Как образуется сварной шов: СВАРНОЙ ШОВ | это… Что такое СВАРНОЙ ШОВ?

Содержание

Основная классификация сварных швов для разных видов сварки

Опубликовано: Автор: Екатерина

Сварочный шов – это участок соединения двух частей в единое целое, благодаря расплавлению металла под воздействием высокой температуры и дальнейшей его кристаллизации. На сегодняшний день различают более 100 типов соединений. Они все разделяются по особым параметрам и делятся на различные группы и подгруппы, в связи с чем и существует множество классификаций сварных швов.

Содержание

По виду сварного соединения

Классификация сварных швов по виду сварного соединения делится на стыковые и угловые. Какое именно произвести соединение в той или иной ситуации, решает мастер, отталкиваясь от положения деталей в пространстве.

  • Швы угловые производятся тогда, когда заготовки находятся по отношению друг к другу под углом.
  • Сварка стыковых соединений образуется в результате прилегания двух частей или деталей торцами друг к другу, которые располагаются на одной плоскости. Сама дорожка при этом может быть трех видов – вогнутая, выпуклая или плоская. Последняя применяется чаше всего, так как она не имеет особо выраженного перехода на стыке деталей, что выглядит более естественно, в сравнении с остальными двумя типами. Такой метод чаще всего используется при электродуговой сварке на низких токах, чтобы не пропалить заготовку. Например, тонколистовая сталь – идеальный материал для применения сварки стыковых соединений.
  • Прорезной (электрозаклепочный) производится в отверстии, которое имеется на детали и выполняется в виде точечных заклепок. То есть, при этом не образуется сварная ванна и шов результате, а детали спаиваются небольшими участками через пазы в заготовке.

По месту выполнения сварки

Классификация сварных соединений и швов данной категории зависит от положения свариваемых деталей в пространстве. Например, если нужно починить деталь какой-то конструкции, которую нельзя снять и положить, но она при этом находится на некотором расстоянии от пола, то работу мастер будет производить потолочным,нижним, горизонтальным или вертикальным соединением, отталкиваясь от размещения этой детали.

  • Горизонтальные – это сварные швы, которые тянутся слева направо (или наоборот) на вертикальной детали. Чтобы при этом масса металла не стекала вниз, необходимо правильно подобрать скорость движения электродом или горелкой и силу тока (это подбирается для каждого случая в индивидуальном порядке, отталкиваясь от типа сварки, характеристик деталей и мастерства специалиста).
  • Вертикальный метод производства стыковых швов ведется на вертикально расположенных заготовках, при этом швы ведутся сверху вниз (или наоборот). Сложность данного процесса заключается в том, что срабатывает сила притяжения Земли и расплавленная металлическая масса все время стекает вниз, что портит и качество и внешних вид детали. Такое соединения рекомендуется проводить в крайних случаях и только тем мастерам, у которых уже есть определенный теоретический и практических багаж знаний для работы такими дорожками. Подробнее с технологией вертикального шва можно ознакомиться тут.
  • Потолочным называется положение, при котором деталь находится выше головы мастера, что намного усложняет процесс. При осуществлении потолочных сварочных швов нужно строго соблюдать правила безопасности и технологию выполнения сварки, потому что в данном случае опасность заключается в стекании массы расплавленного металла.
  • Нижние способы сварки выполняются тогда, когда деталь располагается внизу по отношению к мастеру. Это самый удобный метод соединения, так как металл не растекается по сторонам или вниз, а стекает в кратер. Кроме этого, свободно выходят газы и шлаки на поверхность. Стыковое сварное соединение в нижнем положении выполняется формированием валиков на протяжении всего стыка деталей. При этом технология сварки простая – достаточно вести электрод или горелку прямо или зигзагом для создания надежной и эстетически привлекательной дорожки.

По конфигурации

Данная категория стыковых швов используется при ручной дуговой сварке электродом. Сюда относятся три типа сварочных швов – прямолинейные, криволинейные и кольцевые (спиральные).  Они производятся вне зависимости от положения рабочего изделия. Все типы швов данной классификации предполагают, как стыковое, так и нахлесточное сварное соединение.

По протяженности

Классификация сварных швов по протяженности бывает двух видов: сплошные или прерывистые.

 

  • Прерывистый – это такой шов, который производится определенной длины с синхронным интервалом. Он, в свою очередь, делится на два типа – цепная дорожка и шов в шахматном порядке. Например, двусторонние прерывистые соединения на одной стороне стенки расположены против сваренных участков шва с другой ее стороны. Такие типы сцепления могут быть как односторонними, так и двусторонними. То есть, деталь спаивается с двух сторон. Расстояние между этими сварными отрезками называется «сварочный шаг».
  • Сплошные способы сварки также делятся на короткие и длинные дорожки, и совершаются вдоль всей заготовки.
  • Точечный способ стыковых швов значительно отличается от других, за счет того, что здесь нет сварочной ванны и дорожки. В этом случае заготовки соединяются точками, за счет нахлесточного сварного соединения. Такой способ зачастую применяется для пайки тонкого металла или аккумуляторов.

Способы протяженных швов: а) сплошной б) прерывистый, в) точечный, г) прерывистый шахматный, д) прерывистый сплошной (цепной)

 

По технологии выполнения

В зависимости от технологии, по которой производится скрепление, выделяют основные четыре вида:

  • Подварочный, где — меньшая часть двухстороннего шва, выполняется предварительно для предотвращения прожогов при последующей сварке;
  • шов-прихватка позволяет фиксировать детали, которые уже расположены для сварки;
  • временный шов необходим, чтобы скрепить заготовки на некоторое время, а по окончанию работ он удаляется.
  • монтажный сварной шов, используется во время монтажа различных конструкций.

По отношению к направлению действующих усилий

Сварка стыковых соединений содержит еще одну важную классификацию, в зависимости от отношения к направлению усилий:

  • Продольный способ создания стыка (фланговый), при котором усилие действует параллельно оси дорожки;
  • Поперечный метод (лобовой) сварного шва, при котором его ось находится перпендикулярно (90 градусов) к оси усилия;
  • Комбинированное соединение сваркой включает в себя одновременно и фланговый и поперечный тип;
  • Косой, при котором ось шва располагается под углом к направлению действующих усилий.

 

По форме наружной поверхности

По форме поверхности сцепления делятся на три основных типа:

  • Выпуклые (усиленные)- это многослойные швы, применяемый в сцеплениях при статических нагрузках, но усиленный наплыв приводит к чрезмерному расходу электродного металла и в связи с этим для его использования нужно экономическое обоснование.
  • Вогнутые (ослабленные) способы используются для скрепления тонкого металла.
  • Нормальные или плоские актуальны при динамических нагрузках, так как они не имеют особого перепада между дорожкой и основным металлом.

 

По виду сварки

Классификация сварных швов по виду сварки разделяется в зависимости от типа воздействия сварочного аппарата. Например, при работе в среде аргона или другого защитного газа, соединение будет не иначе, как «газовым», при работе с электродом – «электродуговым». Самыми основными видами являются следующие швы:

  • ручной дуговой сварки – стыковое или нахлесточное соединение реализуется вручную с помощью электрода. Таким образом, можно скрепить практически любой металл, толщиной от 0,1 до 100 мм в любом положении;
  • автоматической сварки, которые осуществляются при работе с аппаратом – трансформатором, выпрямителем или инвертором;
  • сварки в инертном газе. Такие стыковые, угловые и нахлесточные соединения считаются самые прочные, так как сварка происходит в среде инертных газов, которые защищают его от окисления. Большим плюсом такого скрепления является эстетический вид и отсутствие отходов и шлаков;
  • газовой сварки – дорожка формируется под воздействием температуры, которая создается за счет горения рабочего газа, исходящего из горелки;
  • паяных соединений, которые совершаются с помощью паяльника.

Кроме описанных, существует еще множество способов для соединения деталей, как обычных, так и нестандартных, которые применяются для заваривания деталей в труднодоступных местах. Например, швы могут быть однослойными (а) или многослойными(б, в), при которых накладывается несколько валиков, располагающихся на одном уровне поперечного сечения шва.

 

 

Как вам статья?

разбираемся в классификации и особенностях


Из этого материала вы узнаете:

  • Слои сварного шва
  • Основные виды сварных швов
  • Классификация сварных швов
  • Методы контроля качества сварных швов
  • Наиболее распространенные дефекты сварных швов


Для качественного соединения деталей в различных условиях необходимо правильно подбирать виды сварных швов, которые будут соответствовать всем требованиям. Несмотря на то, что их общее количество насчитывает несколько сотен, все они собраны в удобную и понятную классификацию.


Не менее важным вопросом является и проверка качества шва после его создания. В нашей статье мы расскажем, какие бывают сварные соединения, по каким признакам их классифицируют, а также поговорим о том, как происходит их проверка, и перечислим наиболее распространенные дефекты.

Слои сварного шва


Сварной шов – место, в котором соединяются кромки обрабатываемых деталей и конструкций. Формируется он под воздействием электрической дуги, расплавляющей металл заготовок. Разные виды сварных швов выполняют различными способами в зависимости от материала соединяемых изделий, их толщины и формы, мощности используемого для работы оборудования и т. п.


Независимо от вида, сварной шов состоит из нескольких разграниченных между собой слоев:


Область наплавления металла – выглядит как единый литой слой, формирующийся при взаимодействии плавящегося электрода и кромок соединяемых заготовок. Металлические частицы в этой зоне очень твердые, мелкие и плотно спаянные друг с другом. Из-за нарушения технологии проведения сварных работ в этой области появляются дефекты.


 


Причина их образования может заключаться в воздействии кислорода, попадании шлаков, частиц флюса и т. п.


Зона сплавления металлов – образуется за счет термодиффузии, которой обладают обрабатываемые материалы. При активном взаимодействии молекул одного металла с молекулами другого глубина их проникновения составляет свыше 50 % монолитного наплавления. Для этой области не характерна однородность, в ней могут присутствовать соединения углерода с железом, хромом, азотом и пр.


Слой термического воздействия – структурно напоминает металл, образующийся в процессе поверхностной закалки. Область механического сплава граничит с так называемой белой зоной. Металл в этой области обладает максимальной твердостью и прочностью. Появление этой участка особенно заметно при сварке в защитной среде инертных газов. Возникает он благодаря тепловой энергии, которая уже не расплавляет материал заготовки.


Зона структурных преобразований материала – расположена следом за белым слоем. Изменения в структуре металла зависят от его марки.


Переходная область за которой следует основной металл. Слой включает в себя компоненты, образующиеся при незначительных температурных колебаниях (троостит, перлит, аустенит и др.).


Таким образом, ни один из видов сварных соединений и швов нельзя назвать однородными и гомогенными. Качество их составных частей влияет на надежность и прочность соединения в целом.

Основные виды сварных швов

Стыковые соединения.


Это простейшие сварные швы, используемые для соединения торцевых частей деталей, расположенных на одной плоскости или ровной поверхности. Если заготовки имеют разную толщину, то поверхности могут быть смещены относительно друг друга. Стыковой вид сварных соединений используют при работе с листовыми металлами, для сварки труб и резервуаров. Среди преимуществ этого способа обработки заготовок можно отметить высокую скорость работы, небольшой расход материалов. К недостаткам метода относится необходимость тщательной подготовки кромок соединяемых деталей.

Угловые соединения.


Этот вид сварных швов используют в том случае, когда металлические заготовки соединяют под углом друг к другу. При разнице в толщине металла толстостенная деталь размещается снизу и, расплавляясь, образует сварочную ванну. Этот прием помогает предотвратить появление таких дефектов, как подрезы и прожиги. Чтобы сделать шов более прочным, место соединения деталей проваривают с обеих сторон. Для внутреннего угла используют ток небольшой мощности, в таком случае снаружи не образуется закругления.


Для создания такого вида сварных соединений используют способ «в лодочку». Заготовки располагают под нужным углом относительно друг друга и слегка прихватывают их. Непосредственно сварку выполняют, установив конструкцию в положение плывущего кораблика. Расплавленный металл будет равномерно стекать с двух сторон обрабатываемых заготовок. Такой прием помогает избежать образования дефектов.


Угловой вид сварных швов подходит для работы с небольшими по размеру строительными каркасами, емкостями, навесами, элементами автомобильных кузовов, а также используется для сварки элементов конструкций в труднодоступных местах.


Рекомендуем статьи по металлообработке

  • Марки сталей: классификация и расшифровка
  • Марки алюминия и области их применения
  • Дефекты металлический изделий: причины и методика поиска

Нахлесточные соединения.


Этот вид сварных швов применяют при необходимости соединения металлических листов, расположенных параллельно друг другу, при этом край одного из листов слегка накладывается на край другого. Чтобы увеличить прочность соединения, а также предотвратить попадание внутрь шва влаги и, как следствие, появление коррозии, область стыка деталей проваривают с двух сторон. Нахлесточные швы подходят для соединения заготовок толщиной не более 1,2 см.


Технология не требует высокой квалификации мастера, поскольку отсутствует необходимость в тщательной подготовке поверхностей свариваемых деталей, вероятность появления прожигов при применении этого способа минимальна. К недостаткам такого вида соединения относится больший расход металла по сравнению с другими.

Тавровые соединения.


При тавровом соединении заготовки сваривают под прямым углом или незначительно отклоняющимся от угла 90° относительно друг друга. При толщине деталей свыше 0,4 см шов выполняют с двух сторон. Кромки вертикальной заготовки должны быть тщательно подготовлены. Технологию используют в основном при сборке несущих конструкций. По возможности ее элементы следует располагать «в лодочку», чтобы повысить прочность узлов.

Торцевые соединения.


Торцевой вид сварных швов предполагает соединение плотно прилегающих друг к другу краев заготовок. Угол между ними не должен превышать 30°. При помощи такой технологии изготавливают кожухи, вентиляционные короба, контейнеры, металлические шкафы и др.


Среди достоинств этого способа соединения металлов можно отметить небольшую вероятность появления прожогов, внутренних деформирующих напряжений. К недостаткам относятся повышенный расход материалов, риск возникновения коррозии в случае попадания влаги внутрь соединения.

Классификация сварных швов


Различные виды сварных швов выделяют в зависимости от:

  • пространственного положения заготовок;
  • конфигурации;
  • степени выпуклости соединений;
  • количества подходов;
  • направления прилагаемого усилия и вектора воздействия внешних сил;
  • вида сварки;
  • протяженности шва.


Пространственное положение сварного шва влияет на выбор технологии сварки и уровень сложности работы. В зависимости от положения в пространстве выделяют следующие виды сварных швов:

  • нижние – самые простые в исполнении, могут выполняться начинающими сварщиками;
  • горизонтальные;
  • вертикальные;
  • потолочные – наиболее сложные, требуют от мастера высокой квалификации и опыта работы, поскольку в данном случае увеличивается степень травмоопасности для сварщика из-за вероятности попадания на него капель расплавленного металла.


В зависимости от конфигурации выделяют следующие виды сварных швов:

  • прямолинейные;
  • криволинейные;
  • кольцевые.


В зависимости от степени выпуклости существуют следующие виды сварных швов:

  • вогнутые;
  • плоские;
  • выпуклые.


При выполнении вогнутых и плоских швов расходуется меньше металла, однако их качество нельзя назвать высоким. Выпуклые отличаются большей прочностью. Однако слишком рельефные сварные соединения накапливают высокие напряжения.


Для выполнения разных видов сварных швов используют различные типы сварки:

  • электрическую дуговую;
  • автоматическую и полуавтоматическую под флюсом;
  • электродуговую в среде защитных газов;
  • электрошлаковую;
  • электрозаклепочную;
  • контактную;
  • пайку.


В зависимости от протяженности различают следующие виды сварных швов:

  • сплошные – более прочные, качественные, устойчивые к коррозии;
  • прерывистые (в свою очередь делятся на цепные и шахматные) – более дешевые в исполнении, требующие меньших усилий, но при этом менее прочные и подверженные коррозии.

Методы контроля качества сварных швов


Любые сварные соединения в обязательном порядке подвергаются контролю качества выполнения. Самые высокие требования предъявляют к несущим конструкциям и ответственным узловым соединениям. Готовые детали и конструкции оценивают визуально, а также при помощи других видов контроля сварных швов:

Капиллярный способ.


Самый распространенный метод, требующий применения специальных жидкостей – индикаторов, или пенетрантов. Ярко окрашенные жидкие составы проникают в малейшие трещины сварных соединений. Таким образом, окрашивание определенной области шва свидетельствует о наличии в ней дефектов. Увидеть их можно невооруженным глазом.


Индикаторы наносят на сухую очищенную поверхность изделия или конструкции. Если деталь небольшая, ее полностью погружают в емкость со специальной жидкостью. Более крупные изделия смачивают пенетрантом или наносят его с помощью баллончика. При вакуумном способе проверки качества жидкость втягивается в пустоты швов, при компрессионном – попадает внутрь сварных соединений за счет давления воздуха, при ультразвуковом – под воздействием ультразвука, при деформационном – благодаря колебаниям звуковых волн.

Магнитная дефектоскопия.


Подходит для контроля качества разных видов ферромагнитных сварных швов. Способ помогает обнаружить внутренние трещины, включая микротрещинки, и инородные включения. Контроль проводится при помощи дефектоскопа – аппарата, создающего магнитное поле.


Различают несколько видов контроля сварных швов при помощи магнитного дефектоскопа:

  • Магнитопорошковый предполагает использование ферримагнитного порошка, в составе которого присутствуют частицы железа. Он может быть сухим, в виде водной эмульсии или суспензии. Состав скапливается в области дефекта, определяя его форму и размеры.
  • Магнитографический, при котором контроль осуществляют с помощью ленты-магнитоносителя. Информация с нее записывается дефектоскопом.

Индукционный способ.


Контроль качества разных видов сварных швов выполняют индукционными катушками, соединенными с регистраторами. Катушку перемещают вдоль шва, при обнаружении дефекта магнитный поток меняется, его изменения регистрируются специальным прибором.

Ультразвуковой способ.


При обнаружении дефекта сварного соединения меняется направление ультразвука. Изменение регистрируется специальным прибором. У ультразвукового метода несколько разновидностей. Он подходит для выявления большого количества недочетов, в том числе для проведения контроля качества разных видов сварных швов. К его достоинствам также относятся безопасность и возможность использования при выездных работах.

Радиационный способ.


С его помощью можно выявить трещины, непровары, инородные включения в зоне соединения заготовок. Разные виды сварных швов просвечивают рентгеновскими и гамма-лучами с регистрацией результатов специальной аппаратурой. На полученной рентгенограмме видны дефекты.


В ГОСТ 5264-80 перечислены и подробно описаны основные виды сварных швов, а также предъявляемые к ними требования.

Наиболее распространенные дефекты сварных швов


Наиболее часто встречающимися видами дефектов сварных швов являются следующие:

  • Непровары – возникают, если при обработке заготовок используется маломощный ток, дуга перемещается вдоль места соединения слишком быстро, шов накладывается мимо линии стыка (у сварщика в защитной маске ограничен обзор).
  • Наплывы – представляют собой бугры, неравномерные волны застывшего металла в области соединения заготовок. Причины их появления – нарушения технологии выполнения вертикальных и потолочных швов, неравномерная скорость создания сварного соединения в нижнем положении.
  • Подрезы – могут появиться на боковой части сварного шва, если сварщик использует слишком мощный ток или неправильно перемещает электрод при работе. Дефект представляет собой выхваченные области из основного материала.
  • Поры – образуются, если поверхность обрабатываемого металла не была предварительно очищена либо при сварке в среде защитного газа сварщик некачественно защитил сварочную ванну от попадания в нее воздуха.
  • Кратеры – представляют собой отверстия в конце сварного шва, из-за которых соединение перестает быть герметичным. Причина возникновения дефекта – резкое прерывание дуги при аргонной сварке или попадание шлака при ручной дуговой сварке.
  • Трещины – образуются, если сварной шов слишком резко охлаждают, например, помещая изделие в холодную воду. При работе с чугуном причиной образования дефекта является неравномерный прогрев заготовки.


Научиться выполнять разные виды сварных швов можно самостоятельно, начиная с простых соединений и постепенно переходя к более сложным. Самые легкие для исполнения – нахлесточные швы, самые трудные – потолочные.

Что такое сварка? — Определение, процессы и типы сварных швов

Сварка – это производственный процесс, при котором две или более деталей сплавляются друг с другом с помощью тепла, давления или того и другого, образуя соединение по мере охлаждения деталей. Сварка обычно используется для металлов и термопластов, но также может использоваться для дерева. Готовое сварное соединение может называться сварным соединением.

Некоторые материалы требуют использования определенных процессов и методов. Число считается ‘ несвариваемый , термин, обычно не встречающийся в словарях, но полезный и описательный в технике.

Соединяемые детали называются исходным материалом . Материал, добавляемый для облегчения формирования соединения, называется наполнитель или расходный материал . По форме эти материалы могут называться основной пластиной или трубой, присадочной проволокой, плавящимся электродом (для дуговой сварки) и т. д.

Расходные материалы обычно выбираются такими, чтобы они были близки по составу к основному материалу, таким образом образуя однородный сварной шов. , но бывают случаи, например, при сварке хрупких чугунов, когда применяют присадку с самым другим составом и, следовательно, свойствами. Такие сварные швы называются неоднородными.

Готовое сварное соединение может обозначаться как сварное соединение .

Состав:

  1. Как работает сварка?
  2. Общие конфигурации соединений
  3. Типы сварных соединений
  4. Источники энергии
  5. Различные типы и для чего они используются
  6. Услуги
  7. Где используется?

Соединение металлов

В отличие от пайки твердым припоем, при которых основной металл не плавится, сварка представляет собой высокотемпературный процесс, при котором основной материал плавится. Обычно с добавлением наполнителя.

Нагрев при высокой температуре приводит к образованию сварочной ванны из расплавленного материала, который при охлаждении образует соединение, которое может быть прочнее основного металла. Давление также может использоваться для создания сварного шва, как вместе с нагревом, так и отдельно.

Он также может использовать защитный газ для защиты расплавленных и присадочных металлов от загрязнения или окисления.

Соединение пластмасс

Сварка пластмасс также использует тепло для соединения материалов (хотя и не в случае сварки растворителем) и выполняется в три этапа.

Во-первых, поверхности подготавливаются перед применением тепла и давления, и, наконец, материалы охлаждаются для плавления. Методы соединения пластмасс можно разделить на методы внешнего или внутреннего нагрева, в зависимости от конкретного используемого процесса.

Соединение древесины

Сварка древесины использует тепло, выделяемое при трении, для соединения материалов. Соединяемые материалы подвергаются большому давлению, прежде чем линейное фрикционное движение создает тепло для соединения заготовок вместе.

Это быстрый процесс, позволяющий соединить древесину без клея или гвоздей за считанные секунды.

Соединение встык

Соединение между концами или кромками двух частей, образующих угол друг к другу 135-180° включительно в области соединения.

Т-образное соединение

Соединение между концом или краем одной детали и лицевой стороной другой детали, причем части образуют друг с другом угол от 5 до 9 градусов включительно0° в области сустава.

Угловое соединение

Соединение между концами или краями двух частей, образующих угол друг к другу более 30, но менее 135° в области соединения.

Кромочное соединение

Соединение между кромками двух деталей, образующими угол друг к другу от 0 до 30° включительно в области стыка.

Крестообразный шарнир

Соединение, при котором две плоские пластины или два стержня привариваются к другой плоской пластине под прямым углом и на одной оси.

Соединение внахлестку

Соединение между двумя перекрывающимися частями, образующими угол друг к другу 0-5° включительно в области сварного шва или сварных швов.

Сварные швы в зависимости от конфигурации дыра.

Пробковый сварной шов

Сварка, выполненная путем заполнения отверстия в одном из компонентов заготовки присадочным металлом таким образом, чтобы соединить его с поверхностью компонента внахлест, выходящего через отверстие (отверстие может быть круглым или овальным).

На основе проплавления

Сварной шов с полным проплавлением

Сварное соединение, в котором металл шва полностью проникает в соединение с полным сплавлением корня. В США предпочтительным термином является сварной шов с полным проплавлением (CJP, см. AWS D1.1).

Сварка с частичным проплавлением

Сварка, в которой глубина проплавления преднамеренно меньше, чем полная. В США предпочтительным термином является сварка с частичным проплавлением (PJP).

Сварные швы на основе доступности

Особенности заполненных сварных швов

Butt Weld

FILET WELD

MATLEAR

FILET WELD

MATLEAR

. пайка.

Присадочный металл

Металл, добавляемый во время сварки, сварки твердым припоем, пайки твердым припоем или наплавки.

Металл сварного шва

Весь металл расплавился во время выполнения сварного шва и остался в сварном шве.

Зона термического влияния (ЗТВ)

Часть основного металла, подвергшаяся металлургическому воздействию тепла сварки или термической резки, но не расплавившаяся.

Линия сплавления

Граница между металлом шва и ЗТВ при сварке плавлением. Это нестандартный термин для сварного соединения.

Зона сварки

Зона, содержащая металл сварного шва и ЗТВ.

Поверхность сварного шва

Поверхность сварного шва плавлением, открытая со стороны, с которой был выполнен сварной шов.

Корень сварного шва

Зона на стороне первого прохода, наиболее удаленной от сварщика.

Стык сварного шва

Граница между поверхностью сварного шва и основным металлом или между проходами. Это очень важная характеристика сварного шва, поскольку выступы являются точками высокой концентрации напряжений и часто являются точками зарождения различных типов трещин (например, усталостных трещин, холодных трещин).

Чтобы уменьшить концентрацию напряжения, пальцы должны плавно переходить в поверхность основного металла.

Избыточный металл сварного шва

Металл сварного шва, лежащий за пределами плоскости соединения пальцев. Другие нестандартные термины для этого признака: армирование, перелив.

Примечание: термин «усиление», хотя и широко используется, неуместен, поскольку любой избыток металла сварного шва над поверхностью основного металла не делает соединение более прочным.

Фактически, толщина, учитываемая при проектировании сварного компонента, представляет собой расчетную толщину шва, которая не включает избыточный металл шва.

Прогон (проход)

Металл, расплавленный или осажденный за один проход электрода, горелки или паяльной трубки.

Слой

Слой металла шва, состоящий из одного или нескольких проходов.

Различные процессы определяются используемым источником энергии, при этом доступно множество различных методов.

До конца 19-го века кузнечная сварка была единственным используемым методом, но с тех пор были разработаны более поздние процессы, такие как дуговая сварка. Современные методы используют газовое пламя, электрическую дугу, лазеры, электронный луч, трение и даже ультразвук для соединения материалов.

Эти процессы требуют осторожности, так как они могут привести к ожогам, поражению электрическим током, ухудшению зрения, облучению или вдыханию ядовитых сварочных дымов и газов.

Существует множество различных типов сварочных процессов с собственными технологиями и применениями в промышленности, в том числе:

1. Дуговая сварка

Эта категория включает в себя ряд обычных ручных, полуавтоматических и автоматических процессов. К ним относятся сварка металлом в среде инертного газа (MIG), сварка электродом, сварка вольфрамовым электродом в среде инертного газа (TIG), также известная как дуговая сварка вольфрамовым электродом (GTAW), газовая сварка, сварка металлическим активным газом (MAG), дуговая сварка с флюсовой проволокой (FCAW), дуговая сварка металлическим электродом в среде защитного газа (GMAW), дуговая сварка под флюсом (SAW), дуговая сварка металлическим электродом в среде защитного газа (SMAW) и плазменная дуговая сварка.

Эти методы обычно используют присадочный материал и в основном используются для соединения металлов, включая нержавеющую сталь, алюминий, никелевые и медные сплавы, кобальт и титан. Процессы дуговой сварки широко используются в таких отраслях, как нефтегазовая, энергетическая, аэрокосмическая, автомобильная и других.

2. Трение

Методы сварки трением соединяют материалы с использованием механического трения. Это может быть выполнено различными способами на различных сварочных материалах, включая сталь, алюминий или даже дерево.

Механическое трение выделяет тепло, которое размягчает материалы, которые смешиваются, образуя связь при охлаждении. Способ соединения зависит от конкретного используемого процесса, например, сварка трением с перемешиванием (FSW), точечная сварка трением с перемешиванием (FSSW), линейная сварка трением (LFW) и вращающаяся сварка трением (RFW).

Сварка трением не требует использования присадочных металлов, флюса или защитного газа.

Трение часто используется в аэрокосмической промышленности, так как оно идеально подходит для соединения легких алюминиевых сплавов, которые иначе не свариваются.

Процессы трения используются в промышленности, а также изучаются как метод склеивания древесины без использования клея или гвоздей.

3. Электронный пучок

В этом процессе соединения материалов используется пучок высокоскоростных электронов. Кинетическая энергия электронов преобразуется в тепло при столкновении с заготовками, в результате чего материалы сплавляются друг с другом.

Электронно-лучевая сварка (ЭЛС) выполняется в вакууме (с использованием вакуумной камеры) для предотвращения рассеяния луча.

Существует много распространенных применений EBW, которые можно использовать для соединения толстых профилей. Это означает, что его можно применять в ряде отраслей, от аэрокосмической до атомной энергетики, от автомобилестроения до железнодорожного транспорта.

4. Лазер

Используется для соединения термопластов или кусков металла. В этом процессе используется лазер для получения концентрированного тепла, идеально подходящего для швов, глубоких швов и высокой скорости соединения. Поскольку этот процесс легко автоматизируется, высокая скорость сварки делает его идеальным для применения в больших объемах, например, в автомобильной промышленности.

Лазерная сварка может выполняться на воздухе, а не в вакууме, например, при сварке электронным лучом.

5. Сопротивление

Это быстрый процесс, обычно используемый в автомобильной промышленности. Этот процесс можно разделить на два типа: контактная точечная сварка и контактная шовная сварка.

При точечной сварке используется тепло, передаваемое между двумя электродами, которое воздействует на небольшую площадь при сжатии заготовок.

Шовная сварка аналогична точечной сварке, за исключением того, что электроды заменены вращающимися колесами, что обеспечивает непрерывный сварной шов без утечек.

TWI предлагает один из самых обширных наборов услуг.

Связанные часто задаваемые вопросы (FAQ)

 

Сварка | Типы и определение

дуговая сварка

Просмотреть все материалы

Связанные темы:
дуговая сварка
сварка взрывом
электронно-лучевая сварка
диффузионное соединение
холодная сварка

Просмотреть весь связанный контент →

Сводка

Прочтите краткий обзор этой темы

сварка , метод, используемый для соединения металлических деталей, обычно с применением тепла. Этот метод был открыт во время попыток придать железу полезную форму. Сварные клинки были разработаны в 1-м тысячелетии нашей эры, самые известные из них производились арабскими оружейниками в Дамаске, Сирия. В то время был известен процесс науглероживания железа для производства твердой стали, но полученная сталь была очень хрупкой. Техника сварки, которая включала прослойку относительно мягкого и прочного железа с высокоуглеродистым материалом с последующей ковкой в ​​​​молоте, позволила получить прочное и прочное лезвие.

В наше время совершенствование технологии производства железа, особенно внедрение чугуна, ограничило сварку кузнецом и ювелиром. Другие способы соединения, такие как крепление болтами или заклепками, широко применялись к новым изделиям, от мостов и железнодорожных двигателей до кухонной утвари.

Современные процессы сварки плавлением являются результатом необходимости получения непрерывного соединения на больших стальных пластинах. Было показано, что клепка имеет недостатки, особенно для закрытого контейнера, такого как котел. Газовая сварка, дуговая сварка и контактная сварка появились в конце 19 века.век. Первая реальная попытка широкомасштабного внедрения сварочных процессов была предпринята во время Первой мировой войны. К 1916 г. кислородно-ацетиленовый процесс был хорошо разработан, и используемые тогда методы сварки используются до сих пор. С тех пор основные улучшения коснулись оборудования и безопасности. Дуговая сварка с использованием плавящегося электрода также была введена в этот период, но первоначально использовавшаяся неизолированная проволока приводила к хрупким сварным швам. Решение было найдено путем обматывания оголенного провода асбестом и обвивкой алюминиевой проволокой. Современный электрод, представленный в 1907, состоит из неизолированной проволоки со сложным покрытием из минералов и металлов. Дуговая сварка не использовалась повсеместно до Второй мировой войны, когда острая потребность в средствах быстрого строительства для судоходства, электростанций, транспорта и сооружений стимулировала необходимые опытно-конструкторские работы.

Сварка сопротивлением, изобретенная в 1877 году Элиу Томсоном, была принята задолго до дуговой сварки для точечного и шовного соединения листов. Стыковая сварка для изготовления цепей и соединения стержней и стержней была разработана в XIX веке.20 с. В 1940-х годах был внедрен вольфрамово-инертный газовый процесс с использованием неплавящегося вольфрамового электрода для выполнения сварных швов плавлением. В 1948 году в новом процессе в среде защитного газа использовался проволочный электрод, который изнашивался при сварке. Совсем недавно были разработаны электронно-лучевая сварка, лазерная сварка и несколько твердофазных процессов, таких как диффузионная сварка, сварка трением и ультразвуковое соединение.

Сварной шов можно определить как слияние металлов, полученное путем нагревания до подходящей температуры с приложением давления или без него, а также с использованием или без использования присадочного материала.

При сварке плавлением источник тепла выделяет достаточно тепла для создания и поддержания ванны расплавленного металла требуемого размера. Тепло может подаваться электричеством или газовым пламенем. Сварку электрическим сопротивлением можно рассматривать как сварку плавлением, потому что образуется некоторое количество расплавленного металла.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас

Твердофазные процессы производят сварку без плавления основного материала и без добавления присадочного металла. Всегда используется давление, и обычно обеспечивается некоторое количество тепла. Теплота трения выделяется при ультразвуковом соединении и соединении трением, а нагрев в печи обычно используется при диффузионном соединении.

Электрическая дуга, используемая при сварке, представляет собой сильноточный низковольтный разряд, обычно в диапазоне 10–2000 ампер при напряжении 10–50 вольт. Столб дуги сложен, но, вообще говоря, состоит из катода, испускающего электроны, газовой плазмы для проведения тока и анодной области, которая становится сравнительно более горячей, чем катод, из-за бомбардировки электронами. Обычно используется дуга постоянного тока (DC), но могут использоваться дуги переменного тока (AC).

Суммарное потребление энергии во всех процессах сварки превышает количество энергии, необходимой для изготовления соединения, поскольку не все выделяемое тепло может быть эффективно использовано. Эффективность варьируется от 60 до 90 процентов, в зависимости от процесса; некоторые специальные процессы сильно отклоняются от этой цифры. Тепло теряется за счет теплопроводности через основной металл и за счет излучения в окружающую среду.

Большинство металлов при нагревании вступают в реакцию с атмосферой или другими металлами поблизости. Эти реакции могут быть чрезвычайно вредными для свойств сварного соединения. Например, большинство металлов быстро окисляются в расплавленном состоянии. Слой оксида может помешать правильному соединению металла. Капли расплавленного металла, покрытые оксидом, захватываются сварным швом и делают соединение хрупким. Некоторые ценные материалы, добавленные для определенных свойств, так быстро реагируют на воздухе, что осаждаемый металл не имеет того состава, который был изначально. Эти проблемы привели к использованию флюсов и инертных атмосфер.

При сварке плавлением флюс играет защитную роль, облегчая контролируемую реакцию металла, а затем предотвращая окисление за счет образования покрытия над расплавленным материалом. Флюсы могут быть активными и помогать в процессе или неактивными и просто защищать поверхности во время соединения.

Инертные атмосферы играют такую ​​же защитную роль, как и флюсы. При дуговой сварке металлическим электродом в среде защитных газов и дуговой сварке вольфрамовым электродом в защитных газах инертный газ — обычно аргон — вытекает из кольцевого пространства, окружающего горелку, непрерывным потоком, вытесняя воздух вокруг дуги. Газ не вступает в химическую реакцию с металлом, а просто защищает его от контакта с кислородом воздуха.

Металлургия соединения металлов важна для функциональных возможностей соединения. Дуговая сварка иллюстрирует все основные особенности соединения. В результате прохождения сварочной дуги образуются три зоны: (1) металл шва, или зона сплавления, (2) зона термического влияния и (3) незатронутая зона. Металл шва – это та часть соединения, которая расплавилась во время сварки. Зона термического влияния – это область, прилегающая к металлу шва, которая не подвергалась сварке, но претерпела изменение микроструктуры или механических свойств под действием тепла сварки. Незатронутый материал — это тот, который не был нагрет достаточно, чтобы изменить свои свойства.

Состав металла шва и условия, при которых он замерзает (затвердевает), существенно влияют на способность соединения соответствовать эксплуатационным требованиям. При дуговой сварке металл шва состоит из присадочного материала и расплавленного основного металла. После прохождения дуги происходит быстрое охлаждение металла шва. Однопроходный шов имеет литую структуру со столбчатыми зернами, простирающимися от края ванны расплава к центру сварного шва. При многопроходном сварном шве эта литая структура может быть изменена в зависимости от конкретного свариваемого металла.

Основной металл, прилегающий к сварному шву или зоне термического влияния, подвергается ряду температурных циклов, и изменение его структуры напрямую связано с пиковой температурой в любой заданной точке, временем воздействия и охлаждением. ставки. Типов основного металла слишком много, чтобы обсуждать их здесь, но их можно сгруппировать в три класса: (1) материалы, не подверженные воздействию тепла сварки, (2) материалы, упрочненные структурными изменениями, (3) материалы, упрочненные процессами осаждения.

Сварка создает напряжения в материалах. Эти силы вызываются сжатием металла шва и расширением, а затем сжатием околошовной зоны. Ненагретый металл накладывает ограничения на вышеперечисленное, а поскольку преобладает усадка, металл шва не может свободно сжиматься, и в соединении накапливаются напряжения. Это обычно известно как остаточное напряжение, и для некоторых критических применений его необходимо устранить путем термической обработки всего изготовления. Остаточные напряжения неизбежны во всех сварных конструкциях, и если их не контролировать, произойдет изгиб или деформация сварного соединения. Контроль осуществляется методом сварки, приспособлениями и приспособлениями, технологиями изготовления и конечной термической обработкой.