Содержание
ГЕНЕРАТОР ЭЛЕКТРИЧЕСКИХ КОЛЕБАНИЙ • Большая российская энциклопедия
ГЕНЕРА́ТОР ЭЛЕКТРИ́ЧЕСКИХ КОЛЕБА́НИЙ, устройство, преобразующее разл. виды электрической энергии (напр., источников постоянного напряжения или тока) в энергию электрических (электромагнитных) колебаний. Термин «Г. э. к.» чаще всего относится к автогенераторам (генераторам с независимым возбуждением), в которых частота и форма возбуждаемых автоколебаний определяются свойствами самого генератора. Г. э. к. с посторонним возбуждением представляют собой усилители мощности электромагнитных колебаний, создаваемых задающим генератором.
Схема транзисторного LC-генератора с индуктивной (а), ёмкостной (б) и автотрансформаторной (в) обратной связью: Т – транзистор; L, C – индуктивность и ёмкость колебательного контура; Eк &n…
Рис. И. В. Баланцевой
Необходимые элементы Г.
э. к.: источник энергии; пассивные цепи, в которых возбуждаются и поддерживаются колебания; активный элемент, преобразующий энергию источника питания в энергию генерируемых колебаний, обычно в сочетании с управляющими дополнит. цепями (цепями обратной связи). В зависимости от требуемых характеристик в Г. э. к. используют разнообразные элементы. Для возбуждения колебаний в диапазонах НЧ и ВЧ служат колебательные контуры, электрич. фильтры и др. цепи с сосредоточенными параметрами (ёмкостью, индуктивностью, сопротивлением), а в качестве активных элементов – электронные лампы, транзисторы, туннельные диоды, операционные усилители и др. В Г. э. к. СВЧ применяют гл. обр. цепи с распределёнными параметрами, включающие объёмные резонаторы, замедляющие системы, полосковые и коаксиальные линии, волноводы, а также открытые резонаторы.
Активные элементы СВЧ чаще всего совмещены с пассивными цепями и представляют собой, как правило, электровакуумные (СВЧ-триод, магнетрон, клистрон, лампа обратной волны и др.) или твердотельные (СВЧ-транзистор, диод Ганна, лавинно-пролётный диод, туннельный диод) приборы. В оптич. квантовых генераторах (лазерах) применяют разл. виды открытых резонаторов и активную среду, преобразующую энергию источника питания (энергию «накачки») в энергию электромагнитных колебаний.
Возбуждение автоколебаний
Возбуждение автоколебаний в Г. э. к. начинается с возникновения начальных колебаний в к.-л. элементе при включении источника питания, замыкании цепей, вследствие электрич. флуктуаций и т. п. Благодаря цепи обратной связи энергия этого колебания поступает в активный элемент и усиливается в нём. Колебания в Г. э. к. нарастают, т.
е. происходит самовозбуждение генератора, если мощность, передаваемая колебаниям активным элементом от источника питания, больше мощности потерь во всех элементах Г. э. к. (включая мощность, отдаваемую в нагрузку). Если потери энергии превышают поступление, колебания затухают. Энергетич. равновесие, соответствующее стационарному режиму Г. э. к., осуществимо лишь при наличии у элементов системы нелинейных свойств. В противном случае в Г. э. к. могут возбуждаться либо нарастающие, либо затухающие колебания, и генерирование стационарных электрич. колебаний невозможно.
Вид возбуждаемых колебаний, их частотный спектр существенно зависят от частотных свойств пассивных цепей и активного элемента Г. э. к. Если цепи, в которых возбуждаются и поддерживаются электрич. (электромагнитные) колебания, обладают ярко выраженными колебательными (резонансными) свойствами (напр.
, колебат. контур, объёмный резонатор), то частота и форма генерируемых колебаний в осн. определяются частотой и формой собств. колебаний цепи. При малых потерях (высокой добротности колебат. системы) форма колебаний близка к синусоидальной, соответствующие Г. э. к. называются генераторами гармонич. колебаний. Если пассивные цепи и активный элемент Г. э. к. не обладают резонансными свойствами, то возможно возбуждение колебаний сложной формы как периодических, так и непериодических (шумоподобных) колебаний.
Генераторы гармонических колебаний
Наиболее разнообразны виды генераторов гармонич. колебаний. Их осн. характеристики: частота колебаний, выходная мощность, кпд, возможность механич. или электрич. перестройки частоты, стабильность частоты, характеризуемая шириной генерируемой спектральной линии, а также возможность работы в непрерывном или импульсном режиме.
Принципы построения и конструкция Г. э. к. зависят от диапазона генерируемых частот (длин волн).
Для возбуждения колебаний в НЧ- и ВЧ-диапазонах служат LC-генераторы, содержащие в качестве осн. элемента пассивной цепи колебат. контур (с индуктивностью L и ёмкостью C), потери в котором компенсируются, напр., с помощью лампового (на основе триода или тетрода) либо транзисторного усилителя; генерируют гармонич. колебания с частотой ώ , близкой к резонансной частоте контура ώрез= (LC)–1/2.
В LC-генераторах используются три осн. типа связи – индуктивная, ёмкостная или автотрансформаторная. Простейший транзисторный генератор содержит источники питания, колебат. контур, активный элемент – транзистор и цепь обратной связи (рис.). Транзистор усиливает колебания, подводимые от контура к управляющему электроду (базе), что позволяет с помощью цепи обратной связи подкачивать энергию в контур для его возбуждения и поддержания незатухающих колебаний.
LC-генераторы позволяют получать колебания мощностью от долей милливатт до сотен киловатт в диапазоне частот от нескольких килогерц до единиц гигагерц.
В кварцевых LC-генераторах используется кварцевый резонатор, в котором энергия электрич. поля преобразуется в энергию механич. колебаний и обратно. Электрич. кварцевый резонатор аналогичен колебат. контуру с высокой добротностью (до 107 и более) и слабой зависимостью резонансной частоты от темп-ры и др. факторов, что позволяет добиться высокой стабильности генерируемой частоты.
В основе работы генераторов СВЧ-диапазона лежат разл. физич. принципы передачи энергии электронов электромагнитному полю, использующие как механизмы излучения отдельных электронов (тормозное, черенковское, синхротронное и др.), так и механизмы группировки потока электронов в движущиеся сгустки, создающие токи СВЧ и приводящие к индуцированному излучению.
Ламповые и транзисторные генераторы СВЧ представляют собой модификации LC-генераторов, в которых применяются объёмные резонаторы и колебат. системы с распределёнными параметрами, транзисторы, триоды и тетроды спец. конструкции (см. также Генераторная лампа). В диодных СВЧ-генераторах используют лавинно-пролётные диоды, туннельные диоды и Ганна диоды, в которых при определённых условиях возникает отрицат. дифференциальное сопротивление. Включение такого диода в колебат. цепь СВЧ приводит к компенсации потерь в цепи и самовозбуждению колебаний на соответствующих частотах. Ламповые генераторы обеспечивают получение импульсной мощности до нескольких киловатт на частотах 1–6 ГГц. Диодные и транзисторные генераторы применяются в качестве источников СВЧ-колебаний малой и ср. мощности (до десятков ватт в непрерывном режиме) в диапазоне 1–100 ГГц; они обладают рядом преимуществ перед электровакуумными генераторами аналогичного назначения по размерам и массе, потребляемой мощности, долговечности и совместимости с микросхемами.
Вместе с тем предельная мощность твердотельных генераторов ограничена величиной рассеиваемой в полупроводнике тепловой энергии и не превышает (для одного прибора) 100 Вт на частотах до 10 ГГц.
Для генерирования СВЧ-колебаний широко применяют вакуумные электронные приборы с динамич. управлением электронным потоком (клистроны, магнетроны, лампы обратной волны, лампы бегущей волны и др.). В магнетронном генераторе источником энергии является источник анодного напряжения, колебат. системой – объёмные резонаторы, а функции активного элемента выполняет электронный поток в магнитном поле. Магнетроны обычно используют для получения электромагнитных колебаний большой мощности (до нескольких мегаватт) в импульсном режиме и десятков киловатт при непрерывной генерации в диапазоне частот от 300 МГц до 300 ГГц.
Клистронный генератор также содержит объёмный резонатор, в котором колебания возбуждаются и поддерживаются электронным потоком, управляемым электрич.
полем. Наиболее распространены клистронные генераторы, работающие в диапазоне частот от единиц до десятков гигагерц. Мощность таких генераторов зависит от типа клистрона и составляет: у отражат. клистронов – от нескольких милливатт до нескольких ватт, у пролётных клистронов – от сотен киловатт до десятков мегаватт соответственно в непрерывном и импульсном режимах генерирования.
Лампы обратной волны (ЛОВ) применяют в качестве Г. э. к. малой и ср. мощности; их осн. преимущество – большой диапазон электронной перестройки частоты, определяемый гл. обр. полосой пропускания замедляющей системы (составляет до нескольких октав). Генераторы на ЛОВ используют в качестве гетеродинов, задающих генераторов радиопередающих устройств, для радиоспектроскопии и др. целей.
Генераторами мощных колебаний миллиметрового диапазона являются мазеры на циклотронном резонансе, в которых применяются винтовые электронные пучки в продольном статич.
магнитном поле, взаимодействующие с поперечным по отношению к оси пучка переменным электрич. полем резонатора или волновода. Возбуждение колебаний в таком Г. э. к. происходит на циклотронной частоте вращения электронов в магнитном поле или на одной из её гармоник. Особое место среди мощных СВЧ-генераторов занимают приборы с релятивистскими электронными пучками, имеющие большой ток (порядка 103 кА и более) и соответственно большую мощность в течение импульсов ограниченной длительности (см. также Релятивистская высокочастотная электроника).
Отд. группу Г. э. к. составляют квантовые генераторы, в которых электромагнитные колебания возбуждаются за счёт вынужденных квантовых переходов атомов или молекул. Важная особенность таких Г. э. к. – чрезвычайно высокая стабильность частоты генерации (до 10–14), что позволяет использовать их как квантовые стандарты частоты.
В лазерах и мазерах частота излучения накачки превышает частоту генерируемых колебаний. Так, в парамагнитном мазере при накачке на частоте 10 ГГц возбуждаются колебания с частотой до 5 ГГц со стабильностью частоты, определяемой лишь стабильностью темп-ры и магнитного поля.
К Г. э. к., преобразующим энергию первичных электрич. колебаний, относятся также параметрические генераторы радиодиапазона, представляющие собой резонансную колебат. систему – контур или объёмный резонатор, в котором один из энергоёмких (реактивных) параметров (L или C) зависит от протекающего тока или приложенного напряжения; действие основано на явлении параметрического резонанса. Наибольшее распространение получили маломощные параметрические Г. э. к., в которых в качестве элемента с электрически управляемой ёмкостью используется ПП диод.
Релаксационные генераторы
Существует широкий класс генераторов периодич. колебаний разл. формы, период которых определяется временем релаксации (установления равновесия) в пассивных цепях, не обладающих резонансными свойствами. В таких Г. э. к. за каждый период колебаний теряется и вновь пополняется значит. часть колебат. энергии. Форма колебаний зависит от свойств как пассивных цепей, так и активного элемента и может быть весьма разнообразной – от скачкообразных, почти разрывных колебаний до колебаний, близких к гармоническим. В радиотехнике, электронике, измерит. и импульсной технике наибольшее распространение получили релаксац. импульсные генераторы (напр., блокинг-генераторы, мультивибраторы), генераторы линейно изменяющегося сигнала, а также генераторы синусоидальных колебаний (RC-генераторы, генераторы Ганна) и др.
RC-генератор не содержит колебат. контуров. Активным элементом (напр., электронной лампой, транзистором) управляет RC-цепь обратной связи, состоящая лишь из ёмкостей C и активных сопротивлений R, создающая условия генерации лишь для одного гармонич. колебания с частотой, определяемой временем релаксации цепи. В подобных Г. э. к. происходит полный энергообмен за каждый период колебаний. При отключении источника питания колебания исчезают. RC-генераторы используются преим. как источники эталонных колебаний в диапазоне частот от долей герц до сотен килогерц.
Генератор Ганна представляет собой кристалл ПП, который является одновременно и колебат. системой, и активным элементом. Через кристалл пропускают постоянный ток, и при определённых условиях в нём возникают нестационарные процессы, приводящие к появлению СВЧ переменной составляющей тока, протекающего через кристалл, и к возникновению на электродах эдс СВЧ (см.
Ганна эффект). С помощью таких генераторов можно получать электрич. колебания частотой от 100 МГц до 50 ГГц и мощностью до 100 мВт (при непрерывном генерировании) и сотен ватт (в импульсном режиме).
Генераторы случайных сигналов
Генераторы случайных сигналов предназначены для генерирования непрерывных шумов или последовательностей импульсов со случайными значениями амплитуд, длительностей импульсов, интервалов между ними. Работа таких Г. э. к. основана на использовании естеств. источников шумов и случайных импульсов либо возбуждении стохастич. автоколебаний. В качестве источников широкополосных шумов применяются шумовые диоды, тиратроны, помещённые в поперечное магнитное поле, дробовые шумы входных электронных ламп, транзисторов или фотодиодов в видеоусилителях, фотоумножителях и др.; первичными источниками случайных последовательностей импульсов могут служить, напр.
, газоразрядные и сцинтилляционные счётчики продуктов радиоактивного распада. Производя усиление и преобразование шумов, создаваемых источником, с помощью разл. линейных и нелинейных устройств (усилителей, ограничителей, ждущих мультивибраторов, блокинг-генераторов, триггеров, работающих в режиме счёта выбросов шума, и др.) можно получать непрерывные шумовые колебания или случайные последовательности импульсов с определёнными законами распределения параметров в разл. диапазонах радиочастот. Генераторы случайных сигналов применяют для определения коэф. шума и предельной чувствительности радиоприёмных устройств, помехоустойчивости систем автоматич. регулирования и телеуправления, предельной дальности радиолокац. и радионавигац. систем, в качестве калиброванных источников мощности при измерении параметров случайных процессов (напр.
, атмосферных помех, шумов внеземного происхождения) и др.
Взрывобезопасный генератор переменного тока, сертифицированный по тройным стандартам ASX-300 24 В / 25 А
SKU
ASX-300
Взрывобезопасный генератор переменного тока 24 В постоянного тока / 25 А ASX-300 представляет собой генератор переменного тока с внешним возбуждением, предназначенный для использования в дизельных двигателях с ременным приводом. ASX-300 имеет три сертификата для использования во взрывоопасных зонах, классифицированных как зоны 1 или 2 ATEX / IECEx, NEC 500, раздел 2 и NEC 505, зона 2. Он подходит для диапазона температур окружающей среды от -30 ° C до + 55 ° C.
Характеристики и преимущества
- Компактный высокопроизводительный дизайн
- Сертифицирован для использования во взрывоопасных зонах, классифицированных как зоны 1 или 2 ATEX / IECEx, NEC 500, раздел 2 и NEC 505, зона 2
- Выход сигнала скорости для отключения при превышении скорости
- Варианты бокового (ASX-300) и заднего (ASX-301) кабельного ввода
- Сертифицированный кабельный ввод в комплекте
- Широкий выбор дополнительных шкивов
- Подходит для морских условий
Характеристики
| Корпус: | Литой алюминий | |
| Рейтинг опасной зоны: | ATEX / IECEx Зона 1, Группа IIB Зона 2, группа IIIC NEC 500 NEC 505 | |
| ЭМС: | Стандарт MIL 461E, пункты RE102 и RS 103 | |
| Мощность генератора: | 28 В постоянного тока / 25 А максимум | |
| Температура окружающей среды: | От -30 ° C до 55 ° C | От -22 ° F до 131 ° F |
| Максимальная рабочая частота вращения: | 8000 об / мин | |
| Ввод силового кабеля: | Сторона с сальником (ASX-300) | Задняя с сальником (ASX-301) |
Для генератора переменного тока ASX-300 доступен широкий ассортимент шкивов.
Некоторые модели перечислены ниже. Инструкции по подбору размеров см. В листе технических данных ASX-300.
Шкив | Общая форма | Ширина пояса | Диаметр привода (мм) |
ASX-546 | СПА (малый) | 1/2 дюйма / 13 мм | 55 |
ASX-549 | СПА (средний) | 1/2 дюйма / 13 мм | 71 |
ASX-574 | СПА (большой) | 1/2 дюйма / 13 мм | 80 |
ASX-539 | СПБ (Малый) | 5/8 ”/ 16 мм | 66 |
ASX-548 | СПБ (Средний) | 5/8 дюйма / 16 мм | 71 |
ASX-563 | СПБ (Большой) | 5/8 дюйма / 16 мм | 90 |
ASX-575 | 6 канавок Poly-V | DIN 6-PK | 56 |
ASX-556 | 6 канавок Poly-V | DIN 6-PK | 66 |
Приложения
Разработан как генератор с дизельным двигателем с ременным приводом для использования во взрывоопасных зонах, классифицируемых как зоны 1 или 2 ATEX / IECEx, NEC 500, раздел 2 и NEC 505, зона 2.
Подходит для местного диапазона температур окружающей среды от -30 ° C до + 55 ° C. . Доступен выходной сигнал скорости. Выходная мощность, подходящая для замены стартовой аккумуляторной батареи дизельного двигателя среднего размера, со следующими ограничениями:
- Требуемая мощность на выходе не должна превышать 25 ампер.
- Это оборудование нельзя использовать в других целях без предварительного разрешения Chalwyn.
Действие
Взрывобезопасный генератор переменного тока ASX-300 предназначен для прямой замены невоспламеняющихся генераторов переменного тока, используемых в дизельных двигателях. Может потребоваться некоторая корректировка монтажных кронштейнов и натяжного звена ремня. Заднюю крышку генератора можно поворачивать для обеспечения альтернативных положений ввода кабеля.
В случае применения с фиксированной скоростью шкивный привод должен быть устроен так, чтобы обеспечивать постоянную скорость генератора переменного тока от 5000 до 7000 об / мин.
В случае применения с регулируемой частотой вращения передаточное число шкива должно быть выбрано таким образом, чтобы частота вращения генератора составляла от 2000 до 2500 об / мин при низких оборотах холостого хода двигателя. Обычно это соответствует нормальному рабочему диапазону частоты вращения генератора примерно от 3500 до 8000 об / мин.
Максимальная потребляемая мощность генератора ASX-300 не должна превышать 25 ампер.
Что такое генератор и как он работает?
История генераторов восходит к открытию электромагнитной индукции Майклом Фарадеем, динамо-машины Вернера фон Сименса и асинхронного двигателя Николы Теслы. Генератор обеспечивает электроэнергию, а электрические генераторы, размещенные на электростанциях, обеспечивают почти всю мощность для сегодняшних электрических сетей.
Подмножество генераторов представляет собой двигатель-генератор (иногда называемый генераторной установкой или генераторной установкой), который сочетает в себе двигатель и генератор.
Генераторная установка (часто и в дальнейшем называемая просто генератором) обеспечивает электроэнергию независимо от сети. В результате они играют решающую роль в сегодняшней структуре власти.
Современная генераторная установка HIPOWER в звуконепроницаемом корпусе.
Функции и использование генератора
Электричество является жизненной силой современного общества. Практически каждому бизнесу и дому требуется стабильная подача электроэнергии для надежной работы. В конце концов, электричество — это то, что мы используем для питания освещения, компьютерного оборудования и электроники, а также наших систем отопления, вентиляции и кондиционирования воздуха. Тем не менее, электроэнергия является товаром, который часто воспринимается как нечто само собой разумеющееся, потому что массивные электрические сети делают электричество легкодоступным.
Однако муниципальное электроснабжение может выйти из строя из-за нескольких факторов, в том числе:
- Ненастная погода
- Неисправности компьютера
- Человеческая ошибка
Также важно понимать, что некоторые предприятия, такие как предприятия по добыче полезных ископаемых или новые общественные разработки, должны работать за пределами энергосистемы.
Такие проблемы выявляют основное функциональное преимущество генератора, заключающееся в обеспечении основного или резервного питания.
Преимущества генераторов
Генераторы играют важную роль во многих домах и на предприятиях, включая больницы, медицинские учреждения, компьютерные центры и центры обработки данных, а также строительные площадки. Вот несколько общих преимуществ:
- Обеспечение резервного питания в случае отключения электроэнергии в электросети
- Для предприятий генераторы являются надежным вложением и защищают компанию от перебоев в подаче электроэнергии и отключения электроэнергии, которые в противном случае повлекли бы за собой значительные финансовые потери, риски для безопасности и, в случае больниц и медицинских учреждений, гибель людей
- Обеспечение электропитанием инструментов и оборудования на удаленных объектах, где сетевая инфраструктура недоступна
- Повышение безопасности в домах и на предприятиях за счет поддержания работоспособности систем HVAC
- Может быть автономным или подключаться к зданиям в дополнение к городской электросети
- Производите сбережения, которые со временем превысят покупную цену, благодаря их исключительной долговечности
- Экономьте, переключаясь на питание от резервного генератора в периоды пикового спроса и цен на электроэнергию
Детали генератора
Генераторы состоят из нескольких основных частей, которые помогают превращать бензин, солнечную энергию или дизельное топливо в полезную электроэнергию для коммерческих, жилых, промышленных и муниципальных зданий.
Хотя генераторы не требуют особого обслуживания, важно понимать основные компоненты на случай, если потребуются определенные запасные части или потребуется общее техническое обслуживание.
- Генератор переменного тока — компонент, преобразующий механическую энергию в электричество
- Зарядное устройство — аккумулятор и система зарядки, необходимые для запуска генератора
- Панель управления – переключатели и кнопки, управляющие работой генератора
- Двигатель — основной компонент генератора. Обычно работает на дизельном топливе или природном газе
- Топливная система — резервуары для хранения и шланги, которые направляют газ или дизельное топливо к двигателю
- Регулятор напряжения – контролирует величину напряжения, вырабатываемого системой, и преобразует ток переменного/переменного тока в ток постоянного/постоянного тока
Промышленный дизельный двигатель Caterpillar 3406D.
Как работает генератор? Понимание механики
Для того, чтобы понять механику генератора энергии, нам достаточно взглянуть на свойства энергии, управляющие окружающим миром.
Все, что движется, светится или гудит, будь то органическое или искусственное, делает это путем преобразования одного типа энергии в другой. Организм человека преобразует пищу и питательные вещества в физическую энергию. Радио преобразует электрические токи в звуковую энергию. Даже огромное количество электроэнергии, доступной населению, вырабатывается из других источников; например, плотина Гувера преобразует гравитационное притяжение воды (гидроэнергия) в электроэнергию для всего Лас-Вегаса и его окрестностей. Бензиновые и дизельные генераторы работают по одному и тому же простому принципу. Они превращают механическую энергию в электрическую.
Генераторы работают почти так же, как автомобили
Генератор работает так же, как автомобиль, и механические компоненты работают почти так же. Как и в вашем обычном автомобиле, в генераторе используется мощная перезаряжаемая батарея, которая запускает и поддерживает базовый уровень энергии. Генератор также оснащен топливным баком, который снабжает его двигатель необходимыми ресурсами для производства механической энергии.
Многие генераторы даже работают на том же топливе, что и автомобили, хотя есть и другие варианты. Меньшие бытовые генераторы часто работают на бензине, но более крупные промышленные генераторы обычно имеют дизельные двигатели или двигатели, работающие на природном газе. Независимо от типа топлива двигатель работает совместно с генератором. Этот генератор содержит электрические проводники, которые реагируют на механическую энергию двигателя и преобразуют ее в полезную электрическую энергию.
Общие сведения об электрической мощности газовых и дизельных генераторов
Выходная электрическая мощность генератора измеряется в киловаттах. Это еще один термин, который знаком, но с трудом передает какое-либо конкретное значение большинству людей. Так что же такое киловатт? Чтобы ясно понять эту концепцию, мы должны упростить измерение:
1 кВт = 1000 ватт 1 ватт = 1 джоуль в секунду
Сократив это еще больше:
1 джоуль = 1 ампер, проходящий через 1 ом за 1 секунду
Проще говоря, ампер — это единица измерения электрического заряда, а ом — величина сопротивления.
Джоуль — это количество работы, которое требуется для прохождения заряда через определенный уровень сопротивления. Чтобы осмыслить это измерение энергии, может быть полезно представить крошечные болты, пытающиеся протолкнуться через магнитное поле. В генераторе механическая энергия, поступающая в генератор переменного тока, вызывает электромагнитную реакцию, в результате которой возникает переменный ток (AC), который высвобождается в виде электричества. Вот почему вилки бытовой электроники называются адаптерами переменного тока.
Как вы уже поняли, чем больше зарядов (ампер) может пройти через поле сопротивления (Ом) в секунду, тем мощнее будет генератор. Вот почему промышленные генераторы довольно велики — они позволяют вырабатывать большое количество киловатт, чтобы обеспечить необходимое количество энергии для больших зданий или тяжелой техники. Крайне важно, чтобы люди, покупающие генератор, предназначенный для использования в качестве резервного или основного источника энергии, были уверены, что они выбирают продукт, достаточно большой, чтобы удовлетворить их индивидуальные потребности в энергии.
Генераторные приложения
Некоторые распространенные и важные приложения для генераторов включают:
- Обеспечение дополнительной мощности в периоды повышенного спроса
- Подача электроэнергии в районы, где нет электросети
- Обеспечение постоянного питания в критических средах, таких как больницы, лаборатории и медицинские учреждения
- Обеспечение резервного и дополнительного питания для центров обработки данных и провайдеров интернет-хостинга
- Обеспечение необходимой электроэнергией строительных площадок, расположенных в метро и сельской местности
- Обеспечивает необходимое питание для морских операций
- Обеспечивает мобильное электроснабжение больших рабочих площадок или сельских районов, которым требуется временное электроснабжение
- Подача дополнительного питания для телекоммуникационных систем
- Обеспечьте критическую мощность в районах стихийных бедствий после штормов
Для получения дополнительной информации ознакомьтесь с некоторыми отраслями, в которых мы обслуживаем производство электроэнергии, а также с некоторыми видами повседневного использования генераторов.
Типы электрогенераторов
Генераторы обычно классифицируются по типу топлива и портативности, хотя их можно классифицировать по многим другим параметрам. К трем основным типам генераторов относятся:
- Дизельные генераторы – работают на дизельном топливе, отличаются высокой эффективностью и надежностью работы и мощности. Обычно это генераторы среднего и большого размера, которые можно использовать для питания зданий и крупного оборудования
- Генераторы природного газа – работают на природном газе. Отлично подходит для небольших операций, где требуется дополнительная мощность.
- Портативные и мобильные генераторы – Генераторы, которые размещаются на прицепах и/или имеют колеса и могут быть легко перемещены из одного места в другое. Обычно работают на бензине или природном газе, но могут работать и на дизельном топливе.
.
Техническое обслуживание генераторов
Несмотря на то, что генераторы являются относительно простыми устройствами, требующими незначительного обслуживания, они все же нуждаются в определенных видах обслуживания.
Мы рекомендуем владельцам генераторов внедрить план профилактического обслуживания и проводить проверки и ремонт по мере необходимости.
Профилактическое техническое обслуживание
Профилактическое техническое обслуживание включает проверку изношенных деталей и правильную работу до того, как в генераторе возникнут проблемы. Это может включать в себя такие пункты, как проверка топливных шлангов на отсутствие мусора, отсутствие перегибов и подача правильного количества топлива в двигатель генератора. Это может также включать смазку движущихся частей генератора и проверку герметичности всех электрических соединений, а также отсутствие коррозии или повреждений электрических компонентов.
Осмотр и ремонт генератора
Если генератор неисправен или не обеспечивает питание, пришло время проверить его и отремонтировать. Общие элементы, которые необходимо заменить и отремонтировать, включают топливные шланги, двигатель, панель управления, регулятор напряжения, аккумулятор и систему зарядки аккумулятора.
Хорошей новостью является то, что все компоненты генератора можно либо отремонтировать, либо заменить, чтобы можно было восстановить надежное дополнительное или резервное питание.
Чтобы узнать больше о наших генераторах и обслуживании генераторов, позвоните нам по телефону 713-434-2300 или свяжитесь с нами через контактную форму.
Как работают генераторы? | BigRentz
Генераторы — это полезные устройства, которые обеспечивают электроэнергию, не требуя доступа к электросети. Они могут служить в качестве резервного источника питания для рабочих площадок, домов и предприятий, а также поддерживать работу критически важных систем при отключении электроэнергии. Итак, как работают генераторы?
Проще говоря, генераторы работают путем преобразования механической энергии в электрическую с помощью двигателя, генератора переменного тока и внешнего источника топлива. Современные генераторы работают по принципу электромагнитной индукции — термин, введенный Майклом Фарадеем, когда он обнаружил, что проводник, движущийся в магнитном поле, может создавать и направлять электрические заряды.
Понимание того, как работают генераторы, может помочь вам выявить проблемы, выполнить плановое техническое обслуживание и выбрать правильный генератор, отвечающий вашим конкретным потребностям. В этом руководстве мы шаг за шагом рассмотрим основные компоненты генератора и принципы их работы.
8 Основные компоненты генератора
Современные электрические генераторы могут различаться по размеру и назначению, но их внутреннее устройство в целом одинаково. К основным компонентам электрогенератора относятся:
- Рама: Рама содержит и поддерживает компоненты генератора. Это позволяет людям безопасно обращаться с генератором и защищает его от повреждений.
- Двигатель: Двигатель вырабатывает механическую энергию, которая преобразуется в выходную электрическую энергию. Размер двигателя определяет максимальную выходную мощность, и он может работать на различных видах топлива.
- Генератор переменного тока: Генератор содержит дополнительные компоненты, которые работают вместе для создания электрической мощности.
К ним относятся статор и ротор, которые отвечают за создание вращающегося магнитного поля и выработку переменного тока (AC). - Топливная система: Генераторы поставляются с прикрепленным или внешним топливным баком, который снабжает двигатель топливом. Топливный бак соединен через подающую и возвратную трубы и обычно содержит бензин или дизельное топливо.
- Выхлопная система: Дизельные и бензиновые двигатели выделяют выхлопные газы, содержащие токсичные химические вещества. Выхлопная система безопасно управляет этими газами и утилизирует их через трубу из железа или стали.
- Регулятор напряжения: Этот компонент отвечает за регулирование выходного напряжения генератора. Регулятор напряжения запускает цикл преобразования переменного тока в переменное напряжение, когда генератор падает ниже своего максимального рабочего уровня, и переходит в состояние равновесия, когда генератор достигает своей рабочей мощности.

- Зарядное устройство: Для запуска генераторов требуется батарея. Зарядное устройство отвечает за поддержание заряда аккумулятора, обеспечивая плавающее напряжение ровно 2,33 вольта на элемент.
- Панель управления: Панель управления расположена снаружи генератора и содержит несколько датчиков и переключателей. Функции могут различаться в зависимости от генератора, но панель управления обычно включает в себя стартер, датчики контроля двигателя и переключатель частоты.
Для чего используется электрический генератор?
Электрические генераторы предназначены как для личного, так и для коммерческого использования. Они чаще всего используются в качестве резервного источника питания в случае отключения электроэнергии или отключения электроэнергии, но они также могут функционировать в качестве основного источника питания для зданий или строительных площадок, не подключенных к электросети.
Резервные генераторы чаще всего используются для резервного питания в домах, офисах и медицинских учреждениях.
Эти генераторы подключаются к электрической системе здания и автоматически запускаются при отключении электроэнергии. После установки они становятся постоянными приспособлениями, а их топливные баки обычно достаточно велики, чтобы обеспечивать питание в течение нескольких дней, прежде чем потребуется заправка.
Портативные генераторы меньше по размеру и их легче перемещать, чем резервные модели, что делает их идеальными для питания электроприборов, дорожного и строительного оборудования на стройплощадках. Они бывают разных размеров и вариантов мощности для различных применений. Меньшие портативные генераторы могут питать только один или два инструмента одновременно, в то время как самые большие модели могут питать целые здания.
Как генераторы производят электроэнергию: пошаговое описание
Генераторы на самом деле не производят электричество. Скорее, они преобразуют механическую энергию в электрическую. Процесс можно разбить на следующие этапы:
Этап 1: Двигатель использует бензин, дизельное топливо, пропан, природный газ или возобновляемый источник энергии для создания механической энергии.
Этап 2: Генератор переменного тока использует механическую энергию, вырабатываемую двигателем, для проталкивания электрических зарядов, присутствующих в проводке генератора, через электрическую цепь.
Шаг 3: Движение создает движение между магнитным и электрическим полями. Во время этого процесса ротор создает движущееся магнитное поле вокруг статора, который содержит неподвижные электрические проводники.
Шаг 4: Ротор преобразует постоянный ток в выходное переменное напряжение.
Шаг 5: Генератор подает этот электрический ток на приборы, инструменты или электрическую систему здания.
Преимущества современных генераторов
Генераторы существуют уже несколько десятилетий, но технологии постоянно развиваются, чтобы сделать их более эффективными и надежными. Современные генераторы теперь имеют множество новых функций и возможностей.
Портативность
Достижения в области технологий часто связаны с более компактными деталями, и генераторы не являются исключением.
Меньшие по размеру и более эффективные батареи и двигатели позволяют портативным генераторам работать дольше и обеспечивать более высокую выходную мощность. Даже некоторые промышленные генераторы можно буксировать и перевозить с одного места на другое.
Малое воздействие на окружающую среду
Популярность генераторов, работающих на возобновляемых источниках энергии, быстро растет. Некоторые люди предпочитают отказываться от газовых и дизельных генераторов в пользу более экологичных моделей, работающих на солнечных батареях, ветряных или водяных турбинах. Природный газ также является популярным вариантом питания для владельцев домов и предприятий, стремящихся уменьшить свой углеродный след.
Значительная выходная мощность
Хотя не всем нужна высокая выходная мощность, предприятиям и крупным строительным площадкам обычно требуется больше энергии от своих генераторов. К счастью, современные генераторы могут иметь мощность от 300 киловатт и выше.
К ним относятся статор и ротор, которые отвечают за создание вращающегося магнитного поля и выработку переменного тока (AC).
