Содержание
Страница не найдена
12.10.2022
USD = 63.6840
EUR = 62.3481
KZT = 13.4530
ООО «СЗЭМО «Инжиниринг»
ООО «СЗЭМО «Электродвигатель» ООО «СЗЭМО «Завод Электромашина»
e-mail: [email protected]
Вход
ООО «СЗЭМО «Инжиниринг»
ООО «СЗЭМО «Электродвигатель»
ООО «СЗЭМО «Завод Электромашина»
+7 (812) 321-79-43
Выберите регион:
8 (800) 550 00 93
Звонок по России бесплатный
Заказать звонок
ООО «СЗЭМО «Инжиниринг»
ООО «СЗЭМО «Электродвигатель»
ООО «СЗЭМО «Завод Электромашина»
Закрыть
Карта сайта:
Каталог
- Асинхронные электродвигатели (2154)
- Электродвигатели низковольтные общего назначения: ГОСТ (998)
- Электродвигатели низковольтные общего назначения DIN (908)
- Взрывозащищённые электродвигатели (216)
- Крановые электродвигатели (3)
- Электродвигатели IP23
- Многоскоростные электродвигатели
- Электродвигатели с тормозом
- Электродвигатели NEMA
- Электродвигатели 50 габарит
- Электродвигатели с конструкцией повышенной мощности
- Однофазные электродвигатели (27)
- Электродвигатели высоковольтные общего назначения с короткозамкнутым ротором
- Электродвигатели высоковольтные общего назначения с фазным ротором
- Электродвигатели с повышенным скольжением (2)
- Синхронные электродвигатели
- Электродвигатели на постоянных магнитах
- Электродвигатели высоковольтные общего назначения
- Электродвигатели постоянного тока
- Электродвигатели постоянного тока Siemens
- Электродвигатели постоянного тока SicmeMotori
- Электродвигатели постоянного тока Baumuller
- Электродвигатели постоянного тока Leroy Somer
- Электродвигатели постоянного тока TT-ELECTRIC
- Электродвигатели постоянного тока TES Vsetin
- Электродвигатели постоянного тока SIMO
- Электродвигатели постоянного тока SIMO серии Z4
- Электродвигатели постоянного тока производства Силовые машины
- Электродвигатели постоянного тока ХЭМЗ
- Электродвигатели постоянного тока ХЭМЗ серии П2, П2ПМ
- Электродвигатели АДЧР
О магазине
|
|
Электрический монтаж компрессорной установки — ЧКЗ-Поволжье
Для правильного выбора параметров и установки компрессора необходимо знать, как взаимодействуют его узлы. Давайте рассмотрим параметры, которые необходимо учитывать, если Вы хотите получить компрессорную установку с нормально работающей электрической системой.
Чаще всего в компрессорах используются трехфазные асинхронные электродвигатели с короткозамкнутым ротором. Двигатели низкого напряжения обычно используются до мощности 450–500 кВт. Для обеспечения большей мощности рекомендуется использовать двигатели высокого напряжения.
Класс защиты электродвигателя определяется стандартами. Конструкция с защитой от проникновения пыли и струй воды (IP55) предпочтительнее, чем двигатели открытой конструкции (IP23), требующие регулярной разборки и очистки. В противном случае скопившаяся внутри агрегата пыль может привести к его перегреву и сокращению срока службы. Поскольку корпус компрессорной установки обеспечивает защиту от пыли и воды, допускается использовать двигатели с классом защиты ниже IP55.
Двигатель (обычно с принудительным воздушным охлаждением) рассчитывается на работу при температуре окружающей среды 40 °C и на высоте до 1000 м. Некоторые производители предлагают двигатели в стандартной комплектации, для которых максимальная температура окружающей среды равна 46 °C. При более высокой температуре или на большей высоте необходимо снизить выходящую мощность двигателя. Обычно двигатель устанавливается на фланец и подключается к компрессору напрямую. Его скорость зависит от типа компрессора, но на практике используются только 2-полюсные или 4-полюсные двигатели с частотой вращения 3000 об/мин. Также определяется номинальная выходная мощность двигателя (при 1500 об/мин).
Номинальная выходная мощность двигателя также зависит от компрессора и должна максимально соответствовать требованиям компрессора. Чрезмерно мощный двигатель дороже, использует слишком высокий пусковой ток, требует более мощных предохранителей, имеет низкий коэффициент мощности и при этом менее эффективен. Недостаточно мощный двигатель может работать с перегрузкой, из-за чего повышается вероятность отказа.
При выборе двигателя также следует учитывать способ запуска. При схеме «звезда/треугольник» пусковой крутящий момент двигателя не превышает трети от нормального значения. Поэтому рекомендуется сравнить графики крутящих моментов двигателя и компрессора и выбрать двигатель, обеспечивающий необходимый крутящий момент при запуске компрессора.
Три способа запуска электродвигателя
Наиболее распространенными способами запуска являются прямой пуск, пуск по схеме «звезда/треугольник» и плавный пуск. Для прямого пуска требуется только контактор и защита от перегрузки. Его недостатком является высокий пусковой ток, который в 6–10 раз превышает номинальный ток двигателя, а также высокий начальный крутящий момент, который, в частности, может повредить валы и муфты. Схема «звезда/треугольник» используется для ограничения пускового тока. Стартер состоит из трех контакторов, защиты от перегрузки и таймера. Двигатель запускается по схеме «звезда», затем, по истечении заданного времени (когда скорость достигает 90% от номинальной скорости), таймер включает контакторы рабочего режима по схеме «треугольник».
Схема «звезда/треугольник» снижает пусковой ток примерно до 1/3 по сравнению с прямым запуском. Однако при этом начальный крутящий момент также падает до 1/3, поэтому на этапе запуска нагрузка на двигатель должна быть низкой, чтобы двигатель смог почти полностью набрать номинальную скорость перед переключением на схему «треугольник». При слишком низкой скорости в момент переключения на схему «треугольник» возможен такой же сильный пик тока/крутящего момента, как при прямом запуске.
Плавный пуск используется в качестве альтернативы запуску по схеме «звезда/треугольник». В этом случае стартер состоит не из механических контакторов, а из полупроводников. Запуск происходит постепенно, а пусковой ток превышает номинальный не более чем в три раза.
Стартеры прямого пуска и пуска по схеме «звезда/треугольник» чаще всего встроены в компрессор. В случае крупной компрессорной установки они могут располагаться отдельно в распределительном устройстве. Стартер для плавного пуска обычно устанавливается отдельно, рядом с компрессором, что связано с выделением тепла. При наличии достаточно мощной системы охлаждения возможна установка в корпус компрессора. У компрессоров с двигателями высокого напряжения пусковое оборудование всегда выносится в отдельный электрический шкаф.
Управление напряжением компрессорной установки
Как правило, отдельное управляющее напряжение к компрессору не подключается, поскольку большая часть компрессоров оснащена встроенным управляющим трансформатором. Вывод первичной обмотки трансформатора подключен к источнику питания компрессора. Такая компоновка обеспечивает более надежную работу. В случае перебоев в подаче электропитания компрессор немедленно останавливается, а его повторный запуск будет заблокирован. Эта функция с одним внутренним управляющим напряжением используется в тех случаях, когда стартер расположен на расстоянии от компрессора.
Защита от короткого замыкания
Защита от короткого замыкания устанавливается на одной из точек ввода кабелей и состоит из плавких предохранителей или автоматического выключателя. Независимо от выбранного решения, правильно подобранные устройства обеспечивают достаточный уровень защиты. У обоих способов есть свои преимущества и недостатки. Плавкие предохранители широко распространены и в случае коротких замыканий при высокой силе тока более надежны, чем автоматический выключатель. Но в то же время они не обеспечивают полностью изолирующего разрыва цепи, а при низком токе короткого замыкания на их срабатывание требуется больше времени. Автоматический выключатель обеспечивает быстрое и полностью изолирующее разъединение даже при низком токе короткого замыкания. Параметры защиты от короткого замыкания зависят от расчетной нагрузки, а также от ограничений, налагаемых стартером.
Электрические кабели
Электрические кабели должны выбираться таким образом, чтобы в режиме нормальной работы они не подвергались воздействию избыточных температур и не могли получить тепловые и механические повреждения в результате короткого замыкания. Параметры и выбор кабелей зависят от нагрузки, допустимого падения напряжения, метода прокладки (на стойке, стене и т. д.) и температуры окружающей среды. Для защиты кабелей от короткого замыкания и перегрузки можно использовать предохранители. На двигателе также должна быть предусмотрена защита от короткого замыкания (например, предохранители), а также отдельная защита от перегрузки (обычно защита двигателя включена в стартер).
Защита от перегрузки размыкает соединение со стартером, когда ток нагрузки превышает предварительно установленное значение, тем самым предохраняя от повреждений двигатель и проводку двигателя. Защита от короткого замыкания предохраняет стартер, защиту от перегрузки и кабели. При определении характеристик кабелей и защиты от короткого замыкания необходимо учитывать условие срабатывания. Иными словами, система должна быть спроектирована таким образом, чтобы короткое замыкание на любом ее участке приводило к быстрому и безопасному отключению. Выполнение этого условия зависит, среди прочего, от защиты от короткого замыкания и длины и сечения кабеля.
Компенсация сдвига фаз на сильно нагруженных трансформаторах
Электродвигатель компрессора потребляет не только активную мощность, которую можно преобразовать в механическую работу, но и реактивную мощность, которая необходима для его намагничивания. Реактивная мощность нагружает кабели и трансформатор. Соотношение между активной и реактивной мощностью определяется коэффициентом мощности, cos φ. Он обычно составляет от 0,7 до 0,9, где меньшее значение соответствует двигателям малого размера.
Коэффициент мощности можно повысить практически до 1, вырабатывая реактивную мощность непосредственно на агрегате с помощью конденсатора. Это позволяет снизить потребность в реактивной мощности, получаемой от сети. Компенсация сдвига фаз требуется потому, что поставщик электроэнергии может взимать плату за реактивную мощность, потребляемую сверх установленного уровня, а также для разгрузки сильно нагруженных трансформаторов и кабелей.
всё о компрессорах и турбинах
Человек – существо неугомонное. После того, как появился первый автомобиль, желание ездить быстрей и быстрей не дает покоя ни конструкторам, ни автогонщикам, ни почтенным отцам многодетных семейств. Еще чуть больше скорости, чуть выше мощность, быстрей разгон – так по крупицам изобретались, тестировались и внедрялись в жизнь различные улучшения двигателей.
Как увеличить мощность двигателя? Чтобы получить больше силы на выходе, нужно дать больше энергии на входе, а значит, сжечь в двигателе больше топлива. Поскольку законы физики обойти еще никому не удалось, самым простым способом будет увеличение объема двигателя. Чем больше топлива сгорает в цилиндре, тем больше энергии высвобождается. Но этот путь вскоре завел в тупик: увеличивать объем нужно вместе с весом самого двигателя, и с определенного момента такой прирост теряет смысл: мотор становится настолько тяжелым и сложным, что вместо повышения эффективности системы ее показатели, наоборот, снижаются. Но до этого человеческий гений породил таких монстров, как 16-цилиндровые двигатели, разработанные для гоночных автомобилей.
BRM V16: 16-цилиндровый двигатель с компрессором,
угол между цилиндрами 135 градусов, объем 1,5 л,
мощность 475 л.с. при 11500 об/мин
(пиковая мощность 500-600 л.с.),
занявший 5-е место на Гран-при в Британии в 1951 г.
Если увеличивать объем двигателя можно только до определенного предела, то второй вариант – просто подать больше топлива в цилиндр. Но тут появляется другая проблема: одновременно необходимо подать и больше воздуха, чтобы сохранить оптимальное (стехиометрическое) соотношение – 14 объемных частей воздуха на 1 часть топлива, необходимое для полного сгорания. Конструкторы пришли к выводу, что при неизменном объеме цилиндра больше воздуха к топливу можно подать только с помощью искусственного наддува. Так появилась идея компрессоров и турбин, позволяющих увеличить мощность двигателя без изменения его кубатуры. Как правило, компрессорами называют устройства, работающие от коленвала двигателя, а турбинами – приводимые в движение потоком выхлопных газов. Но в обоих случаях назначение их одинаково: подача дополнительного воздуха в камеру сгорания для увеличения мощности двигателя.
Приводные компрессоры
Роторный компрессор, Roots, Рутс
Первый вариант конструкции, который и сейчас можно встретить на некоторых автомобилях. Два встречно вращающихся ротора (двух- трех- или четырехлопастных) подают воздух во впускной коллектор, нагнетая в нем давление, а из коллектора воздух под напором поступает в цилиндры двигателя.
Винтовой компрессор, Lysholm, Лисхольм
Принцип действия несколько отличается от роторного: в корпусе расположены два встречно вращающихся винта сложной формы, которые захватывают воздух в канавки и транспортируют его к выпуску с одновременным сжатием. Производительность винтового компрессора намного выше, чем роторного, и он не создает турбулентности воздушного потока на высоких оборотах.
Такая конструкция требует высокой точности изготовления и качественных материалов, поэтому всегда стоила намного выше, чем роторная. Можно сказать, что винтовой компрессор относится к устройствам класса «люкс».
И роторный, и винтовой компрессоры работают без присутствия масла (за исключением подшипников валов). Корпус и сами вращающиеся детали разделены между собой микрозазорами, и по этой же причине не нуждаются в остаточном охлаждении после остановки двигателя.
Синхронизация вращения валов выполнена с помощью шестеренчатой передачи от ведущего вала (соединенного ременным шкивом с коленвалом двигателя) к ведомому, позволяющей добиться высокой точности работы компрессора, без трения и перегрева.
Центробежный компрессор
В его конструкции используется только один вал, на котором закреплена крыльчатка. При вращении крыльчатка захватывает воздух из центра и отбрасывает его по периметру, откуда он поступает в напорный патрубок. Такая конструкция позволяет сделать компрессор негабаритным, легким, при этом не теряя в производительности.
Все приводные нагнетатели (компрессоры) объединены общими достоинствами: простота монтажа, эффективность при различной скорости оборотов, отсутствие перегрева и турболага (турбоямы) – типичной проблемы турбин.
А основной общий недостаток – привод от двигателя, в результате чего немного теряется мощность и увеличивается нагрузка на него. Но, несмотря на это, установка компрессора себя оправдывает: в среднем нагнетатель дает прирост 46% к мощности двигателя.
Турбонагнетатель (турбокомпрессор, турбина)
Несмотря на разнообразие конструкций приводных компрессоров, признание автолюбителей завоевали турбины – нагнетатели с турбо-приводом.
Турбина приводится в действие не от коленвала, а от потока выхлопных газов. Такая конструкция полностью устраняет нагрузку на двигатель и не требует дополнительных мощностей для работы.
Выхлопные газы, проходя в полость турбины, приводят в движение ротор, закрепленный на одном валу с крыльчаткой. А крыльчатка, в свою очередь, во время вращения накачивает воздух в систему впуска по тому же принципу, что и центробежный компрессор.
Особенностью турбины является зависимость скорости вращения не от оборотов двигателя напрямую, а от силы потока отработанных газов. С этим связано явление турбоямы или турболага – задержки реакции турбины (а следовательно, и набора мощности двигателем) при нажатии на педаль акселератора. Внешне это выглядит как секундная «задумчивость» мотора, которая затем сменяется резким скачком мощности. Конструкторы борются с турболагом различными методами, от чип-тюнинга (изменение параметров работы двигателя) до установки электромотора или баллона со сжатым воздухом для мгновенной подачи его в двигатель, пока турбина не раскрутится.
Монтаж турбины, в отличие от компрессора, связан с определенными сложностями. В связи с высокой нагрузкой (скорость вращения может достигать 300 тысяч оборотов в минуту в отличие от компрессоров, скорость которых максимум 20 тысяч оборотов в минуту) турбина требует постоянной смазки, так что ее включают в масляную магистраль и подводят моторное масло под давлением. С этим связана необходимость устанавливать турбины только в специализированном автосервисе.
Турбина с изменяемой геометрией, VNT
Одной из проблем турбокомпрессоров является слишком высокая скорость вращения на больших оборотах двигателя и недостаточная продуктивность на малых оборотах. Чтобы улучшить характеристики устройства, вокруг основного ротора устанавливаются дополнительные лопасти, изменяющие свое положение в ответ на команду регулирующего устройства. Поворот, увеличивающий площадь ротора, помогает сохранить высокие обороты при низком давлении выхлопных газов, а уменьшение площади ротора помогает турбине не превышать предельных оборотов, когда мотор работает на полной мощности. Это называют VNT (Variable Nozzle Turbine) или VGT-турбиной (Variable Geometry Turbocharger).
Турбина с изменяемой геометрией.
1. Ускорение вращения за счет «эффекта сопла»: на сужающемся участке напор воздушного потока возрастает.
2. Замедление вращения благодаря повороту лопастей, расширяющих канал для воздушного потока.
Существуют и другие модификации таких турбин: с выдвижными лопастями, с другим способом их крепления и т.д., но принцип действия от этого не меняется.
Управление такой турбиной осуществляется от вакуумного регулятора, электромотора или благодаря инерционному повороту самих лопастей.
Комбинированные системы
В разное время автоконструкторы экспериментировали с различными способами улучшения характеристик двигателя. Так появилась система двойного турбонаддува Twin Turbo или комбинированная система. Эти инженерные изыскания были направлены на устранение характерных недостатков разных видов компрессоров.
Двойной турбонаддув
По сути, это две турбины, установленные на двигатель по параллельной, последовательной или ступенчатой схеме. Изначально такая система предназначалась для устранения турболага, но она также помогает повысить мощность, оптимизировать режим работы двигателя и даже снизить расход топлива.
Параллельная система
Состоит из двух турбин с одинаковыми характеристиками, подключенных параллельно друг другу. Может устанавливаться на мощные V-образные двигатели, по одной турбине на каждый ряд цилиндров. Каждая из турбин подключается к отдельному ответвлению выпускного коллектора. Преимущество этой системы в том, что можно установить маленькие турбины, которые намного легче набирают скорость вращения, и таким образом уменьшить эффект турболага.
Последовательная система
Вверху: работа одной турбины на малых оборотах двигателя.
Внизу: Работа двух турбин для максимальной мощности.
Состоит из двух турбин, одна из которых работает постоянно, а вторая включается по необходимости (поток отработанных газов направляется на вторую турбину при открытии клапана на выпускном коллекторе). Воздух от обеих турбин поступает в общий впускной коллектор двигателя.
Двухступенчатая система
1. Две турбины работают последовательно (низкие обороты).
2. Турбины работают параллельно (средние обороты).
3. Работает только большая турбина (высокие обороты).
Достаточно сложная, но эффективная система, состоящая из двух последовательно подключенных турбин разного размера, соединенных перепускными патрубками и клапанами. На малых оборотах двигателя работает только меньшая турбина, поскольку она легче и имеет меньшую инерцию. При включении средних оборотов подключается большая, и обе турбины работают последовательно: большая подает поток воздуха на малую, от которой он поступает во впускной коллектор. При этом скорость большой турбины постепенно увеличивается, и на максимальных оборотах малая турбина отключается, чтобы не задерживать поток воздуха к мотору. Вся система регулируется датчиками и электромагнитными клапанами, открывающими или закрывающими отдельные участки системы выхлопа. С точки зрения производительности двигателя, двухступенчатая система дает максимальный эффект.
Комбинированный наддув, TSI
Попытки преодолеть эффект турбоямы привели к созданию концерном Volkswagen системы комбинированного наддува TSI (Turbo Stratified Injection), в которой сочетается приводной нагнетатель и турбина. Система подключена ступенчато: на низких оборотах двигателя работает только компрессор, дающий в таком режиме максимальный эффект. На средних оборотах компрессор и турбина работают вместе, а на максимальных оборотах компрессор отключается, и работает одна турбина. Такой способ наддува полностью устраняет эффект турбоямы, но оказался слишком дорогостоящим как в производстве, так и в обслуживании, и с 2011 года двигатели с комбинированным наддувом уже не производят.
Технические характеристики: что важно знать о турбине?
Один из важнейших технических показателей турбины это степень компрессии: способность повышать давление во впускном коллекторе и соответственно в цилиндрах двигателя. Знать этот параметр необходимо тем, кто хочет тюнинговать свой автомобиль и проводит расчеты для турбины.
Степень компрессии имеет две крайности: чем она выше, тем больше мощности можно получить от мотора (больше сжимается топливно-воздушная смесь в цилиндре и сильней отдача от ее сгорания). Но при превышении максимально допустимой силы сжатия появляется эффект детонации: смесь сгорает не тогда, когда нужно, а тогда, когда ее сжатие приводит к самовозгаранию. По этой причине на турбированных двигателях используют высокооктановый бензин.
То есть, максимальная компрессия показывает максимально возможное количество топлива (и соответственно воздуха), которое можно подать в цилиндр без вреда для двигателя.
Второй показатель турбины – рабочий диапазон вращения ротора. Это показатель скорости вращения от минимально полезной до максимально безопасной для устройства, превышение которой ведет к перегреву и преждевременному износу.
Также нелишним будет учесть показатели термоустойчивости турбины. Обычно производители указывают максимальную температуру отработанных газов на входе в турбину и максимальную температуру масла на входе. Чем мощней двигатель, тем выше будут эти температуры и тем тщательней нужно выбирать компрессор.
Поскольку турбина подключается к масляной магистрали, производители указывают оптимальные и минимальные показатели давления масла на входе.
Производительность компрессора определяется объемом воздуха, пропускаемым за один оборот ротора. Чем больше турбина, тем выше этот показатель, но и выше инерционность, так что в большинстве случаев специалисты рекомендуют выбирать компрессоры средней производительности.
Сколько служит турбина и отчего выходит из строя
Многие автомобилисты называют турбину расходным материалом: срок службы ее не слишком радует любителей уличных гонок. При идеальных условиях (передвижение по городу, регулярное ТО) турбина прослужит примерно 150 тыс. км. Но ведь турбины ставят не затем, чтобы чинно ездить 50 км/ч, так что при экстремальном использовании ресурс можно смело делить на 2, и то при грамотном обслуживании своей машины.
Безжалостная статистика утверждает: только 5% турбин выходят из строя, «померев своей смертью», то есть выработав заложенный в них ресурс полностью. В абсолютном большинстве случаев поломки случаются по причине недосмотра или небрежности хозяина автомобиля.
Два самых страшных врага турбины – посторонние предметы и масляное голодание (и вообще проблемы с маслом).
Учитывая огромную скорость вращения, даже безобидная на первый взгляд пыль может за короткое время сточить лопасти, забиться в подшипники и вывести турбину из строя. Поэтому турбированные двигатели намного чувствительней к качеству воздушного фильтра, чем обычные атмосферные. Добавить сюда дополнительную нагрузку на фильтр (воздух проходит через него с достаточно сильным напором) и становится понятно, почему многие, тюнингуя свой автомобиль, ставят фильтры нулевого сопротивления.
Но, каким бы качественным ни был фильтр, он может пострадать от попавшей в воздухозаборник влаги и испортиться (бумага после высыхания уже не выполняет свои функции). После поездки под хорошим сильным дождем лучше осмотреть фильтр сразу, и в случае необходимости заменить. Дешевле выйдет.
Повреждение турбины посторонними предметами
Посторонние предметы могут попасть не только на крыльчатку турбины, но и на ротор. Чаще всего это частицы кокса из выпускного коллектора, а иногда и детали двигателя (обломки клапанов, свечей зажигания и т.д.) Если мотор посыпался, турбина умирает практически сразу.
Проблемы со смазкой турбины встречаются даже чаще, чем поломки из-за посторонних предметов. Одна из самых распространенных причин проблемы – использование нерегламентированного масла (большей вязкости, другого качества и т.д.) В турбированных двигателях требования к маслу на порядок жестче, чем в атмосферных! От «неправильного» масла турбина выходит из строя раньше, чем двигатель.
Тут же нужно напомнить об интервале замены масла и масляного фильтра. Со временем в масле, и особенно в фильтре, накапливаются продукты сгорания, твердые частицы разного размера. Фильтр забивается и не пропускает достаточное количество масла, после чего в нем срабатывает перепускной клапан и масло проходит напрямую, без очистки. Если двигатель еще немного поработает в таком режиме, то турбина выйдет из строя сразу: твердые частицы сработают как абразив, а более мелкие забьют каналы для подачи масла к подшипникам турбины. При разборке компрессоров, пострадавших от масляного голодания, на металле часто можно видеть не только истертости, но и цвета побежалости – свидетельство критического перегрева.
Вал турбины со следами перегрева
Одним словом, система с наддувом намного чувствительней к работе всех смежных узлов, чем простая атмосферная. Это относится не только к зажиганию, подаче топлива и т.д., но и к состоянию катализатора и сажевого фильтра. Неисправный катализатор приводит к образованию сажи и кокса в выпускной системе, повышению нагрузки на турбину, а от нештатных нагрузок она выходит из строя.
Трещина в корпусе
Покупать ли автомобиль с турбодвигателем?
Несмотря на преимущества турбированных моторов, производители продолжают выпускать атмосферные двигатели, а покупатели зачастую выбирают именно их. Мотор без наддува привлекает большей надежностью, меньшими требованиями, меньшими затратами на обслуживание и ремонт. Так что для спокойной «семейной» езды подойдет и хороший «атмосферник», который, кстати, может быть намного эффективней, чем двигатель с неправильно подобранной или криво установленной турбиной.
Но ведь машина может больше! Установка компрессора позволяет раскрыться потенциалу двигателя, к тому же, как уже говорилось выше, турбонаддув помогает экономить топливо за счет оптимизации процесса работы. Так что любители быстрой езды выбирают турбо.
Нет однозначного ответа, что выбрать: атмосферный двигатель, приводной компрессор или турбину. Все они имеют свои плюсы и минусы, и нужно определиться, что подойдет именно под ваши нужды и желания.
Что такое двигатель компрессора? (с изображением)
`;
К’Ли Бэнкс
Двигатель воздушного компрессора подает питание на головку компрессора. В свою очередь, головка компрессора сжимает и нагнетает определенное количество воздуха либо в резервуар для хранения, либо непосредственно через воздуховод. По сути, двигатель компрессора похож на сердце воздушного компрессора. Воздушный компрессор без двигателя подобен машине без двигателя. Несмотря на то, что на рынке представлено множество типов воздушных компрессоров, большинство компрессоров по-прежнему состоят из трех основных компонентов: двигателя, головки и накопительного бака.
Наиболее очевидной частью любого компрессора является накопительный бак. Сжатый воздух, хранящийся в этом резервуаре, обеспечивает непрерывную подачу постоянного давления. Однако не во всех компрессорах используется резервуар для хранения, поскольку некоторые небольшие или переносные компрессоры доставляют сжатый воздух непосредственно по воздуховодам. С баком или без него воздушный компрессор по-прежнему имеет два важных компонента, которые необходимы для работы. Этими неотъемлемыми частями являются двигатель компрессора и головка компрессора.
Головки компрессора
обычно конфигурируются по-разному, но в конечном итоге все они выполняют одну и ту же задачу. Эта часть компрессора отвечает за прием определенного количества воздуха, в зависимости от размера машины, и его сжатие в меньшее пространство, которым обычно является резервуар для хранения. Однако головка компрессора не может работать без помощи двигателя компрессора. Все воздушные компрессоры имеют двигатель определенного типа, который преобразует электрическую энергию в кинетическую энергию, что означает, что он обеспечивает питание головки компрессора. Без какого-либо двигателя, приводящего в действие головку компрессора, машина не сможет работать.
Использовать воздушный компрессор так же просто, как щелкнуть выключателем. Подача питания на электродвигатель компрессора инициирует цепочку событий. Обычно подключаемый к головке компрессора с помощью ремней и шкивов, двигатель воздушного компрессора может обеспечивать сжатый воздух, необходимый для питания пневматических инструментов, накачивания шин или просто для сдувания пыли и мусора с верстака.
Так как это неотъемлемая часть машины, поломка двигателя воздушного компрессора может привести к тому, что компрессор не будет работать. Для ремонта двигателя компрессора могут потребоваться продвинутые навыки работы с электроникой просто потому, что электродвигатель довольно сложный. К счастью, на большинство воздушных компрессоров распространяется гарантия. Обращение к производителю может помочь определить, является ли ремонт или замена двигателя компрессора лучшим вариантом, поскольку существует множество спецификаций, которые следует учитывать при поиске двигателя на замену.
Двигатель воздушного компрессора и мощность в лошадиных силах
При выборе компрессора необходимо учитывать множество важных факторов, в том числе:
- Манометр в фунтах на квадратный дюйм (PSIG)
- кубических футов в минуту (CFM)
- лошадиных сил
- Размер бака
- Рабочий цикл
- Тип используемого двигателя
- Системы со смазкой и без масла
- Вращающийся винт против возвратно-поступательных/поршневых систем
- Варианты обработки воздуха
- Требуемый трубопровод.
Вам также необходимо подумать о том, требуется ли регулирование, какие функции охлаждения вам нужны и какие варианты монтажа наиболее подходят для вашего рабочего места.
При просмотре различных систем сжатия, различных спецификаций и других данных вы можете столкнуться с незнакомой вам терминологией. Чтобы упростить задачу, Qunicy Compressor составил список различных спецификаций воздушных компрессоров и их значение.
Технические характеристики воздушного компрессора
: вот что вам нужно знать
Хотя все они выполняют одну и ту же функцию — преобразование всасываемого воздуха в отфильтрованный сжатый воздух — существует несколько различных типов воздушных компрессоров, систем и дополнительных функций, которые следует учитывать. Выбор правильного воздушного компрессора для вашего бизнеса или мастерской означает изучение различных характеристик воздушных компрессоров для принятия обоснованного решения.
Являетесь ли вы любителем, ищущим воздушный компрессор для своего домашнего гаража, или владельцем бизнеса, внедряющим сжатый воздух в свои производственные процессы, вот краткое изложение некоторых из наиболее часто упоминаемых фактов, цифр и конфигураций, а также их значение:
1.
Давление и манометрическое давление в фунтах на кв. дюйм
Основной задачей воздушного компрессора является повышение давления всасываемого воздуха для различных промышленных процессов. Способность компрессора сжимать воздух измеряется в фунтах на квадратный дюйм манометра, или PSIG, что является сравнением давления внутри резервуара и атмосферного давления. Барометрическое давление – это величина давления воздуха в атмосфере.
Для работы большинства пневматических инструментов требуется манометрическое давление 90 фунтов на квадратный дюйм, но для некоторых тяжелых инструментов и приложений потребуется больше. Вы всегда должны проверять указанные производителем требования PSI или PSIG для вашего устройства или конечного продукта, чтобы избежать работы со слишком малой или слишком большой мощностью.
2. Емкость и CFM
Производительность воздушного компрессора — это количество воздуха, которое он может произвести при заданном манометрическом давлении. Эта выходная мощность измеряется в кубических футах в минуту или CFM.
Производительность — один из наиболее важных факторов при покупке воздушного компрессора, особенно если вы собираетесь использовать несколько инструментов одновременно. При расчете требуемого CFM вы должны учитывать необходимый уровень давления и планируете ли вы использовать сжатый воздух постоянно или время от времени.
Например, инструменты высокого давления, требующие постоянного или почти постоянного потока воздуха, нуждаются в воздушном компрессоре большей производительности. Для машин, использующих короткие выбросы воздуха, таких как гвоздезабивной пистолет, подходит меньшая производительность. Вам может понадобиться более одного воздушного компрессора для отраслей, требующих нескольких мощностей.
3. Лошадиная сила
Все компрессоры имеют двигатель и двигатель. Этот двигатель приводит в движение коленчатый вал, который приводит в движение поршни , производящие сжатый воздух посредством сложного механического процесса. Как и в случае с автомобильными двигателями, мы измеряем объем работы, которую двигатель может выполнить, в лошадиных силах. Одна лошадиная сила равна 550 футо-фунтам в секунду или 745,7 Вт.
Однако когда речь идет о воздушных компрессорах, мощность не так однозначна, как при рассмотрении мощности нового автомобиля или грузовика. Это должен быть один из нескольких факторов, которые вы рассматриваете при покупке воздушного компрессора. Хотя для обеспечения определенного уровня давления или производительности требуется минимальная мощность воздушного компрессора, многие компрессоры имеют чрезмерную мощность и неэффективны. Хорошо спроектированный компрессор должен быть в состоянии производить четыре CFM при манометрическом давлении 100 фунтов на квадратный дюйм на каждую единицу мощности.
4. Размер бака
У большинства компрессоров есть резервуар для хранения сжатого воздуха, пока вы не будете готовы его использовать. Благодаря большим резервуарам вы можете работать дольше без запуска двигателя компрессора, но у вас будет достаточно сжатого воздуха для питания ваших инструментов. Поскольку ваш компрессор работает меньше, вы можете увидеть экономию средств, отраженную в вашем счете за электроэнергию.
Лучшее место для начала – минимум пять галлонов места для хранения на каждый кубический фут в минуту.
5. Рабочий цикл
рабочий цикл воздушного компрессора – это время, в течение которого он может работать, прежде чем его нужно будет отключить. Рабочий цикл выражается в процентах.
Например, компрессору с 15-процентным рабочим циклом потребуется восемь с половиной минут простоя на каждые полторы минуты работы. Воздушный компрессор с 25-процентным рабочим циклом будет работать в течение одной четверти общего времени цикла. Такие компрессоры с малым временем работы идеально подходят для небольших приложений или инструментов и обычно не используются в промышленной среде.
Компрессоры для тяжелых условий эксплуатации обычно имеют рабочий цикл 35 процентов или выше, включая воздушные компрессоры с рабочим циклом 50 и 75 процентов. Сверхмощные циклы подходят для мастерских, гаражей и некоторых инструментов повышенного спроса. Компрессоры со 100-процентным рабочим циклом относятся к «высокопроизводительным», а их двигатели содержат охлаждающие компоненты для предотвращения перегрева. Воздушные компрессоры с максимальной производительностью используются в промышленности или на заводах, потому что они могут удовлетворить постоянный спрос на сильно сжатый воздух.
6. Тип двигателя
Большинство воздушных компрессоров работают со стандартными трехсторонними асинхронными двигателями. Обычно они работают на электричестве, дизельном топливе или природном газе. Электродвигатели надежны, экономичны и способны генерировать достаточную мощность для стандартного использования дома, в мастерской или гараже.
С другой стороны, газовые компрессоры
, как правило, более мощные и обеспечивают удобство переноски. Вы должны выбрать воздушный компрессор, который соответствует вашим личным или деловым потребностям. Чтобы определить, какой тип лучше всего подходит для ваших приложений, рассмотрите:
- Стоимость электроэнергии
- Наличие топлива
- Первоначальный инвестиционный бюджет
- Портативность
7. Смазка
Когда воздушный компрессор имеет подвижные части, эти компоненты требуют смазки, чтобы уменьшить износ и продлить срок службы машины. Смазываемые воздушные компрессоры впрыскивают раствор на масляной основе в камеру сжатия, которая распределяет его по деталям. Для этих воздушных компрессоров требуется масляный фильтр, чтобы не допустить попадания остаточного масла в сжатый воздух. Для областей применения и отраслей, требующих 100-процентного безмасляного сжатого воздуха, существуют безмасляные компрессоры.
8. Вращающийся винт
Технические характеристики винтового воздушного компрессора относятся к системе сжатия объемного типа, приводимой в действие двумя спиральными винтами, вращающимися в противоположных направлениях, также называемыми роторами. Воздух попадает в ловушку между этими двумя роторами, и этот воздух уменьшается в объеме по мере движения, что приводит к образованию сжатого воздуха. Спецификации винтовых компрессоров включают как смазываемые, так и безмасляные компрессоры, которые предназначены для длительного использования. Хотя винтовые компрессоры очень долговечны и эффективны, для достижения наилучших результатов им требуется постоянное профилактическое обслуживание квалифицированным специалистом.
9. Возвратно-поступательный поршень
Поршневые или поршневые системы воздушных компрессоров — это объемные компрессоры, в которых используется одноступенчатый поршень и цилиндр с приводом от коленчатого вала для всасывания воздуха перед его выбросом в резервуар для хранения. Эти машины выталкивают воздух, используя ход одного поршня приблизительно 120 фунтов на квадратный дюйм (PSI).
Двухступенчатые поршневые компрессоры реализуют вторую ступень, когда дополнительный поршень меньшего размера увеличивает давление примерно до 175 фунтов на квадратный дюйм. Эти машины просты в эксплуатации и требуют минимального текущего обслуживания, что делает их идеальными для людей, использующих воздушный компрессор в своей домашней мастерской или гараже.
10. Многоступенчатые системы
Многоступенчатые системы — это поршневые или поршневые воздушные компрессоры, которые сжимают и охлаждают воздух, используя более одного цилиндра. Многоступенчатые компрессоры подают большие объемы сжатого воздуха и могут одновременно работать с несколькими инструментами. Поскольку эти системы настолько эффективны, они часто являются очень рентабельным методом сжатого воздуха в долгосрочной перспективе. Однако, поскольку в этой системе больше компонентов, ожидайте более высоких первоначальных инвестиций и меньшей занимаемой площади.
11. Положение
Регулятор воздушного компрессора поддерживает постоянное давление сжатого воздуха, что имеет решающее значение в отраслях, где требуется воздух без колебаний. Регулировка давления необходима для более крупных агрегатов высокого давления, которым не нужно постоянно работать на полную мощность. Регулятор давления воздушного компрессора избавляет вас от необходимости постоянно запускать и останавливать двигатель. Они также идеально подходят для энергосбережения.
Два основных типа регуляторов:
- Регулятор нагрузки/отсутствия нагрузки, , который выпускает воздух из устройства при достижении заданного давления.
- Регулятор модуляции, , который дросселирует впускную пластину, в результате чего машина всасывает меньше воздуха.
Вы также можете выбрать компрессор с ручным или автоматическим регулятором.
Измерение давления, отображаемое на манометре вашего регулятора, относится к уровню давления нагнетаемого воздуха, поступающего в воздушный шланг из ресивера. Вы можете настроить этот манометр на требуемый уровень давления. Имейте в виду, что регуляторы компрессора могут только снижать уровень давления и не могут повышать давление внутри вашего резервуара выше его максимальной выходной мощности.
12.
Функции охлаждения
Охлаждение воздушного компрессора необходимо для предотвращения выхода из строя во время непрерывной эксплуатации. Функции охлаждения также имеют решающее значение для предотвращения перегрева, который может быть опасен как для вашего компрессора, так и для тех, кто его эксплуатирует. Воздушные компрессоры могут иметь различные типы технологий охлаждения, в том числе:
- Теплообменники
- Промежуточное охлаждение
- Мембранное охлаждение
- Доохлаждение
Существует множество других типов технологий охлаждения, помимо упомянутых здесь. В некоторых из этих методов охлаждения используется вода, а в некоторых — воздух. Всегда выбирайте функции охлаждения, разработанные для вашего размера и типа воздушного компрессора. Тип используемой вами системы охлаждения будет определять график обслуживания вашей машины, особенно если она открытая или закрытая. Если вы не уверены, обратитесь к специалисту по обслуживанию воздушных компрессоров.
13. Очистка воздуха
Вместо использования неочищенного сжатого воздуха вы можете внедрить несколько вариантов очистки воздуха на своем рабочем месте, включая фильтры воздушных компрессоров, устройства для удаления конденсата и осушители воздуха.
Системы фильтрации воздушных компрессоров
удаляют масло, твердые частицы, грязь, мусор и влагу из сжатого воздуха. Они необходимы в средах, которым требуется чистый сжатый воздух без примесей для обеспечения качества конечной продукции. Вы можете выбрать из стандартных фильтров и фильтров высокого давления, а также автономных каплеуловителей.
Продукты для управления конденсатом включают электронные и пневматические дренажи, а также очистители конденсата с одноразовыми фильтрами. Электронные сливы без потерь являются энергоэффективными и обладают оптимальной емкостью резервуара, что экономит ваше время и энергию. Пневматические дренажи без потерь также способствуют повышению энергоэффективности за счет отсутствия потерь воздуха и работы по требованию. В качестве альтернативы, очистители конденсата имеют малый вес и используют безуглеродные фильтрующие материалы в дополнение к легкости их одноразовых фильтров.
Вы можете использовать осушители воздуха для удаления избыточной влаги из машины, а также из сжатого воздуха. В противном случае эта влага может повредить вашу систему воздушного компрессора, вызвать преждевременный износ ее внутренних механизмов или загрязнить сжатый воздух. Существует несколько типов систем осушки воздуха, но двумя наиболее популярными являются рефрижераторные и адсорбционные осушители.
14. Трубопровод воздушного компрессора
Трубопровод воздушного компрессора соединяет воздушный компрессор со всеми устройствами, которые используют его энергию. Качественный трубопровод и профессиональный монтаж имеют решающее значение для достаточного движения воздуха. При реализации вашей системы трубопроводов необходимо учитывать несколько моментов, в том числе соображения компоновки, материал трубы и многое другое. Например, острые углы трубопровода могут препятствовать воздушному потоку, увеличивать турбулентность и вызывать перепад давления от трех до пяти фунтов на квадратный дюйм (PSID).
15. Варианты монтажа
Компрессоры
бывают всех форм, размеров и конфигураций. Не каждый бизнес или мастерская имеют одинаковое количество места, и именно здесь полезны портативность и варианты монтажа. Вы можете выбрать переносной или стационарный воздушный компрессор, а также установить систему на прицепе. Выберите конфигурацию, обеспечивающую максимальную гибкость и подходящую для вашей рабочей среды. Однако имейте в виду, что чем больше ваша модель, тем больше энергии вам потребуется.
Перед окончательной покупкой всегда проверяйте, подходит ли ваш блок питания. Вы также должны быть уверены, что не устанавливаете электрический компрессор слишком далеко от источника питания. Всегда устанавливайте компрессор в хорошо проветриваемом, просторном месте и не позволяйте ему прижиматься к стенам или другим объектам во время работы.
16. Эффективность
Эффективность вашего воздушного компрессора зависит от того, насколько хорошо он работает, насколько он сводит к минимуму потери энергии и насколько эффективно он сжимает воздух высокого качества. Вы можете применить несколько методов, чтобы максимизировать эффективность вашего компрессора. Например, вы можете предпринять шаги для улучшения качества воздуха на рабочем месте, в том числе его чистоты и уровня влажности. Вы также можете инвестировать в высококачественное оборудование, рассчитанное на долгий срок службы.
Вопросы? Проконсультируйтесь с экспертами по воздуху в Quincy Compressor
Хотя воздушные компрессоры достаточно просты в использовании, они могут быть одними из самых сложных механизмов на вашем рабочем месте. С 1920-х годов компания Quincy Compressor помогает потребителям быть в курсе продуктов, которые они выбирают, и производит оборудование, включая воздушные компрессоры, осушители воздуха и другое оборудование для сжатого воздуха, обеспечивающее бескомпромиссную надежность и производительность.
Если у вас есть дополнительные вопросы о технических характеристиках воздушного компрессора или вы хотите узнать больше о различных доступных вам вариантах компрессора, свяжитесь со знающим представителем Quincy Compressor для получения помощи или воспользуйтесь нашей системой поиска продаж и обслуживания , чтобы найти ближайшего к вам дилера.
Двигатели воздушных компрессоров переменного тока — Двигатели определенного назначения
CENTURY
Двигатель воздушного компрессора, 5 л.с., 3600 об/мин
Производитель # B384
461,92 $
ВЕГ
Воздушный компрессор Mtr, 5 л.с., 1745 об/мин, 208-230 В, 184 т
Производитель № 00518OS1CCD184T
$779,00
ВЕГ
Двигатель воздушного компрессора, 6,5 л.с., 3510 об/мин, 240 В, 182/4Y
Производитель № 00636OS1XCD182/4Y
$413,20
ВЕГ
Воздушный компрессор Mtr, 5 л. с., 1745 об/мин, 208-230 В, 184 т
Производитель № 00518OS1CCDOL184T
$608,13
ВЭГ
Двигатель воздушного компрессора, 7,5 л.с., 1745 об/мин, 208-230 В
Производитель № 00718OS1CCD215T
$871,32
ДЕЙТОН
Двигатель, 7,5 л.с., 184Т, 230В, ODP, 3495 об/мин
Производитель № 45YU17
$703,64
ВЕГ
Двигатель воздушного компрессора, 5 л.с., рама 56H
№ производителя 12882730
655,40 $
МАРАФОН МОТОРС
Air Compr Mtr, 2 л.с., 3450 об/мин, 115/230 В, 56
№ производителя 5KCR48TN2650Y
$341,23
МАРАФОН МОТОРС
Двигатель воздушного компрессора, 1 л.с. , 10,6/5,5-5,3 А
№ производителя 056B34D2029
$289,92
ВЕК
Двигатель воздушного компрессора, 5 л.с., 3600 об/мин
Производитель # B813
481,50 $
ВЕГ
Двигатель воздушного компрессора, 5 л.с., рама 56 Гц
№ производителя 13521268
$ 610,83
ВЕГ
Двигатель воздушного компрессора, 4 л.с., 3440 об/мин, 230 В, 56 Гц
Производитель № 00436OS1DCDG56HZ
$372,76
ВЕГ
Двигатель воздушного компрессора, 2 л.с., типоразмер 56
№ производителя 13470997
$281,08
ЛИСОН ЭЛЕКТРИК
Leeson Motors — 1,5 л.с., 115/208-230 В, 1740 об/мин, DP, жесткое крепление, 1,15 S. F.
№ производителя 120042
$356.03
КАЛИФОРНИЯ ПНЕВМАТИЧЕСКИЕ ИНСТРУМЕНТЫ
Сверхтихий двигатель воздушного компрессора 2 л.с., 110 В, всего 70 дБ
Производитель № SP-9421
$284,00
ВЕГ
Двигатель воздушного компрессора, 3/4 л.с., рама W56
№ производителя 13444696
180,86 $
КАЛИФОРНИЯ ПНЕВМАТИЧЕСКИЕ ИНСТРУМЕНТЫ
Сверхтихий двигатель воздушного компрессора 2 л.с., 220 В, всего 70 дБ
Производитель № SP-9421-22060
$345,99
ВЕГ
Двигатель воздушного компрессора, 3 л.с., типоразмер 56
№ производителя 12882732
$581,77
ДЕЙТОН
Двигатель, 5 л. с., 184Т, 230В, ODP, 1725 об/мин
Производитель № 45YU16
644,18 $
ЛИСОН
Двигатель воздушного компрессора, 5 л.с., 3600 об/мин
№ производителя 116523,00
648,85 $
ВЭГ
Двигатель воздушного компрессора, 1-1/2 л.с., типоразмер 56
№ производителя 13589373
$237,35
ВЕГ
Воздушный компрессор Mtr, 10 л.с., 208-230 В, 213 т/215 т
Производитель № 01018OS1CCD215T
$1 207,93
ДЕЙТОН
Двигатель воздушного компрессора, 3 л.с., 1765 об/мин
Производитель № 45YU15
$541,76
КАЛИФОРНИЯ ПНЕВМАТИЧЕСКИЕ ИНСТРУМЕНТЫ
Сверхтихий двигатель воздушного компрессора 1 л. с., 110 В, всего 60 дБ
Производитель № SP-9413
$224,00
ВЕГ
Двигатель воздушного компрессора, 1 л.с., типоразмер 56
№ производителя 13488375
$397,26
ЛИСОН
Двигатель воздушного компрессора, 1-1/2 л.с., 3450 об/мин
№ производителя 110161.00
288,40 $
ВЕГ
Двигатель воздушного компрессора, 1/2 л.с., рама W56
№ производителя 13470996
$167,57
ЛИСОН
Двигатель воздушного компрессора 5 л.с., 1 фаза, 1800 об/мин, 208–230 В, рама 184T, ODP
№ производителя 131622,00
1 175,19 $
США МОТОРС
Двигатель, 5 л.с., 1740 об/мин, 230 В, 60 Гц, 184 т
Производитель # D5C2K
$596,14
ЛИСОН
Двигатель воздушного компрессора 7,50 л. с., 1 фаза, 3600 об/мин, 208–230 В, рама 184T, ODP
№ производителя 132044.00
$948,67
США МОТОРС
Двигатель, 10 л.с., 3480,230В, 60Гц, 215TZ
Производитель # FD10CM1K21Z
1 249,24 $
США МОТОРС
Мотор
Производитель # D32CP2PH
$236,46
США МОТОРС
Мотор
Производитель # D1CPM1PH
$286,66
АО СМИТ
Двигатель воздушного компрессора Century, 5 л.с., 3450 об/мин, 230 В, ODP
Производитель № B813
858,40 $
США МОТОРС
Двигатель, 5 л.с., 3505 об/мин, 230 В, 60 Гц, 184 т
Производитель # T5C1K18
$962,63
АО СМИТ
Двигатель воздушного компрессора Century, 5 л.