Классификация сплава железа схема: 4. Классификация сплавов. Железо и его сплавы. Материаловедение: конспект лекций [litres]

Содержание

4. Классификация сплавов. Железо и его сплавы. Материаловедение: конспект лекций [litres]

4. Классификация сплавов. Железо и его сплавы. Материаловедение: конспект лекций [litres]

ВикиЧтение

Материаловедение: конспект лекций [litres]
Алексеев Виктор Сергеевич

Содержание

4. Классификация сплавов. Железо и его сплавы

Сталь и чугун – основные материалы в машиностроении. Они составляют 95 % всех используемых в технике сплавов.

Сталь – это сплав железа с углеродом и другими элементами, содержащий до 2,14 % углерода. Углерод – важнейшая примесь стали. От его содержания зависят прочность, твердость и пластичность стали. Кроме железа и углерода, в состав стали входят кремний, марганец, сера и фосфор. Эти примеси попадают в сталь в процессе выплавки и являются ее неизбежными спутниками.

Чугун – сплав на железной основе. Отличие чугуна от стали заключается в более высоком содержании в нем углерода – более 2,14 %. Наибольшее распространение получили чугуны, содержащие 3–3,5 % углерода. В состав чугунов входят те же примеси, что и в стали, т. е. кремний, марганец, сера и фосфор. Чугуны, у которых весь углерод находится в химическом соединении с железом, называют белыми (по виду излома), а чугуны, весь углерод которых или большая его часть представляет графит, получили название серых. В белых чугунах всегда имеется еще одна структурная составляющая – ледебурит. Это эвтектика, т. е. равномерная механическая смесь зерен аустенита и цементита, получающаяся в процессе кристаллизации, в ней 4,3 % углерода. Ледебурит образуется при температуре +1147 °C.


Феррит – твердый раствор небольшого количества углерода (до 0,04 %) и других примесей в? – железе. Практически это чистое железо. Цементит – химическое соединение железа с углеродом – карбид железа.

Перлит – равномерная механическая смесь в сплаве феррита и цементита. Такое название эта смесь получила потому, что шлиф при ее травлении имеет перламутровый оттенок. Так как перлит образуется в результате процессов вторичной кристаллизации, его называют эвтектоидом. Он образуется при температуре +727 °C. В нем содержится 0,8 % углерода.

Перлит имеет две разновидности. Если цементит в нем расположен в виде пластинок, его называют пластинчатым, если же цементит расположен в виде зерен, перлит называют зернистым. Под микроскопом пластинки цементита кажутся блестящими, потому что обладают большой твердостью, хорошо полируются и при травлении кислотами разъедаются меньше, чем пластинки мягкого феррита.

Если железоуглеродистые сплавы нагреть до определенных температур, произойдет аллотропическое превращение ? —железа в ? —железо и образуется структурная составляющая, которая называется аустенитом.

Аустенит представляет собой твердый раствор углерода (до 2,14 %) и других примесей в ? —железе. Способность углерода

растворяться в железе неодинакова при различных температурах. При температуре +727 °C ? —железо может растворять не более 0,8 % углерода. При этой же температуре происходит распад аустенита с образованием перлита. Аустенит – мягкая структурная составляющая. Он отличается большой пластичностью, не обладает магнитными свойствами.

При изучении структурных составляющих железоуглеродистых сплавов установлено, что они при комнатной температуре всегда состоят из двух структурных элементов: мягкого пластичного феррита и твердого цементита, упрочняющего сплав.

Данный текст является ознакомительным фрагментом.

«Белое железо» индийского царя Пора

«Белое железо» индийского царя Пора
Во второй половине I тысячелетия до нашей эры железо знали уже многие страны и народы. Из него изготовляли плуг и топор, кинжал и меч. Оружейники старались сделать кинжалы, мечи прочными и упругими, твердыми и острыми. В древности это

Железо

Железо
Оно было известно уже в древности. А в Средневековье различали не только сталь, железо и чугун, но и различные их марки. Например, клинки оружия могли изготавливаться из обычной стали или из дамасской – знаменитого булата. Кузнецы того времени, конечно же, не знали,

Медь и сплавы

Медь и сплавы
Довольно часто домашние слесари отдают предпочтение меди (удельный вес 9,0 г/см2), поскольку ее мягкость и пластичность позволяют добиваться точности и высокого качества при изготовлении всевозможных деталей и изделий.Чистая (красная) медь – прекрасный

Пар и железо

Пар и железо
В последние десятилетия XVIII века на заводах и фабриках Европы произошли большие изменения. Были изобретены паровая и другие машины для металлургических, машиностроительных и текстильных заводов и фабрик. Машинное производство вытесняло ручной труд. На

ЛЕКЦИЯ № 5. Сплавы

ЛЕКЦИЯ № 5. Сплавы
1. Строение металлов
Металлы и их сплавы – основной материал в машиностроении. Они обладают многими ценными свойствами, обусловленными в основном их внутренним строением. Мягкий и пластичный металл или сплав можно сделать твердым, хрупким, и наоборот.

1. Диаграмма железо—цементит

1. Диаграмма железо—цементит
Диаграмма железо—цементит охватывает состояние железоуглеродистых сплавов, которые содержат до 6,67 % углерода.
Рис. 7. Диаграмма состояния железоуглеродистых сплавов (сплошные линии – система Fe—Fe 3 C; штриховые – система Fe—C)Углеродистые

2.

 Медные сплавы

2. Медные сплавы
Медь относится к числу металлов, известных с глубокой древности. Раннему знакомству человека с медью способствовало то, что она встречается в природе в свободном состоянии в виде самородков, которые иногда достигают значительных размеров. В настоящее

3. Алюминиевые сплавы

3. Алюминиевые сплавы
Название «алюминий» происходит от латинского слова alumen – так за 500 лет до н. э. называли алюминиевые квасцы, которые использовались для протравливания при крашении тканей и дубления кож.По распространенности в природе алюминий занимает третье

4. Титановые сплавы

4. Титановые сплавы
Титан – металл серебристо—белого цвета. Это один из наиболее распространенных в природе элементов. Среди других элементов по распространенности в земной коре (0,61 %) он занимает десятое место. Титан легок (плотность его 4,5 г/см 3), тугоплавок

5. Цинковые сплавы

5. Цинковые сплавы
Сплав цинка с медью – латунь – был известен еще древним грекам и египтянам. Но выплавка цинка в промышленных масштабах началась лишь в XVII в.Цинк – металл светло—серо—голубоватого цвета, хрупкий при комнатной температуре и при 200 °C, при нагревании до

Железо общее

Железо общее
Железо – один из самых распространенных элементов в природе. Его содержание в земной коре составляет около 4,7 % по массе, поэтому железо, с точки зрения его распространенности в природе, принято называть макроэлементом.В природной воде железо содержится в

7.4. Сплавы меди, имитирующие золотые и серебряные сплавы

7.4. Сплавы меди, имитирующие золотые и серебряные сплавы
С целью удешевления художественных изделий при производстве недорогих украшений широко используются томпак, латунь, мельхиор, нейзильбер; при изготовлении художественных изделий – бронзы. Сплавы меди с цинком,

10. Серебро и его сплавы

10. Серебро и его сплавы
Серебро – химический элемент, металл. Атомный номер 47, атомный вес 107,8. Плотность 10,5 г/см3. Кристаллическая решетка – гранецентрированная кубическая (ГЦК). Температура плавления 963 °C, кипения 2865 °C. Твердость по Бринеллю 16,7.Серебро – металл белого

11. Золото и его сплавы

11. Золото и его сплавы
Золото – химический элемент, металл. Атомный номер 79, атомный вес 196,97, плотность 19,32 г/см3. Кристаллическая решетка – кубическая гранецентрировапная (ГЦК). Температура плавления 1063 °C, кипения 2970 °C. Твердость по Бринеллю – 18,5.Золото – металл желтого

27. Строение и свойства железа; метастабильная и стабильная фазовые диаграммы железо-углерод. Формирование структуры углеродистых сталей.

Определение содержания углерода в стали по структуре

27. Строение и свойства железа; метастабильная и стабильная фазовые диаграммы железо-углерод. Формирование структуры углеродистых сталей. Определение содержания углерода в стали по структуре
Сплавы железа с углеродом являются самыми распространенными металлическими

47. Титан и его сплавы

47. Титан и его сплавы
Титан и сплавы на его основе обладают высокой коррозионной стойкостью и удельной прочностью. Недостатки титана: его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости.Азот, углерод, кислород и водород, упрочняя титан,

состав, структура, свойства, сферы применения, производство

Главная » Сплавы » Виды и характеристики сплавов железа

На чтение 5 мин

Содержание

  1. Состав и свойства
  2. История открытия
  3. Сферы применения
  4. Разновидности сплавов на основе железа
  5. Состав и структура сплавов
  6. Свойства и маркировка сплавов
  7. Производство и обработка сплавов на основе железа

Железо считается самым популярным материалом. Его используют во всех отраслях промышленности. Людям этот металл знаком с глубокой древности. Когда кузнецы научились получать чистый материал, он превзошёл известные на то время сплавы, вытеснил их из производства. Сплавы железа появились в результате попыток людей изменить характеристики этого металла.

Сплав железа

Состав и свойства

Строение и свойства железа обуславливают его популярность относительно разных отраслей промышленности. Состав представляет собой основной материал с примесями другим веществ. Количество дополнительных металлов не превышает 0,8%. К основным параметрам относятся:

  1. Температура плавления — 1539 градусов по Цельсию.
  2. Твердость по Бринеллю — 350–450 Мн/кв. м.
  3. Удельная масса — 55,8.
  4. Плотность — 7,409 г/куб см.
  5. Теплопроводность — 74,04 Вт/(м·К) (при комнатной температуре).
  6. Электропроводность — 9,7·10-8 ом·м.

Нельзя забывать, что железо считается одним из важнейших элементов в организме человека. Однако он крайне сложно усваивается из пищи. Суточная норма, которую должен употреблять мужчина — 10 мг. Женщины должны потреблять 20 мг этого вещества, чтобы организм работал нормально.

История открытия

Из школьного курса все помнят «железный век». Это период истории, когда человек впервые научился получать этот металл из руды. Железный век приходится на период с 9 по 7 век до нашей эры. Этот металл оказал огромное влияние на развитие людей того времени. По своим характеристикам он вытеснил смеси цветных металлов. Из него изготавливали орудия труда, оружие, доспехи, материалы для строительства и многое другое. Постепенно кузнецы начали смешивать его с другими металлами, чтобы получить новые материалы. Так появлялись новые сплавы.

Сферы применения

Этот материл применяется в разных отраслях промышленности:

  1. Смеси и однородный металл применяются в машиностроении. Из них изготавливаются внутренние детали, корпуса, подвижные механизмы.
  2. Судостроение, самолётостроение, ракетостроение.
  3. Строительство — изготовление крепежей, расходных материалов.
  4. Приборостроение — изготовление электроники для дома.
  5. Радиоэлектроника — создание элементов для электроприборов.
  6. Медицина, станкостроение, химическая промышленность.
  7. Изготовление оружия.

Если для чего-то не подходит однородный материал, подойдут соединения на его основе, характеристики которых значительно отличаются.

Разновидности сплавов на основе железа

Сплав железа — это соединение, которое состоит из основного металла и дополнительных примесей. Соединения на основе этого материала называются чёрными металлами. К ним относятся:

  1. Сталь — соединение углерода с другими элементами. Углерода в составе сплава может содержаться до 2.14%. Выделяют конструкционные углеродистые, строительные, специальные и легированные стали.
  2. Чугун — смесь, которая пользуется огромной популярностью. Соединения могут содержать до 3,5% углерода. Дополнительно смеси содержать марганец, фосфор, серу.
  3. Перлит — смесь на основе железа. Содержит не более 0.8% углерода.
  4. Феррит — его называют чистым материалом. Связанно это с низким содержанием углерода, сторонних примесей (около 0.04%).
  5. Цементит — химическое соединение железа с углеродом.
  6. Аустенит — соединение с содержанием углерода до 2.14%. Дополнительно имеет сторонние примеси.

Легированная сталь

Состав и структура сплавов

Из-за большого количество соединений на основе железа была разработана маркировка, по которой можно отделить стали с высоким содержанием углерода от менее углеродистых, определить наличие основных легирующих элементов в составе материала, их количество. Зависимо от количества дополнительных элементов изменяются свойства соединений. К ним относится бор, ванадий, молибден, марганец, титан, углерод, хром, никель, кремний, вольфрам.

Характеристики смесей зависят от их структуры, состава. От этого изменяется прочность, пластичность, температура плавления, плотность, электропроводность и другие параметры. Например, структура чугуна определяет его хрупкость при ударах, больших физических нагрузках.

Свойства и маркировка сплавов

Относительно маркировки, первые цифры, которые идут на маркировке, говорят о процентном содержании углерода в составе. Далее идут заглавные буквы основных легирующих элементов. Начало маркировки могут начинать дополнительные буквы. Они указывают на назначение сплава.

Пластичность и вязкость будут уменьшаться при повышении количества углерода в составе сплава. На другие свойства металлов влияют основные легирующие элементы.

Производство и обработка сплавов на основе железа

Чтобы понять, как получают популярные соединения на основе железа, нужно кратко поговорить о технологиях получения чугуна, стали. Получить сталь можно несколькими способами:

  1. Прямая технология. Окатышки железной руды продуваются смесью угарного газа, кислорода аммиака. Процедура проводиться в шахтной печи разогретой до 1000 градусов.
  2. Мартеновский метод. Твердый чугун переплавляют с помощью мартеновских печей. Прежде чем закончить процедуру материал насыщается примесями.
  3. Электроплавильный способ. С его помощью получают высококачественный материал. Обработка проводится в закрытых печах при температуре до 2200 градусов.
  4. Кислородно-конверторный метод. Чугун, расположенный в печи, обдувается смесью кислорода с воздухом, что ускоряет процесс отжига.

Производство чугуна:

  1. Подготовка руды. Она дробится до мелкой фракции.
  2. Измельчение коксового угля.
  3. Дробление флюса.
  4. Загрузка в печь.

Для изготовления чугуна используются доменные печи.

Помимо процессов производства смесей, их подвергают дополнительно обработке. Это отжиг, нормализация, закалка и отпуск. Характеристики улучшаются.

( 3 оценки, среднее 5 из 5 )

Поделиться

Содержание углеродистого металла, Классификация стали и легированных сталей

Классификация стали важна для понимания того, какие типы стали использовать.

Как правило, углерод является наиболее важным коммерческим стальным сплавом. Увеличение содержания углерода повышает твердость и прочность, а также улучшает прокаливаемость. Но углерод также увеличивает хрупкость и снижает свариваемость из-за склонности к образованию мартенсита. Это означает, что содержание углерода может быть как благословением, так и проклятием, когда речь идет о коммерческой стали.

И хотя существуют стали с содержанием углерода до 2 процентов, они являются исключением. Большинство сталей содержит менее 0,35% углерода. Чтобы представить это в перспективе, имейте в виду, что это 35/100 от 1 процента.

Теперь любая сталь с содержанием углерода от 0,35 до 1,86% может быть закалена с использованием цикла закалка-закалка-отпуск. Большинство коммерческих сталей подразделяются на одну из трех групп:

  1. Простые углеродистые стали
  2. Стали низколегированные
  3. Высоколегированные стали

Простые углеродистые стали

Эти стали обычно представляют собой железо с содержанием углерода менее 1%, а также небольшими количествами марганца, фосфора, серы и кремния. Свариваемость и другие характеристики этих сталей в первую очередь зависят от содержания углерода, хотя легирующие и остаточные элементы оказывают незначительное влияние.

Простые углеродистые стали подразделяются на четыре группы:

  1. Низкоуглеродистые
  2. Средний
  3. Высокий
  4. Очень высокая

Низкий . Часто называемые мягкими сталями, низкоуглеродистые стали содержат менее 0,30% углерода и являются наиболее часто используемыми марками. Они хорошо обрабатываются и свариваются и более пластичны, чем стали с более высоким содержанием углерода.

Средний . Среднеуглеродистые стали содержат от 0,30 до 0,45% углерода. Повышенное содержание углерода означает повышенную твердость и прочность на растяжение, пониженную пластичность и более сложную обработку.

Высокий . Эти стали с содержанием углерода от 0,45 до 0,75% могут быть сложными для сварки. Предварительный нагрев, последующий нагрев (для контроля скорости охлаждения), а иногда даже нагрев во время сварки становятся необходимыми для получения качественных сварных швов и для контроля механических свойств стали после сварки.

Очень высокий . Высокоуглеродистые стали с содержанием углерода до 1,50% используются для изготовления изделий из твердой стали, таких как металлорежущие инструменты и рессоры грузовых автомобилей. Как и высокоуглеродистые стали, они требуют термической обработки до, во время и после сварки для сохранения своих механических свойств.

Низколегированные стали

Когда эти стали предназначены для сварки, содержание углерода в них обычно ниже 0,25%, а часто ниже 0,15%. Типичные сплавы включают никель, хром, молибден, марганец и кремний, которые повышают прочность при комнатной температуре и повышают ударную вязкость при низких температурах.

Эти сплавы в правильном сочетании могут улучшить коррозионную стойкость и повлиять на реакцию стали на термообработку. Но добавленные сплавы также могут отрицательно влиять на восприимчивость к трещинам, поэтому рекомендуется использовать с ними процессы сварки с низким содержанием водорода. Предварительный нагрев также может оказаться необходимым. Это можно определить, используя формулу углеродного эквивалента, которую мы рассмотрим в следующем выпуске.

Высоколегированные стали

По большей части мы говорим о нержавеющей стали, наиболее важной коммерческой высоколегированной стали. Нержавеющие стали содержат не менее 12 процентов хрома, и многие из них имеют высокое содержание никеля. Три основных типа нержавеющей стали:

  1. Аустенитная
  2. Ферритный
  3. Мартенситный

Мартенситные нержавеющие стали используются для производства столовых приборов. Они имеют наименьшее количество хрома, обладают высокой прокаливаемостью и требуют как предварительного, так и последующего нагрева при сварке для предотвращения растрескивания в околошовной зоне (ЗТВ).

Ферритные нержавеющие стали содержат от 12 до 27 процентов хрома с небольшим количеством аустенитообразующих сплавов.

Аустенитные нержавеющие стали обладают отличной свариваемостью, но аустенит нестабилен при комнатной температуре. Следовательно, для стабилизации аустенита необходимо добавлять специальные сплавы. Наиболее важным стабилизатором аустенита является никель, другие включают углерод, марганец и азот.

Особые свойства, включая коррозионную стойкость, стойкость к окислению и прочность при высоких температурах, можно придать аустенитным нержавеющим сталям путем добавления определенных сплавов, таких как хром, никель, молибден, азот, титан и ниобий. И хотя углерод может повысить прочность при высоких температурах, он также может снизить коррозионную стойкость, образуя соединение с хромом. Важно отметить, что аустенитные сплавы нельзя упрочнять термической обработкой. Это означает, что они не затвердевают в зоне термического влияния при сварке.

* Нержавеющие стали всегда имеют высокое содержание хрома, часто значительное количество никеля, а иногда содержат молибден и другие элементы. Нержавеющие стали обозначаются трехзначным номером, начинающимся с 2, 3, 4 или 5.

Рисунок 1
Обязательно ознакомьтесь с последними изменениями в соответствующих публикациях AISI и SAE.

Классификация стали

Прежде чем мы рассмотрим пару общепринятых систем классификации стали, давайте рассмотрим еще один высокоуглеродистый металл — чугун. Содержание углерода в чугуне составляет 2,1% и более. Существует четыре основных типа чугуна:

  1. Серый чугун , относительно мягкий. Он легко обрабатывается и сваривается, и вы обнаружите, что он используется для блоков цилиндров двигателей, труб и конструкций станков.
  2. Белый чугун , твердый, хрупкий и не поддающийся сварке. Он имеет прочность на сжатие более 200 000 фунтов на квадратный дюйм (PSI), а после отжига превращается в ковкий чугун.
  3. Ковкий чугун , представляющий собой отожженный белый чугун. Он поддается сварке, механической обработке, пластичен и обладает хорошей прочностью и ударопрочностью.
  4. Высокопрочный чугун , который иногда называют чугуном с шаровидным графитом или шаровидным графитом. Он получил такое название, потому что его углерод имеет форму маленьких сфер, а не чешуек. Это делает его пластичным и податливым. Он также поддается сварке.

Теперь давайте взглянем на типичную систему классификации стали (см. Рисунок 1 ). И Общество автомобильных инженеров (SAE), и Американский институт черной металлургии (AISI) используют практически идентичные системы. Оба основаны на четырехзначной системе, где первое число обычно указывает на основной тип стали, а первые два числа вместе указывают серию в группе основного сплава.

Имейте в виду, что в группе основных сплавов может быть несколько серий в зависимости от количества основных легирующих элементов. Последние две-три цифры относятся к примерно допустимому диапазону содержания углерода в пунктах (сотых долях процента).

Эти системы классификации могут быть довольно сложными, и Рисунок 1 является лишь их основным представлением. Не забудьте ознакомиться с последними версиями AISI и SAE.

Это обзор некоторых основ, касающихся соотношения железо-углерод-сталь и его влияния на сварку и металлические сплавы. В следующий раз мы рассмотрим закалку и способы упрочнения металлов. Мы также рассмотрим влияние некоторых ключевых легирующих элементов и влияние сварки на металлургию.

Типы металлов и их применение | Классификация металлов

Металлы и достижения в производственных процессах дали нам промышленную революцию. Это привело к экспоненциальному росту человеческой цивилизации и привело нас туда, где мы находимся сегодня. Сегодня различные виды металлов окружают нас повсюду. С компьютера, который вы используете, чтобы прочитать эту информацию на зажимах в вашей сантехнике. Сегодня находят применение более восьмидесяти различных типов металлов.

Типы металлов и их классификация

В природе существует большое количество металлов. Их можно классифицировать различными способами в зависимости от того, какое свойство или характеристику вы используете в качестве критерия.

Классификация по содержанию железа

Наиболее распространенный способ классификации – по содержанию железа.

Металл, содержащий железо, называется черным металлом. Железо придает материалу магнитные свойства, а также делает его подверженным коррозии. Металлы, не содержащие железа, относятся к цветным металлам. Эти металлы не обладают никакими магнитными свойствами. Примеры включают, но не ограничиваются ими, алюминий, свинец, латунь, медь и цинк.

Периодическая таблица

Классификация по атомной структуре

Они также могут быть классифицированы на основе их атомной структуры в соответствии с периодической таблицей. Когда это сделано, металл может быть известен как щелочной, щелочноземельный или переходный металл. Аналогично ведут себя металлы, принадлежащие к одной группе, при взаимодействии с другими элементами. Таким образом, они имеют схожие химические свойства.

Магнитные и немагнитные металлы

Еще один способ отличить металлы — посмотреть, как они взаимодействуют с магнитами. По этому признаку можно разделить металлы на магнитные и немагнитные.

В то время как ферромагнитные металлы сильно притягиваются к магнитам, парамагнитные демонстрируют только слабое взаимодействие. Наконец, есть группа диамагнитных металлов, которые довольно слабо отталкиваются от магнитов.

Железо, его сплавы и их свойства

Все металлы имеют сходные механические свойства материалов. Но при внимательном рассмотрении один металл будет иметь небольшое преимущество перед другим по определенным свойствам. Можно настроить свойства при создании сплавов путем смешивания чистых элементов.

При выборе металла для конкретного применения необходимо учитывать несколько факторов, чтобы найти наиболее подходящий вариант. Эти факторы включают температуру плавления, стоимость, простоту обработки, достаточный коэффициент безопасности, доступное пространство, температурный коэффициент, тепло- и электропроводность, плотность и т. д. Давайте рассмотрим некоторые из популярных металлов и почему они выбраны для их применения. .

Железо

Эйфелева башня сделана из кованого железа

Не будет преувеличением назвать железо жизненной силой нашей цивилизации. Примерно 5 процентов земной коры состоит из железа. Таким образом, найти этот металл невероятно легко. Однако чистое железо — нестабильный элемент. При первой же возможности он вступает в реакцию с кислородом воздуха, образуя оксид железа.

Для извлечения железа из руд используется доменная печь. Чугун получают на первой ступени доменной печи, который может быть дополнительно очищен для получения чистого железа. Это железо часто попадает в стали и другие сплавы. Почти 90 процентов производимых металлов составляют черные металлы.

Сталь, например, представляет собой черный металл, который находит множество применений. Мы не можем понять истинный потенциал железа, не узнав о стали.

Сталь

Чистое железо прочнее других металлов, но оставляет желать лучшего. Во-первых, чистое железо не устойчиво к коррозии. Чтобы уберечь железо от коррозии, нужно тратить много денег и энергии. Во-вторых, он также чрезвычайно тяжел из-за своей высокой плотности. Эти недостатки могут затруднить строительство и обслуживание конструкций.

Добавление углерода к железу в определенной степени смягчает эти недостатки. Эта смесь железа и углерода до определенных пределов известна как углеродистая сталь. Добавление углерода к железу делает железо намного прочнее, а также придает ему другие замечательные характеристики.

Другие элементы могут быть добавлены в следовых количествах для включения их свойств. Давайте посмотрим, как классифицировать сталь и на что она способна.

Какие бывают виды стали и их применение?

Сталь является популярным строительным материалом благодаря своим превосходным свойствам. На сегодняшний день доступно более 3500 марок стали. Обладает высокой прочностью на растяжение и высоким соотношением прочности к весу. Это означает большую прочность на единицу массы стали. Это позволяет использовать стальные детали и компоненты небольшого размера, но при этом прочные.

Сталь также очень прочная. Это означает, что стальная конструкция может служить дольше и противостоять внешним факторам лучше, чем другие альтернативы. Он также пластичен и может принимать требуемые формы без ущерба для своих свойств. В зависимости от содержания железа сталь подразделяют на три категории.

Углеродистая сталь, классификация AISI

Арматура из низкоуглеродистой стали

  • Низкоуглеродистая сталь. До 0,25% углерода в железе дает нам низкоуглеродистую сталь, также известную как мягкая сталь. Он используется для труб в приложениях среднего давления. Арматурный прокат и в двутаврах в строительстве обычно из малоуглеродистой стали. Любые приложения, которые требуют большого количества стали без особого формования или гибки, также подходят для него. Например, корпус корабля.
  • Среднеуглеродистая сталь. Содержит 0,25…0,6 % углерода. Применение среднеуглеродистой стали включает те, которые требуют высокой прочности на растяжение и пластичности. Они находят применение в зубчатых передачах и валах, железнодорожных колесах и рельсах, стальных балках в зданиях и мостах и ​​т. Д. Другое применение — сосуды под давлением, за исключением случаев, когда они содержат холодные газы или жидкости из-за их склонности к холодному растрескиванию.
  • Высокоуглеродистая сталь. Сталь, содержащая более 0,6% углерода, является высокоуглеродистой сталью. Эта сталь более твердая и хрупкая, чем две предыдущие. Он находит применение в изготовлении стамесок и режущих инструментов. Отличные качества включают твердость и хорошую устойчивость материала к износу. Его также можно использовать в прессах и для изготовления сверл.

Хотя все вышеупомянутые стали обычно называют углеродистыми сталями, они содержат другие элементы для улучшения определенных свойств. Например, хром для коррозионной стойкости или марганец для улучшения прокаливаемости и прочности на растяжение.

Легированные стали

Этот тип металла содержит несколько элементов для улучшения различных свойств. Такие металлы, как марганец, титан, медь, никель, кремний и алюминий, могут быть добавлены в различных пропорциях.

Улучшает прокаливаемость стали, свариваемость, коррозионную стойкость, пластичность и формуемость. Легированные стали применяются в электродвигателях, подшипниках, нагревательных элементах, пружинах, шестернях и трубопроводах.

  • Нержавеющая сталь : Нержавеющая сталь содержит большое количество хрома. Вот почему он имеет в 200 раз более высокую коррозионную стойкость, чем низкоуглеродистая сталь. Это делает его идеальным кандидатом для производства кухонной утвари, трубопроводов, хирургического и стоматологического оборудования. Кроме того, поскольку покрытие не требуется, вы можете получить желаемый металлический вид с правильной обработкой поверхности.
  • Инструментальная сталь: Инструментальные стали используются для изготовления режущих и сверлильных инструментов. Их высокая твердость делает их идеальным выбором для этих применений. Они содержат молибден, ванадий, кобальт и вольфрам в качестве составных металлов.

Ударопрочная инструментальная сталь в использовании

Инструментальная сталь — это тип металла, который также находит применение в производстве рельсов, проволоки, труб, валов и клапанов. Инструментальная сталь в основном используется в автомобильной, судостроительной, строительной и упаковочной отраслях.

Различные виды металлов

В дополнение к черным металлам у нас есть большой выбор цветных металлов. Каждый из них обладает определенными качествами, которые делают их полезными в разных отраслях.

Алюминий

Алюминий получают главным образом из руды бокситов. Он легкий, прочный и функциональный. Это самый распространенный металл на Земле, и его применение повсеместно.

Это связано с такими его свойствами, как долговечность, легкий вес, коррозионная стойкость (узнайте больше о типах коррозии алюминия здесь), электропроводность и способность образовывать сплавы с большинством металлов. Он также не намагничивается и легко обрабатывается.

Медь

Говоря о различных типах металлов, нельзя не упомянуть медь и ее сплавы. Он имеет долгую историю, потому что его легко формировать. Даже сегодня это важный металл в промышленности. В чистом виде в природе не встречается. Таким образом, плавка и извлечение из руды необходимы.

Металлы являются хорошими проводниками, и медь выделяется среди других. Благодаря отличной электропроводности он находит применение в электрических цепях в качестве проводника. Его проводимость уступает только серебру. Он также обладает отличной теплопроводностью. Вот почему многие кухонные принадлежности сделаны из меди.

Латунь

Латунь представляет собой сплав меди и цинка. Количество каждого из металлов может варьироваться в зависимости от требуемых электрических и механических свойств металла. Он также содержит следовые количества других металлических элементов, таких как алюминий, свинец и марганец. Латунь является отличным кандидатом для изделий с низким коэффициентом трения, таких как замки, подшипники, сантехника, музыкальные инструменты, инструменты и фурнитура. Это необходимо в искробезопасных приложениях для предотвращения искрения и позволяет использовать в легковоспламеняющихся средах.

Бронза

Бронза также является сплавом меди. Но вместо цинка бронза содержит олово. Добавление других элементов, таких как фосфор, марганец, кремний и алюминий, может улучшить его свойства и пригодность для конкретного применения. Бронза хрупкая, твердая и хорошо сопротивляется усталости. Он также обладает хорошей электро- и теплопроводностью и коррозионной стойкостью. Бронза находит применение в производстве зеркал и отражателей. Он используется для электрических разъемов. Благодаря своей коррозионной стойкости он находит применение в деталях, находящихся под водой, и в судовой арматуре.

Титан

Титан является важным инженерным металлом благодаря своей прочности и легкости. Он также обладает высокой термической стабильностью даже при температурах до 480 градусов Цельсия. Благодаря этим свойствам он находит применение в аэрокосмической промышленности. Военная техника — один из вариантов использования этого металла. Поскольку титан также устойчив к коррозии, его также используют в медицинских целях. Титан также используется в химической и спортивной промышленности.

Цинк

Оцинкованная сталь

Цинк — широко распространенный металл, который находит широкое применение в медицине и промышленности. Его основное применение – оцинковка стали. Это защищает сталь от коррозии. Цинк также используется для производства литья под давлением для электротехнической, металлургической и автомобильной промышленности. Поскольку цинк имеет низкий электрохимический потенциал, его использование включает морские применения для предотвращения коррозии других металлов за счет катодной защиты. Жертвенные цинковые аноды могут защитить клапаны, трубопроводы и резервуары.