Гидросистема это: Гидросистема | это… Что такое Гидросистема?

Гидросистема | это… Что такое Гидросистема?

Гидросистема (гидрасистема) (сокр. от гидравлическая система) — это совокупность элементов, воздействующих на текучую среду таким образом, что свойства каждого элемента оказывают влияние на состояние текучей среды во всех элементах системы[1].

В отношении проблем, связанных с проектированием и контролем гидросистем, существует понятие гидравлическая цепь, введенное академиком А.П. Меренковым[2].

Данное определение гидросистем фактически подчеркивает взаимосвязь свойств множества элементов посредством текучей среды, что вытекает из определения — система, т.е. единой сущности, объединяющей множество элементов по каким-либо критериям.

Различают природные и технические гидросистемы. Примерами сложных технических гидросистем являются системы сбора и подготовки нефти и газа, водо- и газоснабжения, канализации, ирригационных каналов и т.п. К Природным гидросистемам можно отнести системы продуктивных пластов, насыщенных водой, газом, газоконденсатом или нефтью.

Несмотря на разнообразие гидросистем, отличающихся назначением, структурой, гидравлическими и размерными характеристиками, по мнению многих авторов[1][2], все они содержат одни и те же элементы.

Накопители текучей среды — замкнутые объёмы естественного и искусственного происхождения, служащие для вмещения текучей среды и придающие ей относительно стабильный энергетический потенциал. Они характеризуются пренебрежимо малыми скоростями течения жидкости и газа, которые не влияют на функционирование рассматриваемой системы. К данным элементам следует относить различные емкости, водохранилища, моря, озера, реки, пористые пласты, атмосферу и т.п., которые являются оконечными для рассматриваемой гидросистемы. В рамках выбранной гидросистемы они могут служить как источником, так и приемником текучей среды.

Аппараты для сообщения или поглощения энергии текучей среды — аппараты, служащие для целенаправленного преобразования различных видов энергий в энергию текучей среды и наоборот: энергии текучей среды в другие виды энергий.

Устройства по управлению потоком текучей среды — устройства, служащие для изменения гидравлических параметров и направления перемещения потока. Этими устройствами являются задвижки, клапаны, распределители потоков, штуцеры, регуляторы расхода и давления и т.п.

Каналы связи – сооружения, необходимые для обеспечения направленного движения текучей среды от одного элемента гидросистем к другому. Каналами связи могут быть как открытые каналы ирригационных систем, так и закрытые трубопроводы, служащие единой цели: пропусканию сквозь себя потока текучей среды для обеспечения связи других элементов (УУ, АСП, НТС) рабочей средой.

Приборы для регистрации параметров текучей среды — устройства, предназначенные для контроля параметров потока текучей среды.

Основной проблемой, связывающей всю массу гидросистем, является расчёт параметров потоков текучей среды(или нескольких сред) в гидросистемах сетевой структуры с большим количеством элементов, которые различным образом изменяют свойства сред и их энергетические показатели.

Наиболее известными программными продуктами для моделирования, контроля и управления гидросистем являются Eclipse, Tempest, TimeZYX для гидросистем продуктивных пластов и PipeSim, «Экстра»[3], HydraSym[4], OisPipe, «Гидросистема» для технических и смешанных (объединяющих природные и технические гидросистемы) гидросистем.

Примечания

  1. 1 2 Источник литературы 1
  2. 1 2 Источник литературы 2
  3. Вебсайт ПО «Экстра»
  4. Сайт НИИ ПО «ГидраСим»

Литература

1. А.В. Стрекалов. Математические модели гидравлических систем для управления системами поддержания пластового давления. Тюмень, 2007. ОАО Тюменский дом печати. 664 с.

2. Меренков А.П., Хасилев В.Я. «Теория гидравлических цепей». – Н.,1985, 276 с.

Гидросистемы: назначение и область применения



В большинстве случаев о гидравлике и ее узлах говорят в контексте спецтехники и промышленного оборудования. Это обусловлено тем, что гидравлические системы нацелены на выполнение большого объема трудоемких робот, часто в суровых условиях. Такие разговоры вполне обоснованы, поскольку многие большегрузные автомобили и тяжелая техника выпускаются с конвейера со встроенной гидравликой. В условиях высокой конкуренции производители вынуждены оснащать машины гидросистемами, даже если наличие такого оборудования не предполагалось изначально.

Зачем нужна гидравлика в машине

Гидросистема объединяет в себе ряд устройств, предназначенных для передачи энергии между механизмами техники с помощью рабочей жидкости, которая перемещается под давлением. Данное оборудование широко применяется в современной спецтехнике и транспортных средствах:

  • Экскаваторах;
  • Самосвалах;
  • Бульдозерах;
  • Погрузчиках;
  • Сельхозтехнике;
  • Коммунальных машинах;
  • Нефтедобывающем оборудовании;
  • Технике для жилого и дорожного строительства;
  • Подъемниках;
  • Автомобильном транспорте;
  • Авиатранспорте;
  • Плавсредствах и других видах транспорта и специализированной техники.

Рассмотрим применение гидравлики на примере тягача. Гидравлическое оборудование используется в крупнотоннажных автомобилях для более легкой погрузки и разгрузки товара, а также удобного присоединения прицепов и навесных устройств.  Кроме того, гидравлика в грузовиках позволяет брать на буксир другие автомобили при помощи специальных приспособлений.

Если заводским проектом не предусмотрено наличие гидравлики, оборудование можно установить после выхода машины или техники с конвейера. Эта процедура называется гидрофикацией, и ее выполняют многие предприятия, занимающиеся ремонтом и обслуживанием гидросистем.

Устройство и принцип работы гидросистем


В гидравлических системах используется много видов оборудования и каждое из них имеет свой принцип работы:

  • РВД – это шланг высокого давления, который обеспечивает транспортировку гидравлического масла и позволяет организовать слаженную работу всех узлов техники;
  • Масляный бак – емкость, используемая для хранения, охлаждения или отстаивания гидрожидкости;
  • Гидронасос – создает давление в гидросистеме для постоянной циркуляции жидкости в ней, преимущественно используются шестеренные насосы;
  • Клапан – задает направление потока рабочей среды;
  • Гидроцилиндр – оборудование выполняет возвратно-поступательные движения для обеспечения поворота, подъема и опускания навесного оборудования или элементов гидросистемы;
  • ВОМ и КОМ (вал и коробка) – используются для отбора мощности, передачи энергии от мотора к гидравлической системе.


Чем выше нагрузки на технику, тем сложнее устроена гидравлическая система. Например, гидроцилиндры оснащаются двумя поршнями, один из которых поднимается при давлении поступаемой рабочей жидкости. Если площадь поверхности второго элемента больше первого в три раза, сила первого поршня при подъеме оборудования соответственно увеличивается втрое.

Усилие к элементу гидросистемы меньше реального результата. Это указывает на то, что для перемещения первого элемента вторым понадобится три блока. Данное свойство лишний раз подтверждает большую значимость гидравлики в тяжелой технике.

Плюсы новой гидравлики


При выходе из строя или отсутствии гидравлики в стандартной комплектации, некоторые владельцы спецтехники покупают подержанное гидрооборудование. Это более выгодное решение с точки зрения экономии средств, но не эксплуатации спецтехники. Преимуществами новых гидравлических устройств являются:

  • Минимальные затраты на техническое обслуживание;
  • Бесперебойная эксплуатация машины и своевременное выполнение работ;
  • Отсутствие простоев техники из-за неисправностей гидравлики, которые часто возникают у подержанного оборудования;
  • На новое оборудование действует гарантия;
  • В стоимость товара включена плановая замена масла и быстроизнашивающихся деталей;
  • Полная окупаемость затрат при установке нового гидроагрегата.

Для покупки нового и оригинального товара обращайтесь за помощью в компанию «СДМ-гидравлика». Мы напрямую работаем с официальными поставщиками, поэтому закажем гидрооборудование по самой выгодной цене. После истечения гарантийного срока выполним техобслуживание, а в случае неисправности оперативно проведем ремонт гидросистемы с проверкой качества работ на гидравлическом стенде.

Что такое гидравлическая система?

Гидравлические системы применяются во всех видах больших и малых промышленных объектов, а также в зданиях, строительном оборудовании и транспортных средствах. Бумажные фабрики, лесозаготовки, производство, робототехника и обработка стали являются основными пользователями гидравлического оборудования.

Как эффективный и экономичный способ создания движения или повторения, оборудование на основе гидравлической системы трудно превзойти. Вероятно, по этим причинам ваша компания использует гидравлику в одном или нескольких приложениях.

В этой статье мы предоставим дополнительную информацию о гидравлических системах, включая определение, основные конструкции и компоненты.

Обзор гидравлических систем

Назначение конкретной гидравлической системы может различаться, но все гидравлические системы работают по одной и той же базовой концепции. Проще говоря, гидравлические системы функционируют и выполняют задачи за счет использования жидкости, находящейся под давлением. Другими словами, жидкость под давлением заставляет вещи работать.

Мощность жидкого топлива в гидравлике значительна, поэтому гидравлика широко используется в тяжелой технике. В гидравлической системе давление, приложенное к содержащейся жидкости в любой точке, передается без уменьшения. Эта жидкость под давлением воздействует на каждую часть секции содержащего сосуда и создает силу или мощность. Благодаря использованию этой силы и в зависимости от того, как она применяется, операторы могут поднимать тяжелые грузы и легко выполнять точные повторяющиеся задачи.

Этот онлайн-курс обучения гидравлическим системам иллюстрирует этот момент.

Удивительно универсальные, гидравлические системы динамичны, но относительно просты в том, как они работают.

Давайте рассмотрим некоторые области применения и несколько основных компонентов гидравлических систем. Этот краткий пример из нашего онлайн-курса по гидравлическим системам и компонентам прекрасно описывает ситуацию.

Гидравлические контуры

Транспортируя жидкость через набор взаимосвязанных дискретных компонентов, гидравлический контур представляет собой систему, которая может контролировать направление потока жидкости (например, термодинамические системы), а также контролировать давление жидкости (например, гидравлические усилители).

Система гидравлической цепи работает аналогично теории электрической цепи, используя линейные и дискретные элементы. Гидравлические схемы часто применяются в химической обработке (проточные системы).

Гидравлические насосы

Механическая энергия преобразуется в гидравлическую энергию с использованием расхода и давления гидравлического насоса. Гидравлические насосы работают, создавая вакуум на входе в насос, нагнетая жидкость из резервуара во впускную линию и в насос. Механическое воздействие направляет жидкость к выпускному отверстию насоса и при этом нагнетает ее в гидравлическую систему.

Это пример закона Паскаля, который лежит в основе принципа гидравлики. Согласно закону Паскаля, «изменение давления, происходящее где-либо в замкнутой несжимаемой жидкости, распространяется по всей жидкости, так что такое же изменение происходит повсюду».

Гидравлические двигатели

Преобразование гидравлического давления и потока в крутящий момент (или крутящую силу), а затем во вращение является функцией гидравлического двигателя, который представляет собой механический привод.

Их можно легко адаптировать. Наряду с гидроцилиндрами и гидронасосами гидромоторы могут быть объединены в систему гидропривода. В сочетании с гидравлическими насосами гидравлические двигатели могут создавать гидравлические трансмиссии. В то время как некоторые гидравлические двигатели работают на воде, большинство современных бизнес-операций работают на гидравлической жидкости, как и в вашем бизнесе.

Гидравлические цилиндры

Гидравлический цилиндр представляет собой механизм, преобразующий энергию, запасенную в гидравлической жидкости, в силу, используемую для перемещения цилиндра в линейном направлении. Он также имеет множество применений и может быть как одностороннего, так и двустороннего действия. Как часть полной гидравлической системы, цилиндры инициируют давление жидкости, поток которой регулируется гидравлическим двигателем.

Гидравлическая энергия и безопасность

Гидравлика представляет собой ряд опасностей, о которых следует помнить, и по этой причине требуется обучение технике безопасности.

Например, в этом коротком отрывке из нашего онлайн-курса по технике безопасности при работе с гидравлической системой объясняются некоторые способы, которыми жидкости в гидравлической системе могут быть опасными.

Помните, назначение гидравлических систем — создавать движение или силу. Это источник энергии, генерирующий энергию.

Не стоит недооценивать гидравлическую энергию в вашей программе безопасности. Оно маленькое, но могучее по силе. И, как любая сила, она может принести большую пользу или большой вред.

На рабочем месте это означает потенциальный источник опасности, особенно если его не контролировать. Гидравлическая энергия подпадает под действие правил блокировки/маркировки OSHA, наряду с электрической энергией и другими подобными источниками опасности. Обязательно обучите рабочих опасностям неконтролируемой гидравлической энергии, особенно во время технического обслуживания, и необходимости блокировки/маркировки, как показано на этом неподвижном изображении из одного из наших онлайн-курсов по блокировке/маркировке.

Если пренебречь процедурами или забыть при обслуживании оборудования, неконтролируемая гидравлическая энергия может иметь разрушительные последствия. Неспособность контролировать гидравлическую энергию часто приводит к травмам, ампутациям и порезам незащищенных рабочих.

Следовательно, как и другие источники энергии, гидравлическую энергию необходимо контролировать с помощью соответствующего энергоизолирующего устройства, предотвращающего физическое высвобождение энергии. Существуют также системы, которые требуют высвобождения накопленной гидравлической энергии для сброса давления. Кроме того, те, кто занимается блокировкой / маркировкой, также должны проверить высвобождение накопленной гидравлической энергии / давления (обычно обозначаемое нулевым давлением на манометрах) перед работой с оборудованием.

Кроме того, рабочие нуждаются в обучении, которое должно объяснять потенциальную опасность и четко описывать методы предотвращения травм. По данным OSHA:

«Все сотрудники, которым разрешено блокировать машины или оборудование и выполнять операции по обслуживанию и техническому обслуживанию, должны быть обучены распознаванию применимых опасных источников энергии на рабочем месте, типу и величине энергии, обнаруженной на рабочем месте, и средствам и методы изоляции и/или контроля энергии».

Вы должны быть хорошо знакомы с любым оборудованием в вашем бизнесе, которое создает гидравлическую энергию, чтобы обеспечить адекватную защиту ваших рабочих с помощью подробных процедур и обучения. И, конечно же, ваша программа LO/TO должна повторять ваши процедуры и перечислять источники гидравлической энергии на рабочем месте. (Не забывайте проводить как минимум ежегодные обзоры программы и процедур, чтобы убедиться, что вы заметили любые изменения или недостатки.)

Опять же, очень важно, чтобы все, кто работает с гидравлическими системами, были должным образом обучены. Не пренебрегайте этим аспектом.

Если вы хотите углубиться в эту тему, у нас есть несколько курсов по гидравлическим системам, в том числе «Основы гидравлических систем», в которых излагаются основы теории гидравлики, общие компоненты, механические преимущества и способы загрязнения гидравлической жидкости. Кроме того, у нас есть два других документа, которые предоставляют важную подробную информацию: «Клапаны и компоненты гидравлической системы» и «Оборудование гидравлической системы».

Важно понимать принципы работы этих систем не только для обслуживания и ремонта, но и для понимания того, как работают гидравлические системы, чтобы избежать травм и несчастных случаев.

Вывод: гидравлика широко распространена на современном рабочем месте

Понимание гидравлики того типа, который мы рассмотрели в этой статье, поможет вам лучше понять современное рабочее место и сделает вас или вашу компанию более эффективными, продуктивными и безопасный.

Прежде чем идти, загрузите бесплатное руководство по производственному обучению ниже.

Основная идея — гидравлическая система

Основная идея любой гидравлической системы очень проста: Сила, приложенная в одной точке, передается в другую точку с помощью несжимаемой жидкости. Жидкость почти всегда представляет собой какое-то масло. Сила почти всегда умножается в процессе.

Например, если два поршня помещаются в два стеклянных цилиндра, заполненных маслом, и соединяются друг с другом заполненной маслом трубой. Если приложить направленное вниз усилие к одному поршню, то усилие передается на второй поршень через масло в трубке. Поскольку масло несжимаемо, КПД очень хороший — почти вся приложенная сила приходится на второй поршень. Самое замечательное в гидравлических системах заключается в том, что труба, соединяющая два цилиндра, может быть любой длины и формы, что позволяет ей проходить через всевозможные элементы, разделяющие два поршня. Труба также может раздваиваться, так что 9Главный цилиндр 0101 при желании может управлять более чем одним подчиненным цилиндром .

Реклама

Преимущество гидравлических систем в том, что в них очень легко добавить умножение (или деление) силы. Если вы читали «Как работает блок и снасть» или «Как работают шестерни», то знаете, что обменивает силу на расстояние , что очень часто встречается в механических системах. В гидравлической системе все, что вам нужно сделать, это изменить размер одного поршня и цилиндра относительно другого.

Гидравлическое умножение. Допустим, поршень справа имеет площадь поверхности в девять раз больше, чем поршень слева. Когда сила приложена к левому поршню, он сдвинется на девять единиц на каждую единицу перемещения правого поршня, а на правом поршне сила умножается на девять.

Чтобы определить коэффициент умножения , начните с определения размера поршней. Предположим, что поршень слева имеет диаметр 2 дюйма (радиус 1 дюйм), а поршень справа имеет диаметр 6 дюймов (радиус 3 дюйма). Площадь двух поршней Пи*р 2 . Таким образом, площадь левого поршня равна 3,14, а площадь правого поршня — 28,26. Поршень справа в 9 раз больше поршня слева. Это означает, что любая сила, приложенная к левому поршню, будет в 9 раз больше на правом поршне. Таким образом, если вы приложите 100-фунтовую направленную вниз силу к левому поршню, справа возникнет направленная вверх сила в 900 фунтов. Единственная загвоздка в том, что вам придется нажать на левый поршень 9дюймов, чтобы поднять правый поршень на 1 дюйм.

Тормоза в вашем автомобиле являются хорошим примером базовой гидравлической системы с поршневым приводом. Когда вы нажимаете педаль тормоза в своем автомобиле, она давит на поршень в главном тормозном цилиндре. Четыре ведомых поршня, по одному на каждое колесо, прижимают тормозные колодки к тормозному диску, чтобы остановить автомобиль. (На самом деле почти во всех современных автомобилях два главных цилиндра управляют двумя рабочими цилиндрами каждый. Таким образом, если в одном из главных цилиндров возникнет проблема или произойдет утечка, вы все равно сможете остановить машину.)

В большинстве других гидравлических систем гидроцилиндры и поршни соединены через клапаны с насосом, подающим масло под высоким давлением. Вы узнаете об этих системах в следующих разделах.

Процитируйте это!

Пожалуйста, скопируйте/вставьте следующий текст, чтобы правильно цитировать эту статью HowStuffWorks.com:

Marshall Brain
«Как работают гидравлические машины»
1 апреля 2000 г.