — тахогенератор; 2 — траверса; 3 — коллектор; 4 — станина; 5 — якорь; 6 — главный полюс; 7 — добавочный полюс;

Основными конструктивными элементами машин постоянного тока (рис. 1) являются станина с закрепленными на ней главными и добавочными полюсами, вращающийся якорь с обмоткой и коллектором и щеточный аппарат. В машинах малой и средней мощностей станина одновременно служит и корпусом, к которому крепятся лапы для установки машины, и частью магнитопровода. По ней замыкается магнитный поток. В большинстве машин станина выполнена массивной, из стальных труб, либо сварной из листов конструкционной стали. В ряде машин станину выполняют шихтованной.
К внутренней поверхности станины крепят главные и добавочные полюсы. Сердечники главных полюсов массивные либо набраны из листов стали толщиной 1 — 2 мм. Сердечники добавочных полюсов, как правило, массивные. На главных полюсах располагаются обмотки возбуждения; их МДС создают рабочий поток машины. Обмотки добавочных полюсов, расположенных по поперечным осям машины, служат для обеспечения нормальной коммутации.
Магнитопровод якоря шихтуется из листов электротехнической стали. В машинах малой мощности сердечник якоря насаживается непосредственно на вал со шпонкой и фиксируется в осевом направлении буртиком вала и кольцевой шпонкой. С торцов якоря для предотвращения распушения листов во время работы установлены нажимные шайбы, совмещенные с обмоткодержателями.
Обмотки якорей двухслойные. В машинах мощностью до 15 — 20 кВт они выполнены из круглого провода и уложены в полузакрытые пазы. В пазовых частях обмотка крепится пазовыми клиньями, в лобовых — бандажами из стеклоленты или немагнитной стальной проволоки, которые прижимают их к обмоткодержателям. В машинах большой мощности катушки обмотки якоря наматывают из прямоугольного провода и укладывают в открытые пазы. Крепление обмотки либо такое же, как и в машинах малой мощности, т. е. клиньями в пазовой и бандажами в лобовой части, либо бандажами и в пазовой, и в лобовой части. Выводные концы каждой секции обмотки впаиваются в прорези коллекторных пластин.
Коллекторы в большинстве машин общего назначения цилиндрические. Торцевые коллекторы применяют лишь в некоторых машинах малой мощности специального назначения. Во всех цилиндрических коллекторах пластины имеют клиновидную форму с углом наклона, при котором пластины, собранные в кольцо, плотно прилегают друг к другу боковыми поверхностями и зажимают миканитовую изоляцию (рис. 2). Наибольшее распространение получили коллекторы, в которых пластины удерживаются в сжатом состоянии металлическими нажимными конусами (рис. 3) либо опрессовкой в пластмассу (рис. 4).

Рис. 2. Положение коллекторных пластин в цилиндрических коллекторах:
1 — пластины коллектора; 2 — изоляция между пластинами; Р — сила давления нажимных конусов; Р, — сила арочного распора

В коллекторах с нажимными конусами пластины закрепляются передвижением переднего нажимного конуса по втулке коллектора. При этом создается давление на нижнюю часть ласточкина хвоста пластин и возникает арочный распор (рис. 2). Такие коллекторы называют арочными. Пластины коллектора с расположенными между ними изоляционными прокладками образуют монолитное кольцо. Нажимные конусы изолируют от пластин миканитовыми фигурными прокладками — манжетами, имеющими большую механическую прочность.

Рис. 3. Коллектор с нажимными конусами:
1 — передний нажимной конус; 2 — пластины коллектора ; 3 — втулка коллектора; 4 — изоляционная манжета; 5 —задний нажимной конус

Коллекторы на пластмассе более просты в изготовлении, но в силу меньшей механической прочности и надежности не применяются в машинах большой мощности.
В некоторых быстроходных машинах, например в возбудителях турбогенераторов, из-за больших центробежных сил, действующих на пластины коллектора, прочность их крепления с помощью ласточкиных хвостов оказывается недостаточной и коллекторные пластины крепят на втулку с помощью внешних бандажных колец (рис. 5).

Рис. 5. Принципиальная конструкция коллектора с бандажными кольцами:
1 — изоляция под бандажными кольцами; 2 — бандажные кольца; 3 — пластины коллектора; 4 — втулка коллектора

Щетки коллекторных машин устанавливают в щеткодержатели, закрепленные на щеточных пальцах, причем на каждом щеточном пальце может быть установлено по нескольку щеткодержателей и щеток, соединенных между собой параллельно. Число щеток и их размеры определяются номинальным током машины. Число щеточных пальцев должно быть равно числу полюсов машины. Двигатели с волновой обмоткой на якоре при отсутствии места для установки полного комплекта щеточных пальцев допускают установку неполного числа щеточных пальцев, что используется в некоторых конструкциях тяговых двигателей. Щеточные пальцы укреплены на траверсе, которая допускает поворот на некоторый угол вокруг оси машины для регулирования положения щеток на коллекторе.
В последние годы получают распространение бесколлекторные двигатели постоянного тока, в которых механический преобразователь тока — коллектор со щеточным аппаратом — заменен вентильным коммутатором. Вентильные двигатели имеют широкий диапазон регулирования частоты вращения и не имеют недостатков, связанных с работой скользящих контактов коллектор—щетки, характерных для коллекторных машин постоянного тока.

3. Характеристики машин постоянного тока.
Машины постоянного тока по своим характеристикам определяются системой возбуждения: независимой, параллельной, последовательной или смешанной.

При независимой системе возбуждения обмотка возбуждения питается от постороннего источника постоянного тока и ток возбуждения не зависит от режима работы и нагрузки машины. Генераторы с независимой системой возбуждения допускают регулирование напряжения практически от нуля до номинального. Изменение напряжения при увеличении нагрузки определяется только размагничивающим действием реакции якоря и увеличением падения напряжения на сопротивлении якорной цепи.
Ток параллельной обмотки возбуждения генераторов с самовозбуждением меняется в зависимости от напряжения на выводах генератора и уменьшается с ростом нагрузки из-за размагничивающего действия реакции якоря, что в свою очередь приводит к добавочному увеличению падения напряжения. За счет этого номинальное падение напряжения генераторов с параллельным возбуждением больше, чем генераторов с независимым возбуждением.
В генераторах со смешанной системой возбуждения при согласном включении параллельной и последовательной обмоток поток стабилизируется, так как размагничивающее действие реакции якоря компенсируется изменением МДС последовательной обмотки, пропорциональным току нагрузки. Последовательную обмотку таких машин называют стабилизирующей. Номинальное падение напряжения генераторов со стабилизирующей обмоткой мало. Некоторые генераторы выполнены со стабилизирующей обмоткой, при которой обеспечивается равенство 7НОМ = (7Х|Х (где 1/Х]Х — напряжение холостого хода).

При встречном включении параллельной и последовательной обмоток возбуждения напряжение на выводах генератора резко падает с увеличением тока нагрузки. Такие системы возбуждения находят применение в сварочных генераторах постоянного тока.
В двигателях параллельного возбуждения размагничивающее действие реакции якоря может вызвать неустойчивую работу, так как уменьшение потока с ростом нагрузки из-за действия реакции якоря при малом суммарном сопротивлении якорной цепи приводит к увеличению частоты вращения двигателя. Поэтому в большинстве двигателей средней и во всех двигателях большой мощности помимо параллельной устанавливается последовательная обмотка возбуждения, стабилизирующая магнитный поток и придающая устойчивость механической характеристике (рис. 7, а).

Рис. 7. Механические характеристики двигателей постоянного тока:
а — смешанного возбуждения; б — последовательного возбуждения

Механические характеристики двигателей с последовательным возбуждением (рис. 7,б) имеют специфический «падающий» характер. Двигатели с последовательным возбуждением используются в приводах, требующих больших пусковых моментов и устойчивой работы при малых частотах вращения.

4. Регулирование частоты вращения машин постоянного тока.

Частота вращения двигателя при неизменной нагрузке может быть изменена регулированием питающего напряжения U, включением последовательно с якорем дополнительного регулировочного резистора и изменением магнитного потока машины (изменением тока возбуждения). В практике применяются все три способа регулирования.
Регулирование частоты вращения изменением подводимого напряжения встречает трудности, связанные со сложностью преобразования напряжения постоянного тока. Для этой цели либо применяют статические преобразователи напряжения, либо питают двигатель от отдельного генератора постоянного тока, допускающего плавное регулирование напряжения (система генератор — двигатель). Такие системы применяют лишь для отдельных специальных приводов, требующих регулирования частоты вращения по сложной программе, например для главных двигателей прокатных станов.
Регулирование частоты вращения потоком является наиболее экономичным способом, так как потери в регулировочных резисторах, включаемых для этой цели последовательно с обмоткой возбуждения, невелики из-за малого тока возбуждения.
Однако этот способ позволяет лишь увеличивать частоту вращения двигателей по сравнению с номинальной. Такой способ регулирования предусмотрен для всех серийных двигателей постоянного тока.
Включение добавочного резистора в цепь якоря дает возможность плавно регулировать частоту вращения, но сопряжено с большими потерями в регулировочном реостате, по которому проходит полный ток нагрузки. Этот способ используется, например, для регулирования частоты вращения тяговых двигателей.
В современных системах регулирования частоты вращения двигателей постоянного тока применяются тиристорные схемы, позволяющие осуществить регулирование частоты вращения в широких пределах по заданной программе. Датчиками частоты вращения для осуществления обратной связи при регулировании могут быть тахогенераторы, размещенные на валу якоря двигателя (рис. 1).

5. Коммутация машин постоянного тока

Коммутация машин постоянного тока, т. е. изменение направления тока в секциях обмотки якоря при переходе секций от одного полюсного деления к другому, происходит при кратковременном замыкании их щетками на пластинах коллектора. При коммутации в короткозамкнутых секциях возникают реактивная ЭДС и ЭДС вращения, наводимая потоком реакции якоря, магнитные силовые линии которого пронизывают замкнутые при коммутации секции. При движении коллектора в момент отхода пластины коллектора от замыкающей данную секцию щетки происходит разрыв цепи (замкнутой секции), имеющей индуктивное сопротивление, и возникает искрение между сбегающим краем щетки и коллекторной пластиной. При неудовлетворительной коммутации искрение может быть значительным и может привести к местному повреждению коллектора, что в свою очередь ухудшает переходный контакт щетка—коллектор и усиливает искрение. Качество коммутации машины постоянного тока оценивается по интенсивности искрения на коллекторе (табл. 1).
Для улучшения коммутации во всех машинах постоянного тока, кроме машин малой мощности, устанавливают добавочные полюсы, МДС которых компенсирует МДС реакции якоря по поперечной оси машины, т. е. в зоне расположения коммутируемых секций. Кроме того, поток, создаваемый обмоткой добавочных полюсов, наводит в замкнутых при коммутации секциях ЭДС, несколько превышающую реактивную ЭДС секций и направленную ей навстречу. Коммутация машины при этих условиях становится прямолинейной или даже ускоренной. Напряжение под сбегающим краем щеток уменьшается до весьма малых значений и искрение под щетками становится не опасным для работы машины.
В крупных машинах постоянного тока кроме добавочных полюсов в пазах на наконечниках главных полюсов располагают компенсационную обмотку . Компенсационная обмотка предназначена для компенсации воздействия реакции якоря на поток возбуждения по продольной оси. Уменьшение влияния реакции якоря позволяет выполнять машины с уменьшенным воздушным зазором и улучшить их коммутацию.

Таблица 1. Оценка степени искрения под сбегающим краем щеток по ГОСТ 183-74

Степень искренияХарактеристика степени искренияСостояние коллектора и щеток
1Отсутствие искренияОтсутствие почернения на коллекторе и следов нагара на щетках
ll 4Слабое искрение под небольшой частью края щетки
‘iСлабое искрение под большей частью края щеткиПоявление следов почернения на кол-[ лекторе и следов нагара на щетках, легко устраняемых протиранием поверхности коллектора бензином
2Искрение под всем краем щетки. Допускается только при кратковременных толчках нагрузки и перегрузкиПоявление следов почернения на коллекторе и следов нагара на щетках, не устраняемых протиранием поверхности коллектора бензином
3Значительное искрение под всем краем щетки с появлением крупных и вылетающих искр. Допускается только при прямом включении или реверсировании машин, если при этом коллектор и щетки остаются в состоянии, пригодном для дальнейшей работыЗначительное почернение на коллекторе, не устраняемое протиранием поверхности коллектора бензином, а также подгар и частичное разрушение щеток

 

Щеточный двигатель постоянного тока: конструкция и принцип действия

Коллекторные двигатели довольно распространены в быту и на производстве. Их используют для привода различных механизмов, электроинструментов, в автомобилях. Отчасти популярность обусловлена ​​простой регулировкой скорости вращения ротора, но есть некоторые ограничения их использования и, конечно же, недостатки. Давайте рассмотрим, что такое коллекторный двигатель постоянного тока (КДТТ), какие существуют разновидности этого типа электродвигателя и где они применяются.

  • Определение и устройство
  • Принцип работы
  • Типы КДПТ и схемы соединения обмоток
  • Схема подключения и реверс
  • Область применения
  • Преимущества и недостатки

Определение и устройство

В справочниках и энциклопедиях приводят такое определение:

«Коллекторным двигателем называется электродвигатель, у которого датчик положения вала и переключатель обмоток являются одним и тем же устройством — коллекторным. «Такие двигатели могут работать либо только на постоянном токе, либо на постоянном и переменном токе».

Коллекторный двигатель, как и любой другой, состоит из ротора и статора. В этом случае ротор является якорем. Напомним, что якорь – это часть электрической машины, потребляющая основной ток, и в которой индуцируется электродвижущая сила.

Зачем нужен и как устроен коллектор? Коллектор расположен на валу (роторе) и представляет собой набор продольно расположенных пластин, изолированных от вала и друг от друга. Их называют ламелями. Отводы секций обмоток якоря соединяются с ламелями (устройство якорной обмотки КДПТ можно увидеть на группе рисунков ниже), а точнее, конец предыдущей и начало следующей секции обмотки соединяются с каждый из них.

Ток подается на обмотки через щетки. Щетки образуют скользящий контакт и при вращении вала соприкасаются то с одной, то с другой пластиной. Таким образом коммутируются обмотки якоря, для этого и нужен коллектор.

Щеточный узел состоит из кронштейна со щеткодержателями, непосредственно в них устанавливаются графитовые или металлографитовые щетки. Для обеспечения хорошего контакта щетки прижаты к коллектору пружинами.

На статоре (обмотке возбуждения) устанавливаются постоянные магниты или электромагниты, которые создают статорное магнитное поле. В литературе по электрическим машинам вместо слова «статор» чаще употребляются термины «магнитная система» или «индуктор». На рисунке ниже показана конструкция ДПТ в разных проекциях. Теперь давайте посмотрим, как работает коллекторный двигатель постоянного тока!

Принцип действия

При протекании тока по обмотке якоря возникает магнитное поле, направление которого можно определить с помощью правил буравчика. Постоянное магнитное поле статора взаимодействует с полем якоря, и он начинает вращаться за счет того, что одноименные полюса отталкиваются, притягиваясь к разноименным. Что прекрасно иллюстрирует рисунок ниже.

При переключении щеток на другие ламели ток начинает течь в обратном направлении (если рассматривать приведенный выше пример), магнитные полюса меняются местами и процесс повторяется.

В современных коллекторных машинах двухполюсную конструкцию не применяют из-за неравномерности вращения, в момент переключения направления тока силы, действующие на якорь, будут минимальными. А если включить двигатель, вал которого остановился в этом «переходном» положении — он может вообще не начать вращаться. Поэтому коллектор современного двигателя постоянного тока имеет значительно больше полюсов и секций обмоток, укладываемых в пазы футерованного сердечника, чем достигается оптимальная плавность хода и крутящий момент на валу.

Принцип работы коллекторного двигателя простым языком для чайников раскрыт в следующем видео, настоятельно рекомендуем его прочитать.

Типы КДПТ и схемы соединения обмоток

По способу возбуждения коллекторные двигатели постоянного тока бывают двух типов:

  1. С постоянными магнитами (маломощные двигатели мощностью десятки и сотни ватт).
  2. С электромагнитами (мощные машины, например, на грузоподъемных механизмах и станках).

Различают такие виды КДТТ по способу соединения обмоток:

  • Последовательное возбуждение (в старой русской литературе и от старых электриков можно услышать название «Последовательный», от англ. Serial). Здесь обмотка возбуждения включена последовательно с обмоткой якоря. Преимуществом такой схемы является высокий пусковой момент, а недостатком — падение частоты вращения при увеличении нагрузки на вал (мягкая механическая характеристика), и то, что двигатель буксует (неконтролируемое увеличение оборотов с последующим выходом из строя к подпятникам и якорю) на холостом ходу или при нагрузке на вал менее 20-30% от номинальной.
  • Параллельный (также называемый «шунт»). Соответственно, обмотка возбуждения подключается параллельно обмотке якоря. При малых скоростях на валу крутящий момент высок и стабилен в относительно широком диапазоне оборотов, а при увеличении оборотов снижается. Преимуществом являются стабильные обороты в широком диапазоне нагрузки на вал (ограниченной его мощностью), а недостатком — при обрыве цепи в цепи возбуждения она может выйти из строя.
  • Зависимый. Обмотки возбуждения и якоря питаются от разных источников. Такое решение позволяет более точно контролировать скорость вращения вала. Особенности работы аналогичны ДПТ с параллельным возбуждением.
  • Смешанный. Часть обмотки возбуждения включена параллельно, а часть последовательно с якорем. Объедините преимущества последовательного и параллельного типов.

Графический символ на схеме вы видите ниже.

В зарубежной и современной отечественной литературе, а также на схемах можно встретить и другое представление УГО для КДТ, как это было показано на предыдущем рисунке в виде круга с двумя квадратами, где круг обозначает якорь и два квадрата представляют кисти.

Схема соединения и реверс

Схема соединения обмоток статора и ротора определяется при изготовлении, и, в зависимости от того, где используется конкретный двигатель, нужно выбрать соответствующее решение. В некоторых режимах работы (например, в режиме торможения) схемы включения обмоток могут быть изменены или введены дополнительные элементы.

К ним относятся маломощные коллекторные двигатели постоянного тока с использованием: полупроводниковых ключей (транзисторов), тумблеров или кнопок, специализированных драйверных микросхем или с использованием маломощных реле. Большие мощные машины подключаются к сети постоянного тока через двухполюсные контакторы.

Ниже вы видите обратную схему подключения двигателя постоянного тока к сети 220В. На практике схема будет аналогична в производстве, но диодного моста в ней не будет, так как все линии подключения таких двигателей проложены от тяговых подстанций, где переменный ток выпрямляется.

Реверс осуществляется изменением полярности на обмотке возбуждения или на якоре. Нельзя менять полярность и там, и там, так как направление вращения вала не изменится, как это бывает у универсальных коллекторных двигателей при работе на переменном токе.

Для плавного пуска двигателя в цепь питания обмотки якоря или обмотки якоря и обмотки возбуждения (в зависимости от схемы их соединения) вводят регулировочное устройство, например реостат, но вал точно так же регулируют скорость, но вместо реостата часто используют набор постоянных резисторов, соединенных с помощью набора контакторов.

В современных приложениях изменение скорости вращения осуществляется с помощью широтно-импульсной модуляции (ШИМ) и полупроводникового ключа, что и сделано в аккумуляторном электроинструменте (например, отвертке). Эффективность этого метода намного выше.

Область применения

Щёточные электродвигатели постоянного тока применяются повсеместно как в быту, так и в промышленных устройствах и механизмах, кратко рассмотрим область их применения: дворников), в стеклоподъемниках, для запуска двигателя (стартер представляет собой коллекторный двигатель постоянного или смешанного возбуждения) и других приводов.

  • В грузоподъемных механизмах (кранах, подъемниках и др. ) применяются КДПТ, которые работают от сети постоянного тока напряжением 220В или любым другим доступным напряжением.
  • В детских игрушках и маломощных радиоуправляемых моделях используются КДТТ с трехполюсным ротором и постоянными магнитами на статоре.
  • В составе ручного аккумуляторного электроинструмента — различные дрели, шлифовальные машины, электрошуруповерты и т.п.
  • Обратите внимание, что в современном дорогом электроинструменте устанавливаются бесколлекторные двигатели, но бесколлекторные.

    Преимущества и недостатки

    Проанализируем плюсы и минусы коллекторного двигателя постоянного тока. Преимущества:

    1. Отношение габаритов к мощности (весовые и габаритные показатели).
    2. Простота регулировки оборотов и реализация плавного пуска.
    3. Пусковой момент.

    К недостаткам КДПТ относятся:

    1. Изношенные щетки. Высоконагруженные двигатели, которые регулярно эксплуатируются, требуют регулярного осмотра, замены щеток и обслуживания коллектора в сборе.
    2. Коллектор изнашивается из-за трения щеток.
    3. Возможно искрение щеток, что ограничивает применение во взрывоопасных местах (тогда используйте КДТТ во взрывозащищенном исполнении).
    4. Из-за постоянного переключения обмоток этот тип двигателя постоянного тока вносит помехи и искажения в цепь питания или сеть, что приводит к сбоям в работе и проблемам в работе других элементов схемы (особенно актуально для электронных схем).
    5. В магнитах с постоянными магнитами магнитные силы со временем ослабевают (размагничиваются), и КПД двигателя снижается.

    Итак, мы рассмотрели, что такое щеточный двигатель постоянного тока, как он устроен и каков его принцип работы. Если у вас есть вопросы, задавайте их в комментариях под статьей!

    Сопутствующие материалы:

    • Что такое анод и катод
    • Как работает магнитный пускатель
    • Как понизить напряжение
    • Что такое асинхронный двигатель

    Опубликовано:

    Обновлено: 05.06.2019

    Пока без коментариев

    Двигатель переменного тока Слюдяной коммутатор Коллектор двигателя постоянного тока Сегментный коммутатор для электродвигателя Armature-Ningbo Haishu Nide International Co., Ltd. в основном используется на арматуре всех видов автомобильных двигателей, электроинструментов и бытовой техники и т. Д. Наша компания сертифицирована по стандарту ISO9.001. Мы можем настроить в соответствии с потребностями клиентов, предоставить клиентам высококачественную продукцию, конкурентоспособные цены и гарантированное послепродажное обслуживание.

    Основываясь на более чем 10-летнем опыте производства двигателей и коллекторов, мы используем передовое производственное оборудование и специальную технику, чтобы поставлять вам высококачественную продукцию, в том числе плоскостные, крюковые, ступенчатые коллекторы и токосъемные кольца.

    Nide специализируется на исследовании, разработке и производстве щелевых, крюковых и плоских коллекторов для двигателей постоянного тока и универсальных двигателей. Наращивая опыт производства с момента своего основания, компания добилась больших успехов в интеграции передовых производственных процессов по всему миру и научных навыков управления, ее годовой объем производства достигает десяти миллионов штук, которые экспортируются в страны Европы, Юго-Восточной Азии, Гонконг Тайвань и др.

    Заявка

     

    1. Коллектор для бытовой техники: фен, миксер, пылесос, стиральная машина, соковыжималка, соковыжималка, соковыжималка и др. бытовая техника

    2. Коллектор для автомобильной автомобильной промышленности : Запуск, генератор, стеклоочиститель, кондиционер, электрическое управление стеклоподъемниками, регулировка сиденья, двигатель зеркала, электронный тормоз, вентилятор радиатора, электронное рулевое управление, управление фарами, вентилятор нагнетателя, вентилятор отопителя, радиатор резервуара для охлаждающей воды и другие автоматические электронные машины.

    3. Коммутатор для электроинструментов: прополочная машина, электрическая дрель, угловая шлифовальная машина, электрическая пила, молоток, режущий станок, электрическая пила, рубанок и  для других электрических инструментов.

    4. Коммутатор для других отраслей промышленности: насосы, автомобильные аккумуляторы, насосы для мотоциклов, яхт, игрушки, электрические двери, тренажеры, аэрофотосъемка и т. д.

     

    Технические характеристики

     

    1.    поверхность смолы, без пузырьков и трещин

    2. Испытание на вращение: 200ºC, 3000 об/мин, 3 мин, радиальное отклонение <0,015, бар на бар <0,006.

    3. Испытание высоким напряжением: стержень к валу при 3500 В в течение 1 мин, стержень к стержню при 550 В в течение 1 с.

    4. Испытание изоляции при 500 В, >50 МОм

    5. Материал меди: медная полоска или электролитическая медь или по индивидуальному заказу

    6. Размеры: от НД 4 мм до НД 150 мм. Мы также предоставляем индивидуальный коммутатор.

    7.    Применение: применимо к автомобильной промышленности, электроинструментам, бытовой технике и другим двигателям

    8.    Тип коллектора: крюкового, со стояком, оболочкового или плоского типа

     

    Материалы 0,03% или 0,08% серебряной меди или по индивидуальному заказу
    Размер Индивидуальный
    Коллектор типа Тип крюка/подъемный тип
    Применение применяется к автомобильной промышленности, электроинструментам, бытовой технике и другим двигателям
    Упаковка Подходит для наземной и морской транспортировки
    Производство производительность 1000000 шт/месяц

    Команда Nide предоставит клиентам передовые технологии, первоклассное качество и лучший сервис, всегда будет вашим обслуживанием.

     

    Компания Nide также изготавливает коллектор в соответствии с требованиями заказчика.

    Информация, необходимая для запроса коммутатора:

     

    Было бы лучше, если бы клиент мог отправить нам подробный чертеж, включая приведенную ниже информацию.

    1. Размеры коллектора: внешний диаметр, внутренний диаметр, общая высота и высота меди, номер стержня.

    2. Тип коллектора: крюкового типа, с подставкой или планировщиком

    3. Медный материал: Agcu/Cu

    4. Применение коммутатора

    5. Необходимое количество

    6. Требуется или не требуется медная втулка

    7. Прочие технические требования.

    Nide производит более 1200 различных типов коммутаторов двигателей, включая крюковые, стоячие, корпусные, плоские, с внешним диаметром от 4 мм до 150 мм, и мы являемся профессионалами в производстве коммутаторов на протяжении многих лет. Коллекторы широко применяются в автомобильной промышленности, электроинструментах, бытовой технике и других двигателях.