Двс схема работы: Двигатель внутреннего сгорания, ДВС – устройство, работа

Содержание

Двигатель внутреннего сгорания, ДВС – устройство, работа

В настоящее время двигатель внутреннего сгорания является основным видом автомобильного двигателя. Двигателем внутреннего сгорания (сокращенное наименование – ДВС) называется тепловая машина, преобразующая химическую энергию топлива в механическую работу.

Различают следующие основные типы двигателей внутреннего сгорания: поршневой, роторно-поршневой и газотурбинный. Из представленных типов двигателей самым распространенным является поршневой ДВС, поэтому устройство и принцип работы рассмотрены на его примере.

Достоинствами поршневого двигателя внутреннего сгорания, обеспечившими его широкое применение, являются: автономность, универсальность (сочетание с различными потребителями), невысокая стоимость, компактность, малая масса, возможность быстрого запуска, многотопливность.

Вместе с тем, двигатели внутреннего сгорания имеют ряд существенных недостатков, к которым относятся: высокий уровень шума, большая частота вращения коленчатого вала, токсичность отработавших газов, невысокий ресурс, низкий коэффициент полезного действия.

В зависимости от вида применяемого топлива различают бензиновые и дизельные двигатели. Альтернативными видами топлива, используемыми в двигателях внутреннего сгорания, являются природный газ, спиртовые топлива – метанол и этанол, водород.

Водородный двигатель с точки зрения экологии является перспективным, т.к. не создает вредных выбросов. Наряду с ДВС водород используется для создания электрической энергии в топливных элементах автомобилей.

Устройство двигателя внутреннего сгорания

Поршневой двигатель внутреннего сгорания включает корпус, два механизма (кривошипно-шатунный и газораспределительный) и ряд систем (впускную, топливную, зажигания, смазки, охлаждения, выпускную и систему управления).

Корпус двигателя объединяет блок цилиндров и головку блока цилиндров. Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Газораспределительный механизм обеспечивает своевременную подачу в цилиндры воздуха или топливно-воздушной смеси и выпуск отработавших газов.

Впускная система предназначена для подачи в двигатель воздуха. Топливная система питает двигатель топливом. Совместная работа данных систем обеспечивает образование топливно-воздушной смеси. Основу топливной системы составляет система впрыска.

Система зажигания осуществляет принудительное воспламенение топливно-воздушной смеси в бензиновых двигателях. В дизельных двигателях происходит самовоспламенение смеси.

Система смазки выполняет функцию снижения трения между сопряженными деталями двигателя. Охлаждение деталей двигателя, нагреваемых в результате работы, обеспечивает система охлаждения. Важные функции отвода отработавших газов от цилиндров двигателя, снижения их шума и токсичности предписаны выпускной системе.

Система управления двигателем обеспечивает электронное управление работой систем двигателя внутреннего сгорания.

Работа двигателя внутреннего сгорания

Принцип работы ДВС основан на эффекте теплового расширения газов, возникающего при сгорании топливно-воздушной смеси и обеспечивающего перемещение поршня в цилиндре.

Работа поршневого ДВС осуществляется циклически. Каждый рабочий цикл происходит за два оборота коленчатого вала и включает четыре такта (четырехтактный двигатель): впуск, сжатие, рабочий ход и выпуск.

Во время тактов впуск и рабочий ход происходит движение поршня вниз, а тактов сжатие и выпуск – вверх. Рабочие циклы в каждом из цилиндров двигателя не совпадают по фазе, чем достигается равномерность работы ДВС. В некоторых конструкциях двигателей внутреннего сгорания рабочий цикл реализуется за два такта – сжатие и рабочий ход (двухтактный двигатель).

На такте впуск впускная и топливная системы обеспечивают образование топливно-воздушной смеси. В зависимости от конструкции смесь образуется во впускном коллекторе (центральный и распределенный впрыск бензиновых двигателей) или непосредственно в камере сгорания (непосредственный впрыск бензиновых двигателей, впрыск дизельных двигателей). При открытии впускных клапанов газораспределительного механизма воздух или топливно-воздушная смесь за счет разряжения, возникающего при движении поршня вниз, подается в камеру сгорания.

На такте сжатия впускные клапаны закрываются, и топливно-воздушная смесь сжимается в цилиндрах двигателя.

Такт рабочий ход сопровождается воспламенением топливно-воздушной смеси (принудительное или самовоспламенение). В результате возгорания образуется большое количество газов, которые давят на поршень и заставляют его двигаться вниз. Движение поршня через кривошипно-шатунный механизм преобразуется во вращательное движение коленчатого вала, которое затем используется для движения автомобиля.

При такте выпуск открываются выпускные клапаны газораспределительного механизма, и отработавшие газы удаляются из цилиндров в выпускную систему, где производится их очистка, охлаждение и снижение шума. Далее газы поступают в атмосферу.

Рассмотренный принцип работы двигателя внутреннего сгорания позволяет понять, почему ДВС имеет небольшой коэффициент полезного действия — порядка 40%. В конкретный момент времени как правило только в одном цилиндре совершается полезная работа, в остальных – обеспечивающие такты: впуск, сжатие, выпуск.

 

 

устройство, принцип работы и классификация

Вокруг активно говорят про электокары, но двигатель внутреннего сгорания (ДВС) никуда не исчезает. Почему? О принципе работы и конструкции двигателей внутреннего сгорания, плюсах и минусах ДВС – в нашем материале.

Что такое ДВС?

ДВС (двигатель внутреннего сгорания) – один из самых популярных видов моторов. Это тепловой двигатель, в котором топливо сгорает непосредственно внутри него самого – во внутренней камере. Дополнительные внешние носители не требуются.

ДВС работает  благодаря физическому эффекту теплового расширения газов. Горючая смесь в момент воспламенения смеси увеличивается в объёме, и освобождается энергия.

Вне зависимости от того, о каком из ДВС идёт речь – о ДВС с искровым зажиганием – двигателе Отто (это, прежде всего, инжекторный и карбюраторный бензиновые двигатели) или о ДВС с воспламенением от сжатия (дизельный мотор, дизель) сила давления газов воздействует на поршень ДВС. Без поршня сложно представить большинство современных ДВС. В том числе, он есть даже у комбинированного ДВС. Только в последнем, кроме поршня, мотору работать помогает ещё и лопаточное оборудование (компрессоры, турбины).

Бензиновые, дизельные поршневые ДВС – это двигатели, с которыми мы активно встречаемся на любом транспорте, в том числе легковом, а ДВС, работающие не только за счёт поршня, но и за счёт компрессора, турбины – это решения, без которых сложно представить современные суда, тепловозы, автотракторную технику, самосвалы высокой грузоподъёмности, т.е. транспорт, где нужны двигатели средней (> 5 кВт) или высокой мощности (> 100 кВт).

Без двигателя внутреннего сгорания невозможно представить движение практически любого транспорта (кроме электрического) – автомобилей, мотоциклов, самолётов.

  • Несмотря на то, что технологии, в том числе, в транспортной сфере, развиваются семимильными шагами, ДВС на авто человечество будет устанавливать еще долго. Даже концерн Volkswagen, который, как известно, готовит масштабную программу электрификации модельного ряда своих двигателей, пока не спешит отказываться от ДВС. Открытой является информация, что автомобили с ДВС будут выпускаться не только в ближайшие 5, но и 30 лет. Да, время разработок новых ДВС у концерна уже подходит к финальной стадии, но производство никто сворачивать не будет. Нынешние актуальные разработки будут использоваться и впредь. Некоторые же концерны по производству авто и вовсе не спешат переходить на электромоторы. Это можно обосновать и экономически, и технически. Именно ДВС из всех моторов одни из наиболее надежных и при этом дешёвых, а постоянное совершенствование моделей ДВС позволяет говорить об уверенном прогрессе инженеров, улучшении эксплуатационных характеристик двигателей внутреннего сгорания и минимизации их негативного влияния на атмосферу.
  • Современные дизельные двигатели внутреннего сгорания позволяют снизить расход топлива на 25-30 %. Лучше всего такое уменьшение расхода топлива смогли достигнуть производители дизельных ДВС. Но и производители бензиновых двигателей внутреннего сгорания активно удивляют. Ещё в 2012-м году назад американский концерн Transonic Combustion (разработчик так называемых сверхкритических систем впрыска топлива) впечатлил решением TSCiTM. Благодаря новому подходу к конструкции топливного насоса и инжекторам, бензиновый двигатель стал существенно экономичней.
  • Большие ставки на ДВС делает и концерн Mazda. Он акцентирует внимание на изменении конструкции выпускной системы. Благодаря ей улучшена продувка газов, повышена степень их сжатия, а, вместе с тем, снижены и обороты  (причём сразу на 15%). А это и экономия расхода топлива, и уменьшение вредных выбросов – несмотря на то, что речь идёт о бензиновом двигателе, а не о дизеле.

Устройство двигателя внутреннего сгорания

При разнообразии конструктивных решений устройство у всех ДВС схоже. Двигатель внутреннего сгорания образован следующими компонентами:

  1. Блок цилиндров. Блоки цилиндров – цельнолитые детали. Более того, единое целое они составляют с картером (полой частью). Именно на картер ставят коленчатый вал). Производители запчастей постоянно работают над формой блока цилиндров, его объемом. Конструкция блока цилиндров ДВС должна чётко учитывать все нюансы от механических потерь до теплового баланса.
  2. Кривошипно-шатунный механизм (КШМ) – узел, состоящий из шатуна, цилиндра, маховика, колена, коленвала, шатунного и коренного подшипников. Именно в этом узле прямолинейное движение поршня преобразуется непосредственно во вращательное. Для большинства традиционных ДВС КШМ – незаменимый механизм. Хотя ряд инженеров пытаются найти замену и ему. В качестве альтернативы КШМ может рассматриваться, например, система кинематической схемы отбора мощности (уникальная российская технология, разработка научных сотрудников из «Сколково», направленная на погашение инерции, снижение частоты вращения, увеличение крутящего момента и КПД).
  3. Газораспределительный механизм (ГРМ). Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС). Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.

    Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).

    Замену ГРМ проводят через каждые 60000 — 90 000 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.

    Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.

  4. Система питания. В этом узле осуществляется подготовка топливно-воздушной смеси: хранение топлива, его очистка, подача в двигатель.
  5. Система смазки. Главные компоненты системы – трубки, маслоприемник, редукционный клапан, масляный поддон и фильтр. Для контроля системы современные решения также оснащаются датчиками указателя давления масла и датчиком сигнальной лампы аварийного давления. Главная функция системы – охлаждение узла, уменьшение силы трения между подвижными деталями. Кроме того, система смазки  выполняет очищающую функцию, освобождает двигатель от нагара, продуктов, образованных в ходе износа мотора.
  6. Система охлаждения. Важна для оптимизации рабочей температуры. Включает рубашку охлаждения, теплообменник (радиатор охлаждения), водяной насос, термостат и теплоноситель.
  7. Выхлопная система. Служит для отвода от мотора продуктов сгорания.
    Включает:
    — выпускной коллектор (приёмник отработанных газов),
    — газоотвод (приёмная труба, в народе- «штаны»),
    — резонатор для разделения выхлопных газов и уменьшения их скорости,
    — катализатор (очиститель) выхлопных газов,
    — глушитель (корректирует направление потока газов, гасит шум).
  8. Система зажигания. Входит в состав только бензодвигателей. Неотъемлемые компоненты системы – свечи и катушки зажигания. Самый популярный вариант конструкции – «катушка на свече». У двигателей внутреннего сгорания старого поколения также были высоковольтные провода и трамблер (распределитель). Но современные производители моторов, прежде всего, благодаря появлению конструкции «катушка на свече», могут себе позволить не включать в систему эти компоненты.
  9. Система впрыска. Позволяет организовать дозированную подачу топлива.

В LMS ELECTUDE системе и времени впрыска уделяется особое внимание. Любой автомеханик должен понимать, что именно от исправности системы впрыска, времени впрыска зависит способность оперативно изменять скорость движения авто. А это одна из важнейших характеристик любого мотора.

Тонкий нюанс! При изучении устройства нельзя проигнорировать и такой элемент, как датчик положения дроссельной заслонки. Датчик не является частью ДВС, но устанавливается на многих авто непосредственно рядом с ДВС.  

Датчик эффективно решает такую задачу, как передача электронному блоку управления данных о положении пропускного клапана в определенный интервал времени. Это позволяет держать под контролем поступающее в систему топливо. Датчик измеряет вращение и, следовательно, степень открытия дроссельной заслонки.

А изучить устройство мотора основательно помогает дистанционный курс для самообучения «Базовое устройство двигателя внутреннего сгорания автомобиля», на платформе ELECTUDE. Принципиально важно, что каждый может пошагово продвинуться от теории, связанной с ДВС и его составными частями, до оттачивания сервисных операций по регулировке. Этому помогает встроенный LMS виртуальный симулятор.

Принцип работы двигателя

Принцип работы классических двигателей внутреннего сгорания основан на преобразовании энергии вспышки топлива — тепловой энергии, освобождённой от сгорания топлива, в механическую.

При этом сам процесс преобразования энергии может отличаться.

Самый распространённый вариант такой:

  1. Поршень в цилиндре движется вниз.
  2. Открывается впускной клапан.
  3. В цилиндр поступает воздух или топливно-воздушная смесь. (под воздействием поршня или системы поршня и турбонаддува).
  4. Поршень поднимается.
  5. Выпускной клапан закрывается.
  6. Поршень сжимает воздух.
  7. Поршень доходит до верхней мертвой точки.
  8. Срабатывает свеча зажигания.
  9. Открывается выпускной клапан.
  10. Поршень начинает двигаться вверх.
  11. Выхлопные газы выдавливаются в выпускной коллектор.

Важно! Если используется дизельное топливо, то искра не принимает участие в запуске двигателя, дизельное топливо зажигается при сжатии само.

При этом для понимания принципа работы важно не просто учитывать физическую последовательность, а держать под контролем всю систему управления. Наглядно понять её помогает схема учебного модуля ELECTUDE. 

Обратите внимание, в дистанционных курсах обучения на платформе ELECTUDE при изучении системы управления дизельным двигателем она сознательно разбирается обособленно от системы регулирования впрыска топлива. Очень грамотный подход. Многим учащимся действительно сложно сразу разобраться и с системой управления, и с системой впрыска. И для того, чтобы хорошо усвоить материал, грамотно двигаться именно пошагово.

Но вернёмся к работе самого двигателя. Рассмотренный принцип работы актуален для большинства ДВС, и он надёжен для любого транспорта, включая грузовые автомобили.

Фактически у устройств, работающих по такому принципу, работа строится на 4 тактах (поэтому большинство моторов называют четырёхтактными):

  1. Такт выпуска.
  2. Такт сжатия воздуха.
  3. Непосредственно рабочий такт – тот самый момент, когда энергия от сгорания топлива преобразуется в механическую (для запуска коленвала).
  4. Такт открытия выпускного клапана – необходим для того, чтобы отработанные газы вышли из цилиндра и освободили место новой порции смеси топлива и воздуха

4 такта образуют рабочий цикл.

При этом три такта – вспомогательные и один – непосредственно дающий импульс движению. Визуально работа четырёхтактной модели представлена на схеме.

Но работа может основываться и на другом принципе – двухтактном. Что происходит в этом случае?

  • Поршень двигается снизу-вверх.
  • В камеру сгорания поступает топливо.
  • Поршень сжимает топливно-воздушную смесь.
  • Возникает компрессия. (давление).
  • Возникает искра.
  • Топливо загорается.
  • Поршень продвигается вниз.
  • Открывается доступ к выпускному коллектору.
  • Из цилиндра выходят продукты сгорания.

То есть первый такт в этом процессе – одновременный впуск и сжатие, второй — опускание поршня под давлением топлива и выход продуктов сгорания из коллектора.

Двухтактный принцип работы – распространённое явление для мототехники, бензопил. Это легко объяснить тем, что при высокой удельной мощности такие устройства можно сделать очень лёгкими и компактными.

Важно! Кроме количества тактов есть отличия в механизме газообмена.

В моделей, которые поддерживают 4 такта, газораспределительный механизм открывает и закрывает в нужный момент цикла клапаны впуска и выпуска.

У решений, которые поддерживают два такта, заполнение и очистка цилиндра осуществляются синхронно с тактами сжатия и расширения (то есть непосредственно в момент нахождения поршня вблизи нижней мертвой точки).

Классификация двигателей

Двигатели разделяют по нескольким параметрам: рабочему циклу, типу конструкции, типу подачи воздуха.

Классификация двигателей в зависимости от рабочего цикла

В зависимости от цикла, описывающего термодинамический (рабочий процесс), выделяют два типа моторов: 

  1. Ориентированные на цикл Отто. Сжатая смесь у них воспламеняется от постороннего источника энергии. Такой цикл присущ всем бензиновым двигателям.
  2. Ориентированные на цикл Дизеля. Топливо в данном случае воспламеняется не от искры, а непосредственно от разогретого рабочего тела. Такой цикл лежит в основе работы дизельных двигателей.

Чтобы работать с современными дизельными моторами, важно уметь хорошо разбираться в системе управлениям дизелями EDC (именно от неё зависит стабильное функционирование предпускового подогрева, системы рециркуляции отработанных газов, турбонаддува), особенностях системы впрыска Common Rail (CRD), механических форсунках, лямбда-зонда, обладать навыками взаимодействия с ними.

А для работы с агрегатами, работающими по циклу Отто, не обойтись без комплексного изучения свечей зажигания, системы многоточечного впрыска. Важно отличное знание принципов работы датчиков, каталитических нейтрализаторов.

И изучение дизелей, и бензодвигателей должно быть целенаправленным и последовательным. Рациональный вариант – изучать дизельные ДВС в виде модулей.

Классификация двигателей в зависимости от конструкции

  • Поршневой. Классический двигатель с поршнями, цилиндрами и коленвалом. При работе принципа ДВС рассматривалась как раз такая конструкция. Ведь именно поршневые ДВС стоят на большинстве современных автомобилей.
  • Роторные (двигатели Ванкеля). Вместо поршня установлен трехгранный ротор (или несколько роторов), а камера сгорания имеет овальную форму. У них достаточно высокая мощность при малых габаритах, отлично гасятся вибрации. Но производителям невыгодно выпускать такие моторы. Производство двигателей Ванкеля дорогостоящее, сложно подстроиться под регламенты выбросов СО2, обеспечить агрегату большой срок службы. Поэтому современные мастера СТО при ремонте и обслуживании с такими автомобилями встречаются крайне редко. Но знать о таких двигателях также очень важно. Может возникнуть ситуация, что на сервис привезут автомобили Mazda RX-8. RX-8 (2003 по 2012 годов выпуска) либо ВАЗ-4132, ВАЗ-411М. И у них стоят именно роторные двигатели внутреннего сгорания.

Классификация двигателей по принципу подачи воздуха

Подача воздуха также разделяет ДВС на два класса:

  1. Атмосферные. При движении поршня мотор затягивает порцию воздуха. Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
  2. Турбокомпрессорные. Организована дополнительная подкачка воздуха в камеру сгорания.

Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.

Атмосферные системы активно встречаются как среди дизельных, так и бензиновых моделей. Турбокомпрессорные ДВС – в большинстве своём, дизельные двигатели. Это связано с тем, что монтаж турбонаддува предполагает достаточно сложную конструкцию самого ДВС. И на такой шаг готовы пойти чаще всего производители авто премиум-класса, спорткаров. У них установка турбокомпрессора себя оправдывает. Да, такие решения более дорогие, но выигрыш есть в весе, компактности, показателе крутящего момента, уровни токсичности. Более того! Выигрыш есть и в расходе топлива. Его требуется существенно меньше.

Очень часто решения с турбокомпрессором выбирают автовладельцы, которые предпочитают агрессивный стиль езды, высокую скорость.

Преимущества ДВС

  1. Удобство. Достаточно иметь АЗС по дороге или канистру бензина в багажнике – и проблема заправки двигателя легко решаема. Если же на машине установлен электромотор, зарядка доступна пока ещё не во всех местах.
  2. Высокая скорость заправки двигателя топливом.
  3. Длительный ресурс работы. Современные двигатели внутреннего сгорания легко работают в заявленный производителем период (в среднем 100-150 тыс. км. пробега), а некоторые и 300-350 тыс. км пробега. Впрочем, мировой рекордсмен – пробег и вовсе ~4 800 000 км. И здесь нет лишних нулей. Такой рекорд установлен на двигателе Volvo» P1800. Единственное, за время работы двигатель два раза проходил капремонт.
  4. Компактность. Двигатели внутреннего сгорания существенно компактнее, нежели двигатели внешнего сгорания.

Недостатки ДВС

При использовании двигателя внутреннего сгорания нельзя организовать работу оборудования по замкнутому циклу, а, значит, организовать работу в условиях, когда давление существенно превышает атмосферное.

Большинство ДВС работает за счёт использования невозобновляемых ресурсов (бензина, газа). И исключение – машины, работающие на биогазе, этиловом спирте (на практике встречается редко, так как при использовании такого топлива невозможно добиться высоких мощностей и скоростей).

Существует тесная зависимость работы ДВС от качества топлива. Оно должно обладать определённым определенным цетановым и октановым числами (характеристиками воспламеняемости дизельного топлива, определяющими период задержки горения рабочей смеси и детонационной стойкости топлива), плотностью, испаряемостью.

Автомеханики называют ДВС сердцем авто, инженеры модернизируют ГРМ, а производители бензина не беспокояться о том, что все перейдут на электротранспорт.

Устройство двигателя. Принцип работы ДВС

Общее устройство ДВС:


Двигатель состоит из цилиндра 5 и картера 6, который снизу закрыт поддоном 9 (рис. а). Внутри цилиндра перемещается поршень 4 с компрессионными (уплотнительными) кольцами 2, имеющий форму стакана с днищем в верхней части. Поршень через поршневой палец 3 и шатун 14 связан с коленчатым валом 8, который вращается в коренных подшипниках, расположенных в картере. Коленчатый вал состоит из коренных шеек 13, щек 10 и шатунной шейки 11. Цилиндр, поршень, шатун и коленчатый вал составляют так называемый кривошипно-шатунный механизм, преобразующий возвратно-поступательное движение поршня во вращательное движение коленчатого вала (рис. б).



Схема устройства поршневого двигателя внутреннего сгорания:


а — продольный вид, б — поперечный вид; 1 — головка цилиндра, 2 — кольцо,


3 — палец, 4 — поршень, 5 — цилиндр, 6 — картер, 7 — маховик, 8 — коленчатый вал,


9 — поддон, 10 — щека, 11 — шатунная шейка, 12 — коренной подшипник, 13 — коренная шейка,


14 — шатун, 15, 17- клапаны, 16 — форсунка


Сверху цилиндр 5 накрыт головкой 1 с клапанами 15 и 17, открытие и закрытие которых строго согласовано с вращением коленчатого вала, следовательно, и с перемещением поршня.


Перемещение поршня ограничивается двумя крайними положениями, при которых его скорость равна нулю: верхней мертвой точкой (ВМТ), соответствующей наибольшему удалению поршня от вала (рис. б), и нижней мертвой точкой (НМТ), соответствующей наименьшему удалению его от вала.


Безостановочное движение поршня через мертвые точки обеспечивается маховиком 7, имеющим форму диска с массивным ободом.


Расстояние, проходимое поршнем, между мертвыми точками называется ходом поршня S, а расстояние между осями коренных и шатунных шеек — радиусом кривошипа R (рис. б). Ход поршня равен двум радиусам кривошипа: S = 2R. Объем, который описывает поршень за один ход, называется рабочим объемом цилиндра (Vh):


Vh = (πD²S) / 4


Объем над поршнем (Vc) в положении ВМТ (рис. а) и называется объемом камеры сгорания. Сумма рабочего объема цилиндра (Vh) и объема камеры сгорания (Vc) составляет полный объем цилиндра (Va):


Va = Vh + Vc


Отношение полного объема цилиндра (Va) к объему камеры сгорания (Vc) называется степенью сжатия (е):


е = Va / Vc


Степень сжатия является важным параметром двигателей внутреннего сгорания, так как сильно влияет на его экономичность и мощность.


 


Принцип работы ДВС:



Схема работы двигателя


Практически все современные двигатели производят с 4-тактными циклами работы:


  1. Такт впуска — впускается топливо-воздушная смесь
  2. Такт сжатия — смесь сжимается и поджигается
  3. Такт расширения — смесь сгорает и толкает поршень вниз
  4. Такт выпуска — продукты горения выпускаются

Точка отсчета — положение поршня вверху (ВМТ — верхняя мертвая точка). В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. Это первый такт цикла, такт впуска.


Во время второго такта, такта сжатия, поршень достигает самой нижней точки (НМТ — нижняя мертвая точка), при этом впускное отверстие закрывается, поршень начинает движение вверх, из-за чего топливная смесь сжимается. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.


Третий такт, такт расширения — это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.


Четвертый такт, такт выпуска, поршень достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему. После этого цикл, начиная с первого такта, повторяется снова и продолжается в течение всего времени работы двигателя.


Описанный выше способ является универсальным. По такому принципу построена работа практически всех бензиновых моторов. Дизельные двигатели отличаются тем, что там нет свеч зажигания — элемента, который поджигает топливо. Детонация дизельного топлива осуществляется благодаря сильному сжатию топливной смеси. При такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600 градусов Цельсия. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Принцип работы ДВС. Рабочие циклы двигателя

На автомобилях устанавливают двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу их действия положено свойство газов расширяться при нагревании.

Рассмотрим принцип устройства и работы двигателя внутреннего сгорания, а также его рабочие циклы.

Рабочий цикл четырехтактного бензинового двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

Принцип работы ДВС (для просмотра нажмите на кнопку иллюстрации)
Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). Подробнее в статье как устроен двигатель внутреннего сгорания.

Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.

Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

Рабочий цикл четырехтактного дизеля

В отличие от бензинового двигателя, при такте ‘впуск’ в цилиндры дизеля поступает чистый воздух. Во время такта ‘сжатие’ воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.

Сжатие. Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.

Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Более подробно про работу дизеля в статье Дизельные двигатели. Устройство и принцип работы.

Принцип работы многоцилиндровых двигателей

На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.


Диаграмма работы двигателя по схеме 1-2-4-3

Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.

Принцип работы и рабочие циклы двигателя автомобиля (ДВС)

На автомобилях устанавливают двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу положено свойство газов расширяться при нагревании. Рассмотрим принцип работы двигателя (схематично) и его рабочие циклы. Что такое цикл Отто — Аткинса и Миллера.

  • Рабочий цикл четырехтактного бензинового двигателя
  • Принцип работы ДВС
  • Рабочий цикл четырехтактного дизеля
  • Цикл Отто — Аткинса и Миллера
  • Принцип работы многоцилиндровых двигателей

Рабочий цикл четырехтактного бензинового двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т.е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.

Автомобильные двигатели работают, как правило, по четырехтактному циклу Отто, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.

Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ).

Принцип работы ДВС — схематично

1. Впуск

По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.

2. Сжатие

После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.

3. Расширение или рабочий ход

В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.

При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200°С.

4. Выпуск

При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.

Рабочий цикл четырехтактного дизеля

В отличие от бензинового двигателя, при такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600°С. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Впуск

При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.

Сжатие

Поршень движется от НМТ к ВМТ; впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.

Расширение или рабочий ход

Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900°С.

Выпуск

Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700°С. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.

Цикл Отто — Аткинса и Миллера

В основе многих современных двигателей лежит цикл Отто, который придумал немецкий конструктор Николаус Отто и запатентовавший четырехтактный двигатель в 1876 году. Его формула известна всем учащимся автошкол и студентам и звучит так: «впуск — сжатие — рабочий ход — выпуск». Хотя КПД его мотора не высокий, но именно данный цикл лежит в основе всех моторов.

Позже Джеймс Аткинсон усовершенствовал цикл Отто в 1882 году создав термодинамический цикл. А американец Ральф Миллер в 1947 году довёл до ума теоретические наработки Аткинсона, внедрив изменение фаз газораспределения. Например, по циклу Миллера работает двигатель TSI на автомобиле VW Golf 8 — впускной клапан закрывается раньше окончания такта впуска. Это позволяет снизить фактическую степень сжатия смеси относительно геометрической, благодаря чему удаётся эффективнее использовать энергию расширяющихся в цилиндре газов. Т.е. теряется максимальная мощность, но улучшается экономичность.

На многих машинах есть двигатели, использующие два или все три цикла в разных режимах работы.

Принцип работы многоцилиндровых двигателей

На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).

  • Как устроен двигатель внутреннего сгорания

Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Значит после рабочего хода в первом цилиндре следующий происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.

Диаграмма работы двигателя по схеме 1-2-4-3

Многоцилиндровые двигатели бывают рядными и V-образными. В рядных двигателях цилиндры расположены вертикально, а в V-образных — под углом. Последние характеризуются меньшей габаритной длиной по сравнению с первыми. Современные восьмицилиндровые двигатели выполняют двухрядными с V-образным расположением цилиндров.

Принцип работы двигателя внутреннего сгорания

Принцип работы двигателя внутреннего сгорания

Двигателем внутреннего сгорания (ДВС) называется такой поршневой тепловой двигатель, в котором тепловая энергия, возникающая в цилиндрах при сгорании горючей смеси, преобразуется в механическую за счет воздействия на поршни газообразных продуктов сгорания, обладающих высоким давлением и температурой (до 2400° С и 8 МПа). При этом поршни, перемещаясь под давлением продуктов сгорания, приводят во вращение через кривошипно-шатунный механизм коленчатый вал двигателя, а от него — трансмиссию машины.

Принципиальная схема ДВС представлена на рис. 6.1. Из нее видно, что поршень может перемещаться в цилиндре из крайнего верхнего положения, или верхней мертвой точки (ВМТ), в крайнее нижнее положение, или до нижней мертвой точки (НМТ), на расстояние, соответствующее ходу поршня.

От НМТ поршень может перемещаться только вверх до ВМТ. Таким образом, двойной ход поршня (вниз и вверх) соответствует полному обороту вала. Значит, если обеспечить своевременное попадание в цилиндр горючей смеси, ее сжатие и сгорание, а затем удаление продуктов сгорания и новое заполнение цилиндра горючей смесью, можно добиться постоянного вращения коленчатого вала двигателя. На этом основана работа ДВС. А сама совокупность повторяющихся в определенной последовательности процессов впуска горючей смеси, ее сжатия, сгорания с последующим расширением и выпуска продуктов сгорания в атмосферу носит название рабочего цикла ДВС. Часть рабочего цикла, соответствующая перемещению поршня из одного крайнего положения в другое, называется тактом.

Рекламные предложения на основе ваших интересов:

Дополнительные материалы по теме:

Если полный рабочий цикл ДВС совершается за четыре такта (4 хода поршня), т. е. за два полных обо рота коленчатого вала, то такой двигатель называется четырехтактным; если же рабочий цикл состоит из двух тактов (2 хода поршня), то двигатель считается двухтактным. На рис. 6.1 видно, что полость цилиндра сообщается с внешней средой с помощью двух отверстий, закрываемых клапанами или другим образом. Одно из отверстий является впускным и предназначено для впуска горючей смеси или воздуха, другое — выпускным и служит для выпуска продуктов сгорания. Впускное и выпускное отверстия могут либо полностью перекрываться, либо закрываться попеременно.

Когда поршень занимает крайнее верхнее положение, над ним остается свободное пространство объемом Ус, которое является так называемой камерой сгорания. При перемещении поршня в НМТ в цилиндре освобождается объем Ур, называемый рабочим, который вместе с объемом камеры сгорания Vc образует полный объем цилиндра: V„= Ус+ Vp. Таким образом, поршень, перемещаясь в обратном направлении от НМТ до ВМТ, изменяет объем цилиндра с V„ до VQ, т. е. многократно сжимает газообразные вещества. Поэтому отношение полного объема цилиндра V„ к объему камеры сгорания VQ показывает так называемую степень сжатия в цилиндре е= Vn/Vc, т. е. величину сжатия горючей смеси в момент ее воспламенения. Эта величина зависит от конструкции ДВС. Так, у дизельных двигателей она достигает величины 14…22, а у карбюраторных 6… 10. Когда рабочий объем одного цилиндра Vp умножается на их число, получается рабочий объем двигателя Ул.

Рис. 6.1. Принципиальная схема ДВС

В зависимости от вида применяемого топлива ДВС могут быть дизельными (используется дизельное топливо) и карбюраторными (топливом являются бензин, газ). На автогрейдерах основными двигателями являются многоцилиндровые четырехтактные дизельные двигатели, в качестве пусковых на них используются одноцилиндровые двухтактные бензиновые двигатели. В общем, принципы работы дизельных и карбюраторных двигателей подобны. Основное отличие состоит в том, что в карбюраторных двигателях для воспламенения рабочей смеси (смеси паров топлива, воздуха, остаточных газов) в цилиндрах используется специальная электрическая система зажигания, а на дизельных двигателях — воспламенение топлива, впрыскиваемого под высоким давлением в камеру сгорания, происходит от высокой температуры воздуха, превышающей температуру вспышки смеси топлива и воздуха, сжатого в камере сгорания поршнем. Кроме того, в дизельных двигателях вначале цилиндры наполняются воздухом, а не горючей смесью (смесь мелкораспыленного жидкого или газообразного топлива с воздухом), как у карбюраторных, и сжимается воздух, а не горючая смесь (поэтому-то степень сжатия, температура и давление в цилиндрах у дизельных двигателей выше, чем у карбюраторных). В связи с этим для дизельных двигателей требуется специальная система впрыска топлива под давлением, в то время как у карбюраторных двигателей горючая смесь поступает за счет разрежения, создаваемого поршнями.

Принцип работы четырехтактного дизельного двигателя. Первый такт — впуск воздуха (рис. 6.2, а) производится при движении поршня от ВМТ до НМТ за счет создаваемого в цилиндре разрежения через открытый впускной клапан, который открывается с опережением до прихода поршня в ВМТ и закрывается с запаздыванием после достижения поршнем НМТ.

Рис. 6.2. Принцип работы четырехтактного дизельного двигателя: а — первый такт — впуск воздуха; 6 — второй такт — сжатие воздуха; в — третий такт — рабочий ход; 4— четвертый такт — выпуск отработавших газов; 1 — коленчатый вал; 2 — шатун; 3 — поршень; 4 — впускной клапан; 5 — форсунка; 6 — выпускной клапан; 7 — цилиндр

Второй такт — сжатие воздуха (рис. 6.2,6) происходит при движении поршня от НМТ к ВМТ при закрытых впускном и выпускном клапанах. В конце сжатия давление воздуха достигает 3…4 МПа при температуре выше 500° С. В момент, когда поршень несколько не доходит до ВМТ, с помощью форсунки производится впрыск топлива под давлением 20…40 МПа. В нагретом воздухе распыленное топливо самовоспламеняется и сгорает.

Третий такт — рабочий ход (рис. 6.2,в) происходит при заканчивающемся сгорании топлива и расширении продуктов сгорания, сопровождающемся перемещением поршня от ВМТ к НМТ. С целью лучшей последующей очистки полости цилиндра от отработавших газов выпускной клапан открывается до момента подхода поршня в НМТ.

Четвертый такт — выпуск отработавших газов (рис. 6.2, г) производится при движении поршня от НМТ к ВМТ, когда выпускной клапан открыт. После этого рабочий цикл двигателя повторяется.

Принцип работы двухтактного карбюраторного двигателя. В отличие от дизельного двигателя для образования горючей смеси в нем использован карбюратор, а система зажигания со свечой, вставленной в головку цилиндра, служит для зажигания горючей смеси (рис. 6.3). В отличие от четырехтактного карбюраторного двигателя в двухтактном двигателе с кривошип- но-камерной продувкой отсутствуют клапаны, а впускное и выпускное отверстия перекрываются самим поршнем. Кроме того, имеется продувочное отверстие и для подачи горючей смеси от карбюратора в цилиндр используется герметичный картер двигателя.

В одном такте двухтактного двигателя сосредоточены не один, а два описанных выше процесса.

Первый такт — рабочий ход поршня (рис. 6.3, а, б) начинается, когда поршень, перекрыв выпускное и продувочное отверстия и открыв впускное отверстие, подходит к ВМТ. Тогда срабатывает свеча, искра от которой воспламеняет сжатую рабочую смесь, в камере сгорания резко повышается температура и давление (до 2,5 МПа). Поршень, под давлением перемещаясь вниз, сначала закрывает впускное отверстие и начинает сжимать рабочую смесь в картере 8 двигателя, а затем открывает выпускное отверстие 2 и продувочное, через которые под давлением (0,1 МПа) рабочей смеси из картера производится удаление отработавших газов и продувка рабочей полости цилиндра. При этом отражатель, установленный на головке поршня, направляет рабочую смесь по всей полости цилиндра, способствуя его очистке от продуктов сгорания. Когда поршень достигает НМТ, начинается его движение вверх.

Рис. 6.3. Принцип работы двухтактного карбюраторного двигателя: а — начало рабочего хода поршня; б—конец рабочего хода поршня; 1 — впускное отверстие; 2 — выпускное отверстие; 3 — шатун; 4 — цилиндр; 5 — поршень; 6 — свеча; 7 — продувочное отверстие; 8 — картер; 9—коленчатый вал; 10—карбюратор

Второй такт — сжатие рабочей смеси начинается с продолжающегося удаления отработавших газов и впуска в надпоршневое пространство рабочей смеси. По мере движения поршня вверх сначала перекрывается продувочное отверстие, а затем и выпускное, после чего рабочая смесь сжимается в течение всего движения поршня до ВМТ. В тот момент, когда нижний край поршня открывает впускное отверстие, начинается впуск горючей смеси в полость картера (в подпоршневое пространство). Затем рабочий цикл повторяется.

Принцип и особенности работы поршневых ДВС определили наличие у них следующих основных механизмов и систем: кривошипно-шатунный механизм, преобразующий возвратно-поступательное движение поршня под воздействием давления газов во вращательное движение коленчатого вала; механизм газораспределения, предназначенный для своевременного наполнения цилиндров горючей смесью или воздухом и выпуска отработавших газов в атмосферу; система смазки, предназначенная для очистки и подачи к трущимся сопряженным поверхностям двигателя необходимого для смазки и охлаждения этих поверхностей количества масла; система охлаждения, служащая для охлаждения всех нагреваемых деталей двигателя путем отвода от них тепла; система питания, предназначенная для подачи в цилиндры дозированного количества топлива или горючей смеси в распыленном состоянии; система зажигания (у карбюраторных двигателей), служащая для принудительного воспламенения рабочей смеси в цилиндрах; система пуска, предназначенная для быстрого и уверенного запуска двигателя при любых температурных условиях.

Работу ДВС характеризует такой параметр, как эффективная мощность N3, являющаяся мощностью, снимаемой с коленчатого вала двигателя для производства полезной работы. Мощность указана в паспорте на двигатель. Кроме того, в паспорте дается и регуляторная характеристика двигателя, т. е. зависимости мощности и крутящего момента на валу двигателя от частоты его вращения.

Модульное исследование – Домашний школьник своими руками

Двигатели уже давно используются для производства полезной энергии для выполнения работы, такой как перекачка воды и вождение автомобиля. Однако общей темой является использование сжигания веществ для получения тепла или расширяющихся газов.

Двигатели внешнего и внутреннего сгорания

В двигателе внешнего сгорания сжигание топлива используется для косвенного нагрева вещества, выполняющего работу. Паровой двигатель — это основной двигатель внешнего сгорания — огонь кипятит воду в резервуаре, а образующийся пар затем направляется в цилиндр, где он и выполняет работу. 9Двигатель внутреннего сгорания 0009 , напротив, полагается на сжигание топлива в камере сгорания, где работают расширяющиеся газы.

История двигателя внутреннего сгорания

Двигатель внутреннего сгорания существует уже давно; современной версии двигателя уже более века. Версии двигателя внутреннего сгорания предлагались еще в 1600-х годах. Эти модели использовали порох в качестве топлива и были предназначены для перекачки воды, но так и не были построены. Как воспламенить порох, а затем обеспечить управляемую работу двигателя, оказалось непреодолимой трудностью.

Джордж Брайтон

Спустя столетие Джордж Брайтон родился 3 октября 1830 года. Брайтон изобрел первый успешный (и безопасный) масляный двигатель. Двигатель Брайтона сжимал воздух и затем направлял его в камеру сгорания, имевшую вдвое больший объем, чем камера сжатия. На пути к камере сгорания воздух проходил через пропитанный топливом «абсорбирующий материал» и собирал на своем пути пары топлива. Топливом мог быть как бензин, так и керосин — предпочтение отдавалось керосину, так как бензин оказался слишком нестабильным для двигателя Брайтона. Топливно-воздушная смесь воспламенялась пилотным пламенем, которое продолжало гореть в камере сгорания, а затем газ, образующийся при сгорании, толкал поршень вниз, где импульс двигателя снова толкал его вверх для следующего такта сгорания. Поскольку эти двигатели весили огромное количество, они в основном использовались для стационарных целей, хотя иногда они попадали в один или два автомобиля.

Четырехтактный двигатель внутреннего сгорания

В современном четырехтактном двигателе используются два клапана и поршень. Сначала открывается клапан, пропуская топливно-воздушную смесь в двигатель. Клапан закрывается, и смесь сжимается цилиндром. Искра, создаваемая свечой зажигания в верхней части двигателя, воспламеняет смесь после ее полного сжатия. Смесь резко расширяется, заставляя цилиндр опускаться, а другой клапан открывается, позволяя выхлопным газам выйти.

Этот двигатель, изобретенный в 1800-х годах, используется по сей день, являясь одним из лучших двигателей всех времен. Хотя это не двигатель Брайтона, не может быть никаких сомнений в том, что патент Брайтона на первый коммерческий двигатель внутреннего сгорания, работающий на газе, заложил основу для безопасного и практичного использования нефтепродуктов в качестве топлива.

 

Дальнейшее расследование

Джордж Брайтон
Биография Американского общества инженеров-механиков.

История двигателя внутреннего сгорания
Этот 4-страничный документ включает большую хронологию.

Как работает двигатель — Анимация
Отличное объяснение того, как работает двигатель внутреннего сгорания.
(Вы можете установить блокировщик рекламы перед просмотром.)

Краткая история двигателя внутреннего сгорания
От 1600-х годов до современного 4-тактного двигателя.

Цикл Брайтона
Как работа Брайтона используется до сих пор.

История двигателей
Как работает современный двигатель внутреннего сгорания.

 

Действия

Двухтактный двигатель
Интерактивная анимация и пояснения.

Четырехтактный двигатель
Интерактивная анимация и пояснения.

Как заменить масло
Пошаговые инструкции, которые должен знать каждый!

 

Книги

A Power Primer
Отличное введение для младших школьников из General Motors. Свободно.

Руководство по двигателю внутреннего сгорания
Произведение, являющееся общественным достоянием, в котором понятным языком объясняются четыре части двигателя.

Газовые и нефтяные двигатели {Бесплатная электронная книга}
Общественное достояние, основанное на практическом подходе. Много полезных иллюстраций для любителей истории.

Практическое руководство по газовым, нефтяным и паровым двигателям Джона Ратбана
Все, что вам нужно знать, в этом общественном достоянии.

 

Модульные исследования и планы уроков

Двигатель внутреннего сгорания и его значение для сельского хозяйства
План урока из средней школы Урбана в Иллинойсе с отличной справочной информацией.

Двигатели внутреннего сгорания
Курс, являющийся частью программы MIT OpenCourseware.

 

Печатные формы и страницы для тетрадей


Двухтактный двигатель
Схема для ноутбука.

4-тактный двигатель
Схема для ноутбука.

Двигатели внутреннего сгорания Страницы для ноутбуков
Простые страницы для копирования, повествования или подведения итогов.

 

Готовы к большему?

Вам также могут понравиться следующие связанные юниты:

  • Джеймс Уатт и паровой двигатель
  • Нефтяная скважина Дрейка
  • Бензин

Двигатель внутреннего сгорания — Энергетическое образование

Энергетическое образование

Меню навигации

ИСТОЧНИКИ ЭНЕРГИИ

ЭНЕРГЕТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ

ЭНЕРГЕТИЧЕСКОЕ ВОЗДЕЙСТВИЕ

Поиск

Двигатели внутреннего сгорания (ДВС) являются наиболее распространенной формой тепловых двигателей, поскольку они используются в транспортных средствах, лодках, кораблях, самолетах и ​​поездах. Они названы так потому, что топливо воспламеняется, чтобы совершать работу внутри двигателя. [1] Та же топливно-воздушная смесь затем выбрасывается в виде выхлопных газов. Это можно сделать с помощью поршня (так называемый поршневой двигатель) или с помощью турбины.

Закон идеального газа

Тепловые двигатели внутреннего сгорания можно понять, если хорошенько подумать о законе идеального газа: [математика]pV=nRT[/математика]. Повышение температуры газа увеличивает давление, которое заставляет газ расширяться. [1] Двигатель внутреннего сгорания имеет камеру, в которую добавлено топливо, воспламеняющееся для повышения температуры газа.

Когда в систему добавляется тепло, газ внутри расширяется. В поршневом двигателе это заставляет поршень подниматься (см. рис. 2). Прикрепив поршень к коленчатому валу, двигатель может преобразовать часть подводимой к системе энергии в полезную работу. [2] Для сжатия поршня в двигателе прерывистого внутреннего сгорания двигатель выпускает газ. Затем используется радиатор, чтобы система работала при постоянной температуре. Газовая турбина, в которой используется непрерывное сгорание, просто выбрасывает свой газ непрерывно, а не в цикле. По аналогичному принципу работают тепловые двигатели с газовыми турбинами, горячий воздух нагнетается в камеру турбины, вращая турбину (рис. 1).

Поршни и турбины

Рис. 1. Схема газотурбинного двигателя. [3]

Двигатель, в котором используется поршень , называется двигателем внутреннего сгорания периодического действия , тогда как двигатель, использующий турбину , называется двигателем внутреннего сгорания непрерывного действия . Разница в механике очевидна из-за названий, но разница в использовании менее очевидна.

Поршневой двигатель чрезвычайно отзывчив по сравнению с турбиной, а также более экономичен при низкой мощности. Это делает их идеальными для использования в транспортных средствах, поскольку они также быстрее запускаются. И наоборот, турбина имеет более высокое отношение мощности к массе по сравнению с поршневым двигателем, а ее конструкция более надежна для обеспечения постоянной высокой производительности. Турбина также работает лучше, чем безнаддувный поршневой двигатель на больших высотах и ​​при низких температурах. Легкая конструкция, надежность и способность работать на большой высоте делают турбины предпочтительным двигателем для самолетов. Турбины также широко используются на электростанциях для производства электроэнергии.

Четырехтактный двигатель

на главную

Рисунок 2. Четырехтактный двигатель внутреннего сгорания. 1: впрыск топлива, 2: зажигание, 3: расширение (работа выполнена), 4: выпуск. [4]

Хотя существует множество типов двигателей внутреннего сгорания, четырехтактный поршневой двигатель (рис. 2) является одним из наиболее распространенных. Он используется в различных автомобилях (которые специально используют бензин в качестве топлива), таких как легковые автомобили, грузовики и некоторые мотоциклы. Четырехтактный двигатель обеспечивает один рабочий ход за каждые два цикла поршня. Справа есть анимация четырехтактного двигателя и дальнейшее объяснение процесса ниже.

  1. Топливо впрыскивается в камеру.
  2. Топливо воспламеняется (в дизельном двигателе это происходит иначе, чем в бензиновом двигателе).
  3. Этот огонь толкает поршень, что является полезным движением.
  4. Химические отходы, по объему (или массе) это в основном водяной пар и двуокись углерода. Там могут быть загрязняющие вещества, а также угарный газ от неполного сгорания.

Двухтактный двигатель

главная страница

Рисунок 3. Двухтактный двигатель внутреннего сгорания [5]

Как следует из названия, для выработки мощности системе требуется только два движения поршня. Основным отличительным фактором, который позволяет двухтактному двигателю работать только с двумя движениями поршня, является то, что выпуск и впуск газа происходят одновременно, [6] , как показано на рисунке 3. Сам поршень используется как клапан система вместе с коленчатым валом для направления потока газов. Кроме того, из-за частого контакта с движущимися компонентами топливо смешивается с маслом для добавления смазки, что обеспечивает более плавный ход. В целом двухтактный двигатель содержит два процесса:

  1. Топливно-воздушная смесь добавляется, и поршень движется вверх (сжатие). Впускное отверстие открывается из-за положения поршня, и топливно-воздушная смесь поступает в приемную камеру. Свеча зажигания воспламеняет сжатое топливо и начинает рабочий ход.
  2. Нагретый газ оказывает высокое давление на поршень, поршень движется вниз (расширение), отработанное тепло отводится.

Роторный двигатель Ванкеля

главная страница

Рисунок 4. Цикл роторного двигателя. Он всасывает воздух/топливо, сжимает его, воспламеняется, выполняя полезную работу, а затем выпускает газ. [7]

В двигателе этого типа имеется ротор (внутренний круг обозначен буквой «B» на рис. 4), который находится в корпусе овальной формы. Он выполняет обычные этапы четырехтактного цикла (впуск, сжатие, воспламенение, выпуск), однако эти этапы происходят 3 раза за один оборот ротора — создавая три рабочих такта за оборот .

Для дополнительной информации

  • Роторный двигатель
  • Двухтактный двигатель
  • Четырехтактный двигатель
  • Закон идеального газа
  • Или просмотрите случайную страницу

Ссылки

  1. 1.0 1.1 Р. Д. Найт, «Тепловые двигатели и холодильники» в Physics for Scientists and Engineers: A Strategic Approach, 3nd ed. Сан-Франциско, США: Пирсон Аддисон-Уэсли, 2008 г., глава 19, раздел 2, стр. 530.
  2. ↑ Р. А. Хинрихс и М. Клейнбах, «Тепло и работа», в Energy: its Use and the Environment , 5th ed. Торонто, Онтарио. Канада: Брукс/Коул, 2013 г., ч. 4, стр. 93–122.
  3. ↑ Wikimedia Commons [в сети], доступно: https://upload. wikimedia.org/wikipedia/commons/4/4c/Jet_engine.svg
  4. ↑ Wikimedia Commons [в сети], доступно: https://upload.wikimedia.org/wikipedia/commons/d/dc/4StrokeEngine_Ortho_3D_Small.gif
  5. ↑ «Файл:Two-Stroke Engine.gif — Wikimedia Commons», Commons.wikimedia.org, 2018. [Онлайн]. Доступно: https://commons.wikimedia.org/wiki/File:Two-Stroke_Engine.gif. [Доступ: 17 мая 2018 г.].
  6. ↑ К. Ву, Термодинамика и тепловые циклы. Нью-Йорк: Издательство Nova Science, 2007 г.
  7. ↑ Wikimedia Commons [в сети], доступно: http://upload.wikimedia.org/wikipedia/commons/f/fc/Wankel_Cycle_anim_en.gif
  8. Урок 5: Двигатель внутреннего сгорания и моторное масло за плохое качество видео; это было одно из первых, которые мы сделали с ограниченным бюджетом, и если бы не ориентированный на обучение ведущий, его было бы почти невозможно смотреть по сегодняшним стандартам интернет-зрителя, но информация все еще актуальна и Джефф проделал хорошую работу, объясняя вещи для понимания неспециалистов. )

    В этом уроке вы узнаете, как работает двигатель внутреннего сгорания и какое значение имеет моторное масло.

    Как работает двигатель внутреннего сгорания:

    Все двигатели внутреннего сгорания работают по теории, называемой Цикл событий Отто , названный в честь Николауса Отто, который изобрел его в 1867 году. Он состоит из 4 повторяющихся шагов или «ходов»:

    • Впуск
    • Сжатие
    • Горение (или мощность)
    • Выхлоп

    Схема, показывающая работу 4-тактного двигателя с искровым зажиганием. Метки: 1 — Индукция, 2 — Компрессия, 3 — Мощность, 4 — Выхлоп. CC-BY-SA 3.0 Zephyris

    Топливо и воздух всасываются в цилиндр двигателя при движении поршня вниз при открытом впускном клапане. Затем поршень начинает двигаться вверх, и впускной, и выпускной клапаны закрываются. Движущийся вверх поршень сжимает воздушно-топливную смесь. Затем воздушно-топливная смесь воспламеняется свечой зажигания (в обычных бензиновых двигателях), создавая сгорание. Чрезвычайно высокая температура создает высокое давление, заставляющее поршень опускаться. Затем открывается выпускной клапан. Поршень возвращается вверх, выпуская выхлопные газы. А потом цикл повторяется.

    Вот приличная анимация цикла Отто на YouTube: http://www.youtube.com/watch?v=6qHherIwsTE. (На ютубе впускной слева, а выхлопной справа). В Википедии также есть GIF-анимация: https://commons.wikimedia.org/wiki/File:4StrokeEngine_Ortho_3D_Small.gif. (На GIF-анимации впуск справа, а выхлоп слева).

    Процесс сгорания – это преобразование химической энергии (бензина) в тепловую энергию (сгорание), которая преобразуется в энергию возвратно-поступательного движения (качание поршней). Поршни вращают коленчатый вал через шатун. Когда поршень движется вверх и вниз во время сгорания, он вращает коленчатый вал. Коленчатый вал превращает энергию возвратно-поступательного движения в энергию вращения. Эта энергия в конечном итоге передается на колеса через трансмиссию, которую мы обсудим позже в Уроке 9. .

    Коленчатый вал GIF-анимация, общественное достояние.

    Анимированную иллюстрацию, на которой показаны поршни (серые) в соответствующих цилиндрах (синие) и коленчатый вал (красные), можно найти по адресу http://commons.wikimedia.org/wiki/File:Cshaft.gif. Когда поршни движутся вверх и вниз, коленчатый вал вращается.

    В дизельном двигателе нет свечей зажигания. Топливо воспламеняется только за счет сжатия. Сжатие выше в дизельном двигателе, который выделяет достаточно тепла, чтобы вызвать сгорание.

    Гибридный автомобиль использует электродвигатель и аккумулятор для обеспечения движения наряду с двигателем внутреннего сгорания. Двигатель внутреннего сгорания вырабатывает электричество для подзарядки батарей. Также аккумуляторы подзаряжаются при торможении до остановки.

    Моторное масло

    Моторное масло предназначено для образования смазывающей пленки между всеми движущимися частями двигателя внутреннего сгорания для уменьшения трения и износа. Выбор подходящего моторного масла для вашего автомобиля и замена масла во время регулярных плановых интервалов технического обслуживания обеспечат бесперебойную работу двигателя в течение долгого времени. Рекомендуемый тип масла и технические характеристики для вашего автомобиля можно найти в руководстве по эксплуатации. Еще одно место, где его можно найти, это крышка заливной горловины. Это будет основано на температуре окружающей среды, где вы живете. В руководстве по эксплуатации указаны два кода моторного масла: API и SAE.

    Все масла имеют код API, обозначающий Американский институт нефти. Это сервисный рейтинг качества, чистоты и типов моющих присадок в масле. Код всегда будет состоять из двух букв.

    SAE — это вязкость или густота масла. Современное масло является многовязким. SAE может быть чем-то вроде 5W-30. Первая комбинация цифр и букв (5W) указывает на вязкость или густоту масла в холодном состоянии. Второе число – это вязкость при рабочей температуре двигателя. До появления мультивязкого масла было только масло одинарной вязкости (SAE 30), которое в холодную погоду очень густое. Попытка залить его в ваш двигатель была бы похожа на заливку меда, но, что более важно, было бы трудно перекачивать масло и смазывать двигатель. Вот почему старые двигатели нужно было прогревать, прежде чем вы могли управлять ими.

     

    Урок 5: Двигатель внутреннего сгорания и моторное масло — один из двенадцати уроков, которые также доступны в виде бесплатной электронной книги с иллюстрациями. Эти уроки основаны на схеме значка за заслуги перед бойскаутами в области автомобильного обслуживания и адаптированы Crawford’s Auto Repair для широкой аудитории. Эта статья предназначена только для информационных целей, и автор не берет на себя ответственности за любой несчастный случай, который может произойти при работе с автомобилями. Читая эту страницу, вы принимаете условие, что вы несете полную ответственность за свои действия. Для получения дополнительной информации по темам на этой странице см. разделы «Ремонт и смазка двигателя» и «Замена масла и комплекс работ».

    Copyright © 2014, Джефф Кроуфорд . Разрешается повторно публиковать эту статью для личного или коммерческого использования при условии, что содержание, цитаты и уведомление об авторских правах остаются нетронутыми и неизменными. Должна быть активная ссылка «follow» на CrawfordsAutoService.com.

    Урок 5: Двигатель внутреннего сгорания и моторное масло распространяются по лицензии Creative Commons Attribution-NoDerivatives 4.0 International License.

    Двигатель внутреннего сгорания | Encyclopedia.com

    Обзор

    Физики называют двигатель внутреннего сгорания «первичным двигателем», имея в виду, что он использует некоторую форму энергии (например, бензин) для перемещения объектов. Первые надежные двигатели внутреннего сгорания были разработаны в середине девятнадцатого века и почти сразу же стали использоваться на транспорте. Разработка двигателя внутреннего сгорания помогла освободить людей от тяжелейшего ручного труда, сделала возможным создание самолетов и других видов транспорта, а также произвела революцию в производстве электроэнергии.

    Предыстория

    В 1698 году Томас Савери (ок. 1650-1715), британский военный инженер, построил «Друг шахтера», устройство, которое использовало давление пара для откачки воды из затопленных шахт. Несколько лет спустя Томас Ньюкомен (1663–1729) расширил конструкцию Савери и создал первый настоящий двигатель. В двигателе Ньюкомена, в отличие от двигателя Христиана Гюйгенса (1629–1695) и Савери, использовался поршень, прикрепленный к самому двигателю. Таким образом, он мог производить постоянную (хотя и не плавную) мощность.

    Три условия, существовавшие в девятнадцатом веке, способствовали развитию двигателя внутреннего сгорания. Главным условием был спрос на власть, предъявленный промышленной революцией. Во-вторых, физики начали понимать ключевые концепции, на которых построен двигатель внутреннего сгорания. В-третьих, топливо, необходимое для питания двигателя, становилось все более доступным.

    Между 1700 и 1900 годами ученые разработали область термодинамики, которая дала изобретателям инструменты для расчета эффективности и выходной мощности различных типов двигателей. Эти расчеты показали, что внутренняя
    двигатель внутреннего сгорания был потенциально гораздо более эффективным, чем паровой двигатель (который, напротив, был двигателем внешнего сгорания, что означает, что он воспламеняет топливо вне самого двигателя).

    Самое важное событие в ранней истории двигателя внутреннего сгорания произошло в 1859 году бельгийским изобретателем Жаном-Жозефом Этьеном Ленуаром (1822-1900). Двигатель Ленуара был долговечным (некоторые из них отлично работали после 20 лет эксплуатации) и, что более важно, надежным. Ранние версии двигателя были низкого качества и без причины переставали работать. Двигатель Ленуара обеспечивал постоянную мощность и работал плавно. В 1862 году Ленуар изобрел первый в мире автомобиль.

    В 1860-х годах Николаус Отто (1832-1891) начал экспериментировать с двухтактными двигателями Ленуара и теоретическими четырехтактными двигателями Альфонса Бо де Роша (1815-1893). Отто был продавцом продуктов; у него не было технического образования или опыта. В 1866 году Отто с помощью немецкого промышленника Ойгена Лангена (1833–1895) разработал успешный, но тяжелый и шумный двигатель Отто и Лангена. Он продолжал экспериментировать с двигателями. В 1876 году он выпустил «Silent Otto», первый в мире четырехтактный двигатель. Помимо того, что Silent Otto был тише, чем предыдущие двигатели, он также был намного более экономичным.

    Двигатель Отто стал эталоном своего времени. Фактически, фундаментальная конструкция современных двигателей остается идентичной конструкции Отто. Как и предсказывала термодинамика, двигатель внутреннего сгорания был гораздо более экономичным, чем паровой двигатель. Двигатели внутреннего сгорания, которые были тише, дешевле в эксплуатации и менее громоздки, чем паровые двигатели, начали появляться на промышленных предприятиях по всей Северной Европе.

    Чтобы двигатель внутреннего сгорания мог использовать жидкое топливо, он должен сначала преобразовать жидкость в парообразное состояние. Следующей задачей для производителей двигателей было найти способ осуществить это изменение. Между 1880 и 19 гг.00, для выполнения этой задачи были изобретены различные процессы. Между 1885 и 1892 годами были разработаны три метода: карбюратор, испарение с помощью горячей лампы и дизельный двигатель.

    В карбюраторе устройство, называемое карбюратором, смешивает воздух с парами жидкого топлива. Затем карбюратор подает смесь в двигатель. Искра или пламя внутри двигателя воспламеняют смесь. Это функция карбюратора в современных автомобилях. Для сравнения, двигатель с горячей колбой распылял бензин на горячую поверхность рядом с цилиндром, а затем втягивал испаряющееся топливо в двигатель в виде пара. С двигателем с горячей колбой можно было использовать менее летучее топливо, такое как керосин. Третий метод — дизельный двигатель сжатия. Вместо использования внешнего источника тепла для воспламенения газа, как в первых двух методах, немецкий инженер Рудольф Дизель (1858-1919 гг. 13) изобрел процесс, при котором газ воспламеняется сам. Дизель хорошо разбирался в математике и естественных науках и знал, что при сжатии газа его температура повышается до такой степени, что топливо воспламеняется.

    Impact

    На рубеже веков двигатели внутреннего сгорания стали неотъемлемой частью западной жизни. Промышленные предприятия по всей Европе и Америке широко использовали их, и открылись ворота для крупномасштабного производства автомобилей 1900-х годов.

    В области транспорта бензиновый двигатель внутреннего сгорания и его варианты (прежде всего дизельный двигатель) адаптированы для использования в путешествиях морским, наземным и воздушным транспортом. В море большое количество небольших кораблей были и продолжают работать с дизельными двигателями, ускоряя перемещение людей и товаров между любыми местами, связанными водой. Это помогло сделать торговлю более быстрой и менее дорогой. Сочетание морских перевозок с более эффективными наземными перевозками грузов делает эти преимущества еще более значительными. В свою очередь, расширение торговли, как правило, ведет к большему процветанию и более высокому уровню жизни для обеих сторон, не говоря уже о создании новых рабочих мест.

    Самолеты также обязаны своим появлением бензиновому двигателю. Многие изобретатели пытались летать с двигателем в конце девятнадцатого века, но только когда стали доступны легкие и мощные бензиновые двигатели, авиация была создана. Фактически, бензиновые двигатели доминировали в авиации в первой половине двадцатого века и даже сегодня играют важную роль в частной, коммерческой и военной авиации.

    Также следует учитывать влияние на сельское хозяйство и производство продуктов питания. Тракторы и другое современное сельскохозяйственное оборудование, обычно работающее на дизельных или бензиновых двигателях, играют значительную роль в обеспечении изобилия продовольствия в развитых странах и в некоторых частях развивающихся стран. Использование тракторов для обработки почвы, посадки и сбора урожая, а также для буксировки тяжелых грузов помогло увеличить урожайность.
    количество земли, которое может обработать один фермер, а также увеличение урожайности с гектара. Это двойное повышение эффективности отдельных фермеров приводит к увеличению количества продовольствия по более низким ценам. В развитом мире это означает не только больше и дешевле еды, доступной для его граждан, но и больше еды, доступной для экспорта во все страны.

    Как упоминалось ранее, дизельный двигатель является продуктом двигателя внутреннего сгорания. Дизельные двигатели мощнее, требуют меньше обслуживания и потребляют меньше топлива высокой степени очистки, чем бензиновые двигатели. Эти факторы делают их менее дорогими, и они стали предпочтительным двигателем для железнодорожных перевозок, больших лодок и небольших кораблей, а также грузовиков. Дизельные двигатели также широко используются для производства электроэнергии, особенно в качестве аварийных источников питания для таких объектов, как больницы и атомные электростанции. В обоих случаях дизельные двигатели зарекомендовали себя как надежные и недорогие в обслуживании и эксплуатации.

    Последнее воздействие, которое необходимо обсудить, — это воздействие двигателя внутреннего сгорания на окружающую среду. Все двигатели внутреннего сгорания работают за счет сжигания той или иной формы углеводорода и выпуска выхлопных газов. Эти углеводороды обычно получают из нефти и сгорают с образованием двуокиси углерода, монооксида углерода и воды. Хотя были разработаны водородные двигатели, которые сжигают водород и производят водяной пар в качестве выхлопного газа, на момент написания этой статьи они были редкостью.

    С точки зрения топлива, запасы нефти ограничены, и их становится все труднее обнаруживать и извлекать. Процесс добычи неизменно приводит к некоторому воздействию на окружающую среду не только на месте бурения, но и на пути транспортировки. Поскольку большая часть нефти добывается в регионах, удаленных от нефтеперерабатывающих заводов и промышленных стран, большая ее часть транспортируется океанскими танкерами, которые иногда вызывают разливы с потенциально серьезными последствиями.

    При сгорании в двигателях углеводородное топливо выделяет много газов, большая часть которых способствует загрязнению воздуха. До запрета в Соединенных Штатах многие виды топлива также содержали соединения свинца, которые приводили к случаям отравления свинцом. Однако даже без свинца двуокись углерода, первичный выхлопной газ сгорания, по-видимому, производится в достаточно больших количествах, поэтому было отмечено глобальное повышение уровня в атмосфере. Поскольку известно, что углекислый газ помогает улавливать солнечное тепло, существует множество предположений о том, что широкое использование двигателей внутреннего сгорания вызывает повышение температуры во всем мире с потенциально катастрофическими последствиями. Однако следует подчеркнуть, что данные, которые были интерпретированы, чтобы показать глобальное потепление, могут быть прочитаны по-разному, и не все ученые верят, что глобальное потепление действительно происходит. Кроме того, необходимо помнить, что на протяжении большей части истории Земли температуры были намного выше, чем в настоящее время. Таким образом, даже если происходит глобальное потепление, оно может быть вызвано или не связано со сжиганием ископаемого топлива в двигателях внутреннего сгорания.

    ТОДД ДЖЕНСЕН И
    П. ЭНДРЮ КАРАМ

    Дополнительная литература

    Комбс, Гарри. Убить Девил Хилл. Бостон: Houghton Mifflin Company, 1979.

    Харденберг, Хорст О. Средневековье двигателя внутреннего сгорания, 1794–1886 гг. Детройт: Общество автомобильных инженеров, 1999.

    Робертс, Питер. Ветераны и ретроавтомобили. London: Drury House, 1967.

    Наука и ее времена: понимание социальной значимости научных открытий

    Диаграмма давление-объем (pV) и то, как в ДВС производится работа – x-engineer.org

    Двигатель внутреннего сгорания – это тепловой двигатель . Принцип его работы основан на изменении давления и объема внутри цилиндров двигателя. Все тепловые двигатели характеризуются диаграммой давление-объем , также известной как диаграмма pV , которая в основном показывает изменение давления в цилиндре в зависимости от его объема для полного цикла двигателя.

    Кроме того, работа , производимая двигателем внутреннего сгорания, напрямую зависит от изменения давления и объема внутри цилиндра.

    К концу этого руководства читатель должен уметь:

    • понимать значение pV-диаграммы
    • как строится pV-диаграмма для 4-тактного двигателя внутреннего сгорания
    • при впуске и выпуске клапаны приводятся в действие во время цикла двигателя
    • когда зажигание/впрыск производится во время цикла двигателя
    • как работа производится двигателем внутреннего сгорания
    • в чем разница между указано и работа тормозов
    • что такое механический КПД двигателя

    900 pV-диаграмма четырехтактного атмосферного двигателя внутреннего сгорания.

    Изображение: Диаграмма давление-объем (pV) для типичного 4-тактного ДВС

    где:

    S – ход поршня
    V c – рабочий объем
    V d – рабочий (рабочий) объем
    p 0 – атмосферное давление
    W – работа
    ВМТ – ВМТ
    НМТ – НМТ
    IV – впускной клапан 90 EV03 – выпускной клапан
    IVO – открытие впускного клапана
    IVC – закрытие впускного клапана
    EVO – открытие выпускного клапана
    EVC – закрытие выпускного клапана
    IGN (INJ) – зажигание (впрыск)

    Диаграмма давление-объем (pV) есть построен путем измерения давления внутри цилиндра и построения графика его значения в зависимости от угла поворота коленчатого вала в течение полного цикла двигателя (720 °).

    Посмотрим, что происходит в цилиндре при каждом ходе поршня, как меняется давление и объем внутри цилиндра.

    Обратите внимание, что синхронизация впускного и выпускного клапанов имеет опережение и задержку относительно положения поршня. Например, впускной клапан открывается во время такта выпуска поршня и закрывается во время такта сжатия. В то же время, когда начинается такт впуска, выпускной клапан еще ненадолго открыт. Открытие выпускного клапана происходит до завершения рабочего хода.

    ВПУСК (a-b)

    Цикл двигателя начинается в точке a . Впускной клапан уже открыт, и поршень движется от ВМТ к НМТ. Объем постоянно увеличивается по мере того, как поршень проходит длину хода. Максимальный объем достигается, когда поршень находится в НМТ. Давление ниже атмосферного на протяжении всего хода, потому что движение поршня создает объем, а воздух втягивается внутрь цилиндра из-за эффекта вакуума.

    СЖАТИЕ (b-c)

    После прохождения поршнем НМТ начинается такт сжатия. В этой фазе объем начинает уменьшаться, а давление увеличиваться. Требуется некоторое время, пока давление в цилиндре не превысит атмосферное давление, поэтому впускной клапан все еще открыт даже после того, как поршень пройдет НМТ. По мере приближения поршня к ВМТ давление постепенно увеличивается. Примерно за 25° до ВМТ срабатывает зажигание, и давление быстро возрастает до максимального давления.

    МОЩНОСТЬ (в-д)

    После воспламенения/впрыска давление в цилиндре резко возрастает, пока не достигнет максимальных значений p max . Значение максимального давления зависит от типа двигателя, на каком топливе он работает. Для типичного двигателя легкового автомобиля максимальное давление в цилиндре может составлять около 120 бар (бензин) или 180 бар (дизель). Рабочий такт начинается, когда поршень движется от ВМТ к НМТ. Высокое давление в цилиндре давит на поршень, поэтому объем увеличивается, а давление начинает постепенно падать.

    ВЫПУСК (e-a)

    После рабочего такта поршень снова находится в НМТ. Объем в цилиндре снова максимальный, а давление около минимального (атмосферное давление). Поршень начинает двигаться к ВМТ и выталкивает отработавшие газы из цилиндра.

    Как видите, давление и объем внутри цилиндров двигателя постоянно меняются. Мы увидим, что работа, производимая ДВС, является функцией изменения давления и объема.

    Работа Вт [Дж]  – это произведение силы   Ф [Н]  , которая толкает поршень, на рабочий объем, который в нашем случае равен ходу  С [м] .

    \[W = F \cdot S \tag{1}\]

    Мы знаем, что давление равно силе, деленной на площадь, поэтому:

    \[F = p \cdot A_p \tag{2}\]

    где p [Па] давление внутри цилиндра и A p 2 ] площадь поршня.

    Подставляя (2) в (1), получаем:

    \[W = p \cdot A_p \cdot S \tag{3}\]

    Мы знаем, что умножая расстояние на площадь, мы получаем объем, поэтому :

    \[W = p \cdot V \tag{4}\]

    Это мгновенная работа , произведенная в цилиндре при определенном давлении и объеме. Для определения работы за полный цикл двигателя нам нужно проинтегрировать мгновенную работу:

    \[W = \int F \cdot dx = \int p \cdot A_p \cdot dx \tag{5}\]

    , где x — ход поршня.

    Произведение между ходом поршня и площадью поршня дает дифференциальный объем dV , перемещаемый поршнем:

    \[dV = A_p \cdot dx \tag{6}\]

    Замена (6) в (5) дает работу , произведенную в цилиндре за полных циклов :

    \[\bbox[#FFFF9D]{W = \int p \cdot dV} \tag{7}\]

    Поскольку подавляющее большинство двигателей внутреннего сгорания имеют несколько цилиндров, мы собираемся ввести более подходящий параметр для количественной оценки работы, который равен удельная работа w [Дж/кг] .

    \[w = \frac{W}{m} \tag{8}\]

    где м [кг] — масса топливно-воздушной смеси внутри цилиндров за полный цикл.

    Мы также можем определить удельный объем v [м 3 /кг] как:

    \[v = \frac{V}{m} \tag{9}\]

    Производная удельный объем будет:

    \[dv = \frac{1}{m} \cdot dV \tag{10}\]

    откуда можно записать:

    \[dV = m \cdot dv \tag{11}\]

    Замена (7) в (8) дает:

    \[w = \frac{1}{m} \int p \cdot dV \ tag{12}\]

    Из (11) и (12) получаем математическое выражение удельной работы за полный цикл двигателя:

    \[\bbox[#FFFF9D]{w = \int p \cdot dv}\]

    Работа, произведенная внутри цилиндров двигателя, называется указанная конкретная работа , w i [Дж/кг] . То, что мы получаем на коленчатом валу, это специальная работа тормоза w b [Дж/кг] . Он называется «тормозным», потому что при испытании двигателей на стенде их подключают к тормозному устройству (гидравлическому или электрическому), имитирующему нагрузку.

    Чтобы получить работу тормоза, надо из указанной работы вычесть все потери двигателя. Потери – это внутреннее трение и вспомогательные устройства, потребляющие мощность от двигателя (масляный насос, водяной насос, нагнетатель, компрессор кондиционера, генератор переменного тока и т. д.). Эти потери эквивалентны удельная работа трения   w f [Дж/кг] .

    \[w_b = w_i – w_f\]

    Глядя на указанную выше диаграмму давление-объем (pV), мы можем видеть, что есть две отдельные области:

    • верхняя область, образованная во время сжатия и мощности ходы (+W)
    • нижняя область, образующаяся во время тактов выпуска и впуска (-W), называемая также работа нагнетания

    В зависимости от значения давления на входе рабочая область нагнетания может быть отрицательной или положительной. Для атмосферных двигателей работа накачки отрицательна, потому что она использует энергию двигателя для выталкивания выхлопных газов из цилиндров и забора свежего воздуха во время впуска.

    У бензиновых атмосферных двигателей из-за дросселирования всасываемого воздуха насосные потери выше, максимальны на холостом ходу. Дизельные двигатели более эффективны, чем бензиновые, потому что на впуске нет дроссельной заслонки, а нагрузка регулируется за счет впрыска топлива.

    Если разделить удельный тормозной момент на указанный удельный момент, то получим механический КПД двигателя η м [-] :

    \[\bbox[#FFFF9D]{\eta_m = \ frac{w_b}{w_i}}\]

    Для большинства двигателей механический КПД составляет около 80-85% при полной нагрузке (полностью открытая дроссельная заслонка) и падает до нуля на холостом ходу, когда весь крутящий момент двигателя используется для поддержания скорости холостого хода, а не для движения.

    Для любых вопросов, замечаний и запросов по этой статье используйте форму комментариев ниже.

    Не забудьте поставить лайк, поделиться и подписаться!

    Учебный план по двигателям внутреннего сгорания

    MTF240 Двигатели внутреннего сгорания lp1 HT19(7,5 л.с.)
    Курс предлагает кафедра механики и морских наук

    Комнаты HA2, курс лаб. (на первом этаже) и лаборатория двигателей.

    Контактная информация

    Lucien Koopmans (Организатор и эксперт LK
    Профессор
    Департамент механиков и морских наук о сборе и системах движения 0035 Адрес: Hörsalsvägen 7b, 412 96 Göteborg
    Телефон: 031-772 1387
    Mail: [email protected]

    Michael Saccullo (Assistant.se

    Миха. Chalmers.se

    Sven Andersson (гостевой лектор) SA

    Gerben Doornbos (FEV) (гостевой лектор) GD

    Petter Dahlander (гостевой лектор) PD

    Jonas Sjöblom (гостевой лектор) JS

     

    Цель курса

    Курс направлен на предоставление фундаментальных знаний о двигателях внутреннего сгорания. Представлены принципы, регулирующие конструкцию и работу двигателя, и показано, как рабочие характеристики, мощность, эффективность и выбросы зависят от конструкции основного двигателя и условий эксплуатации.

    Этот курс представляет собой базовый курс по двигателям внутреннего сгорания, который дает слушателям достаточные знания, чтобы принимать активное участие в проектировании и разработке в автомобильной промышленности.

    Курс в первую очередь связан с тремя глобальными целями устойчивого развития, а именно:

        #3, хорошее здоровье и благополучие, т.е. выбросы выхлопных газов

        #7, доступная и чистая энергия, т.е. эффективность и CO2

        #13, меры по борьбе с изменением климата, т.е. эффективности и CO2

     

    Цели обучения и программа

    Общие цели

    всей трансмиссии), и обсудить, как эти свойства изменяются с нагрузкой

  9. Опишите и объясните основные явления, происходящие в двигателе внутреннего сгорания, такие как газообмен, сгорание и образование/уменьшение выбросов.
  10. Подумайте о роли двигателей внутреннего сгорания для транспорта в обществе, а также о проблеме выбросов с точки зрения устойчивого развития и этики.
  11. Подробные цели

    Механический дизайн:

    • Изучить и уметь использовать жаргон, т.е. базовую терминологию, и уметь объяснять значение важных понятий .
    • Уметь описать рабочий процесс (произвольного)
    • Понимать и уметь использовать различные рабочие параметры .

    Термодинамика двигателя

    • Уметь описать произвольный идеальный цикл двигателя на p-V-диаграмме.
    • Уметь вывести КПД идеала (Отто)
    • (Применив первый закон термодинамики) вывести выражение для тепловыделения в
    • Уметь обсудить подходящий объем двигателя для данного
    • Объясните разницу между идеальным циклом и реальным

    Газообмен:

    • Уметь описывать процессы впуска и выпуска, а также понимать и обсуждать то, что влияет на эффективность
    • Уметь описать газообмен двухтактного двигателя и описать его КПД.
    • Опишите детали и функции супер-/турбонаддува

    Горение:

    • Уметь использовать основную терминологию сгорания для описания процесса сгорания в цилиндре, как в SI / Otto, так и в CI / Diesel
    • Уметь использовать знания о сгорании для проектирования камеры сгорания (геометрия поршень-цилиндр).

    Выбросы:

    • Дайте определение обычным (регулируемым) местным выбросам и объясните, почему/как они образуются и уменьшаются при работе двигателя
    • Уметь объяснить связь между характером горения и образованием/восстановлением
    • Уметь описать часто используемые методы доочистки /

    Ссылка на программу на Studieportalen.

    Учебный план

     

    Курсовой проект

    Лекции, упражнения, задания, лабораторные занятия.

    Задания и лабораторные работы обязательны.
    Задание 1 необходимо сдать не позднее 11 октября.
    Задание 2 необходимо сдать не позднее 18 октября.
    Черновики устных докладов должны быть сданы не позднее 17 октября

    Презентация проектных заданий состоится 21 октября (явка обязательна).

    Разборка двигателя проводится трижды в течение второй недели обучения (9, 10 и 13 сентября), вам нужно присутствовать только один раз.

    Лаборатория двигателей проводится в течение 4-й недели обучения.

    Учебная неделя

    День

    Дата

    Время

    Содержание

    Кто?

    Где?

     

     

     

     

     

     

     

     

     

     

     

    1

    Понедельник

    2/9

    13:15 —

    15:00

    Введение в курс —

    Лекция

    ЛК

    ХА2

    Понедельник

    2/9

    15:15 —

    17:00

    Механический дизайн — Лекция

    ЛК

    ХА2

    Четверг

    5/9

    8. 00 — 9:45

    Рабочие параметры —

    Лекция

    ЛК

    ХА2

    Четверг

    5/9

    10:00 —

    11:45

    Рабочие параметры —

    Упражнение

    ЛК/СА

    ХА2

    Пятница

       9/6

    15:15 —

    17:00

    Назначение 1 — Запуск

         SA

        HA2

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    2

    Понедельник

    9/9

    8:00 —

    11:45

    Разборка двигателя

    LK и др.

    Курсовая лаборатория

    Понедельник

    9/9

    13:15 —

    15:00

    Термохимия — Лекция

    ЛК

    ХА2

    Понедельник

    9/9

    15:15 —

    17:00

    Термохимия — Упражнение

    ЛК

    ХА2

    вторник

    9/10

    8:00 —

    11:45

    Разборка двигателя

    LK и др.

    Курсовая лаборатория

    Четверг

    9/12

    8.00 — 9:45

    Термодинамика двигателя —

    Лекция

    ЛК

    ХА2

    Четверг

    9/12

    10. 00 — 11.45

    Термодинамика двигателя —

    Упражнение

    ЛК

    ХА2

    Пятница

    13/9

    8:00 —

    11:45

    Разборка двигателя

    LK и др.

    Курсовая лаборатория

    Пятница

    9/12

    15:15 —

    17:00

    TBD – Лекция и задание 1 — Консультация

    ЛК

    ХА2

     

     

     

     

     

     

     

     

     

     

     

     

    3

    Понедельник

    16/9

    13:15 —

    15:00

    Теплообмен, тепловой баланс, охлаждение — Лекция

    ЛК

    ХА2

    Понедельник

    16/9

    15:15 —

    17:00

    Среднесрочная подготовка —

    Упражнение

       ЛК

    ХА2

    Четверг

    19/9

    8. 00 – 8:45

    Основные явления горения – Лекция

    СА

    ХА2

    Четверг

    19/9

    9:00 —

    11:45

    Сгорание в двигателях SI и CI — Лекция

    СА

    ХА2

    Пятница

    20/9

    15:15 —

    17:00

    Среднесрочная подготовка —

    Упражнение

    МС

    ХА2

    Суббота

    21/9

    8.30-

    10.30

    СРЕДНЕСРОЧНЫЕ

    ЛК

       

        Byggnad: Samhällsbyggnad III

    Сал: Мультисален

     

     

     

     

     

     

     

     

     

     

     

    4

    Понедельник

    23/9

    13:15 —

    17:00

    Испытание двигателя — Лекция

    JS

    ХА2

    Понедельник

    23/9

    13:15 —

    17:00

    Измерение выбросов — Лекция

    JS

    ХА2

    Понедельник

    23/9

    13:15 —

    17:00

    Этика — Лекция

    JS

    ХА2

    Четверг

    26/9

    8. 00 – 17:00

    Лаборатория двигателей

    ДЖС/КС

    Лаборатория двигателей

    Пятница

    27/9

    8.00 – 11:45

    Лаборатория двигателей

    ДЖС/КС

    Лаборатория двигателей

    Пятница

    27/9

    15:15 —

    17:00

    Выпуск тепла — Лекция Задание 2 — Запуск Задание 1 — Консультация

    ЛК/МС

    ХА2

     

     

     

     

     

     

               

     

     

     

     

     

     

    5

    Понедельник

    30/9

    13:15 —

    15:00

    Газообмен 4-х тактный —

    Задание для лекций 1 и 2

    ЛК

    ХА2

    Понедельник

    30/9

    15:15 —

    17:00

    Газообмен 2-х тактный —

    Лекция

    ЛК

    ХА2

    Четверг

    3/10

    8:00 –

    9:45

    Супер/турбонаддув —

    Лекция

    ЛК

    ХА2

    Четверг

    3/10

    10:00 —

    11:45

    Трение и смазка двигателя — Лекция

    ЛК

    ХА2

    Пятница

    4/10

    15:15 —

    17:00

    Назначение 1 и 2 —

    Консультация

    МС

    ХА2

     

     

     

     

     

     

     

     

     

     

     

    6

    Понедельник

    7/10

    13:15 —

    15:00

    Выбросы — Лекция

    ЛК

    ХА2

    Понедельник

    7/10

    15:15 —

    17:00

    Доочистка — Лекция

    ЛК

    ХА2

    Четверг

    10/10

    8:00 —

    10:45

    Первичный контроль выбросов –

    Лекция

    ЛК

    ХА2

    Четверг

    10/10

    11:00 —

    11:45

    Назначение 1 и 2 —

    Консультация

    МС

    ХА2

    Пятница

    10. 11.

    Сдача отчета, зам. 1

    МС

     

     

     

     

     

     

     

     

     

     

     

     

     

    7

    Понедельник

    14/10

    13:15 —

    14:00

    Системы искрового зажигания —

    Лекция

    ГД

    ХА2

    Понедельник

    14/10

    14:15 —

    15:00

    Системы впрыска дизельного топлива —

    Лекция

    СА

    ХА2

    Понедельник

    14/10

    15:15 —

    16:00

    Устные доклады –

    Лекция

    ЛК

    ХА2

    Понедельник

    14/10

    16:15 —

    17:00

    Задание 2 — Консультация

    МС

    ХА2

    Четверг

    17/10

    10:00 —

    11:45

    GDI — внешний вид —

    Лекция

    ПД

    ХА2

    Четверг

    17/10

    15. 00

    Назначение 1 и 2 —

    Устные презентации

    от

    до

    ЛК

    через Canvas

    Пятница

    18/10

    15:15 —

    17:00

    Задание 2 —

    Сдача отчета, зам. 2

    МС

    ХА2

     

     

     

     

     

     

     

     

     

     

    8

    Понедельник

    21/10

    13:15 —

    17:00

    Назначение — Прес. отчетов ОБЯЗАТЕЛЬНО —

    ЛК/МС

    ХА2

    Четверг

    24/10

    8:00 —

    9:45

    Подведение итогов моторной лаборатории

    ДЖС/ЛК

    ХА2

    Четверг

    24/10

    10:00 —

    11:45

    Краткое содержание курса — Лекция

    ЛК

    ХА2

     

     

     

     

     

     

     

     

             9

     

      Четверг

     

       31/10

         эм

     

      Экзамен

     

             —

     

         Уточняется

     

    Учебная литература

    Джон Б. Хейвуд: Основы двигателей внутреннего сгорания, McGraw-Hill, 1988, или , второе издание, 2018 г.

    Международная, 2012

    Упражнения; Задания; Раздаточные материалы.

     

    Экзаменационный бланк

    Промежуточный семестр, суббота, 21 сентября – 8.30-10.30, корпус SB/V (правила промежуточного семестра см. в конце этого документа).

    Экзамен по окончании курса, время и место см. Студенческий портал. Экзамен состоит из двух частей: теоретической и расчетной для тех, кто не сдал промежуточный экзамен. Для теоретической части не допускаются никакие вспомогательные средства (книги и т. д.), для расчетной части можно использовать учебник (Стоуна или Хейвуда) и общепринятый калькулятор.

    К экзамену допускаются только студенты, сдавшие задания и выполнившие лабораторную работу.

    Средне -срок и экзамен «Правила»

    (MTF240. принятый калькулятор (Чалмерса или экзаменатора) и один учебник.

    Для сдачи промежуточного экзамена необходимо 7 баллов (максимум 15 баллов).
    Если вы наберете 9 (9-11,5) баллов, вы получите два бонусных балла за выпускной экзамен.
    Если вы наберете 12 (12-15) баллов в середине экзамена, вы получите 5 баллов, которые можно использовать аналогичным образом.

    Если вы успешно сдадите промежуточный экзамен, вам не нужно выполнять часть задачи (расчеты) экзамена. Однако бонусные баллы этого промежуточного семестра можно использовать в курсе только в течение одного года, т.е. до августа 2020 года, после этого сохранить баллы на экзамен нельзя.

    Если вы не сдали промежуточный экзамен, вы должны сдать расчетную часть экзамена, т.е. набрать 40 % имеющихся баллов (6 из 15 баллов). В этой части существует только оценка зачет/незачет, оценка экзамена выставляется по результату теоретической части с зачетом (3 балла) на 40 % (16-23,5 балла), 4 баллом на 60 % (24-23,5 балла). 31,5 балла), а 5 класс – 80 % (32 балла и более). Оценка основана на сумме экзаменационных баллов и бонусных баллов за промежуточный семестр.