Содержание
Гидротехнический бетон: ГОСТ, технические характеристики
Содержание
- Характеристики гидротехнического бетона
- Виды гидротехнического бетона
- Состав гидробетона
- Основные плюсы и минусы гидробетона
- Заключение
Такой строительный материал, как бетон используется людьми уже достаточно давно, его популярность в мире оправдана высокой надежностью, испытанной погодными условиями и временем.
Но обычный бетон не совсем подходит для таких построек, как мосты, дамбы и прочие гидротехнические сооружения. Причина этому сильное негативное воздействие воды на объект, с которым не может справиться простой бетон. Притом что гораздо больший урон влага наносит той части объекта, которая находится в месте постоянной смены уровня воды.
Наибольшими разрушительными факторами являются:
- приливы и отливы воды;
- перепады температур;
- жесткость воды.
При планировании строительства сооружения, которое будет постоянно находиться под воздействием воды, нужно обратить внимание на материал, который будет использоваться при возведении. Этот материал должен обладать качествами, которые позволят ему противостоять разрушительным свойствам воды.
Таким материалом является гидротехнический бетон. Он используется при постройке дамб, туннелей, подвалов, причалов и т. д. в общем, везде, где сооружение должно как можно меньше пропускать влагу.
Характеристики гидротехнического бетона
К основным характеристикам гидротехнической смеси относят:
- морозоустойчивость;
- устойчивость к воздействию воды;
- повышенный уровень водонепроницаемости;
- прочность на растяжение и сжатие.
Для морозоустойчивости существует 5 марок гидробетона: F50, F100, F150, F200, F300. Также существует марка F400, она образуется при добавлении в состав бетона специальных примесей. Каждая марка означает количество циклов замораживания и оттаивания на протяжении двадцати восьми суток. Материал проверяется в специальных морозильных камерах, за отведенное время, указанное выше, гидротехнический бетон должен выдержать испытание морозом, не потеряв своих качеств. Морозоустойчивость является очень важным фактором при возведении сооружения, которое будет находиться длительное время, под воздействием низких температур.
Срок проверки водонепроницаемости длится 180 суток. Этой характеристикой обладают следующие марки бетона: W2, W4, W6, W8. При тестировании гидробетон не должен пропускать влагу. Добавление различных примесей образовывает марку W12.
Прочность определяют за счет сжатия и растягивания материала по оси. Срок проверки материала 180 суток. Гидротехнический бетон проверяют растягиванием для выявления возможности появления трещин. Имеется несколько классов марок, самыми популярными являются В10-В40.
Виды гидротехнического бетона
Гидробетон используется для постройки особых конструкций, он делится на три основных вида:
- бетон, который находится под водой;
- бетон, который находится в зоне, где уровень воды постоянно меняется;
- бетон, который находится над уровнем воды;
Также бетон для гидротехнических конструкций, делится на массивный и немассивный.
Состав гидробетона
При подборе компонентов для состава гидротехнического бетона, важно учесть все функции, которые он должен выполнять, а именно: морозоустойчивость, водонепроницаемость и прочность. В зависимости от требований подбирается особый состав. То как бетон будет справляться со своими обязанностями, зависит от многих факторов таких как: соотношение воды и цемента, виброуплотнение, качество, время, на протяжении которого выдерживают смесь, качество добавленных компонентов и т. д.
Видео применение гидротехнической добавки в бетон
Рассмотрим компоненты входящие в состав бетона подробнее. Цемент является основным компонентом, который используется при изготовлении данного вида бетона. Имеется несколько видов такого цемента:
- Сульфатостойкий цемент используется в случае, когда омываемая область постройки будет контактировать с жесткой водой.
- Портландцемент и пластифицированный является основой смесей, которая используется для возведения построек, находящихся в месте, где уровень воды постоянно меняется, а температура всегда ниже нуля.
- Гидрофобный цемент используется для создания бетона, который будет применяться при возведении сооружения, на которое постоянно будет воздействовать вода.
- Шлаковый и пуццолановый цемент имеют химические характеристики, которые способны противостоять разрушению конструкции водой. Жесткая вода имеет свои разрушительные свойства благодаря присутствию в ней минералов.
Важно! Нужная плотность бетона достигается именно за счет наличия цемента в смеси.
Гидробетон включает в себя, помимо цемента, множество других компонентов. Одними из них являются кварцевые пески, они служат в качестве заполнителей. Песок значительно повышает уровень водостойкости. Кварцевые пески обязательны к использованию, так как без них уровень водостойкости падает.
Используемый для гидробетона песок должен быть высокого качества, а также в нем не должно быть почти никаких примесей. Плотность песка соответственно ГОСТу должна быть 2т/м3. Размер зерен должен быть не более 2-х миллиметров. Пренебрежение этим фактором грозит тем, что уровень подвижности смеси будет нежелательным. Все гидротехнические постройки будь то дамбы, причалы или мосты, должны быть очень прочными и надежными. Для получения этих качеств, крупные компоненты для заполнения нужно выбирать очень внимательно. Достаточно часто для этих целей используют гранит из-за его возможности не пропускать воду и не разрушаться под большими нагрузками.
Щебень и гравий используется в составе гидробетона, для обеспечения морозостойкости. Особенности строения гравия и щебня позволяют переносить резкие перепады температур.
Лещадность является очень важным фактором при постройке гидротехнических сооружений. Она делает компоненты более плоскими. Наличие в составе бетона щебня, очень позитивно сказывается на его прочности благодаря его форме. Плоские края зерен позволяют более равномерно распределять нагрузку по всей конструкции, так как они достаточно плотно прилегают друг к другу. Эти характеристики позволяют экономить цемент и песок, потому что их расход в данной ситуации значительно сокращается.
Важно! Когда укладывается гидробетон, его уплотняют с помощью глубинных вибраторов. Подобные операции проводятся с целью повышения нужных показателей.
Также в состав бетона входят различные микронаполнители. Их наличие в смеси обеспечивает предотвращение деформации сооружения. Микронаполнители значительно повышают уровень теплопроводимости, это очень позитивно сказывается на долговечности конструкции. В состав гидротехнического бетона входит достаточно много различный химических компонентов, которые делают смесь очень качественной. В наше время ученые химики трудятся над разработкой компонента ЦМИД – 4. Этот компонент позволит сооружать постройки, которые будут постоянно находиться в контакте с питьевой водой. Одним из очень значимых плюсов микронаполнителей, является тот факт, что при их дополнении цемент расходится гораздо меньше.
Важно! При подборе состава для гидробетона нужно обязательно учитывать соотношение пропорций компонентов согласно ГОСТ 26633 2012
Видео: Защита бетонных поверхностей гидротехнических сооружений
youtube.com/embed/7i60uvvhITA»>
Основные плюсы и минусы гидробетона
В ряд преимуществ гидротехнического бетона нужно отнести самый важный его плюс, способность выдерживать перепады в температуре. Такой результат достигнут благодаря тому, что в составе смеси используется очень мало воды, это позволяет не замерзать бетону при низких температурах.
Высокий уровень водонепроницаемости, который достигается благодаря грамотно подобранному составу, дает гидробетону немалое преимущество перед обычным бетоном.
К недостаткам можно отнести его высокую стоимость. Чтобы достичь показателей, отличающих его от обычных видов бетона, в состав раствора приходится добавлять компоненты, которые сами по себе стоят не дешево, отсюда и общая высокая цена данного вида бетона. Еще одним минусом является тот факт, что смесь застывает за небольшой промежуток времени. Этот недостаток очень ощутим при перевозке гидротехнического бетона. Чтобы раствор не застыл раньше времени, его приходится покупать поблизости от места стройки, зачастую за невыгодную цену.
Заключение
Для постройки гидротехнических объектов, нужно учитывать множество факторов касательно выбора материала. Создание гидробетона довольно ответственная и кропотливая задача. При подборе состава нужно учесть все необходимые факторы, чтобы конструкция прослужила как можно больше на благо людям.
Баня из газобетонных блоков своими руками
Приготовление бетона вручную: пропорции, таблица
Бетон своими руками
Шлакоблоки своими руками в домашних условиях
Гидротехнический бетон: особенности, характеристики и состав
Назначение гидротехнического бетона понятно из самого названия, однако для корректного представления об этом материале такого понимания недостаточно. Поэтому мы хотим рассмотреть технические характеристики гидротехнического бетона – состав, прочность, водостойкость и другие параметры, определяющие свойства и особенности этой разновидности бетона.
Мы видим гидротехнический бетон – что это такое и для чего он применяется.
Бетон для гидротехнических сооружений
Введение
На фото типичное гидротехническое сооружение.
Говорить о гидротехническом бетоне как об отдельном строительном материале некорректно, так как он относится к одной из разновидностей более широкого класса материалов, которые называются бетонами, следовательно, термины, классификация, общие понятия для всего этого класса будут одинаковы.
Чтобы ввести читателя в тему, мы вкратце напомним об основных понятиях и терминах, которые используют для характеристики и описания бетонных изделий и растворов.
Важно!
Все способы маркировки, классификации, вся терминология и методика испытаний стандартизированы и строго определены, поэтому считаются единственным достоверным и общепринятым набором характеристик, который может использоваться в серьезном проектировании и масштабных строительных работах.
Плотины являются одним из наиболее ответственных видов сооружений.
Бетоном принято называть камень искусственного происхождения, полученный путем затворения водой или иным растворителем сухой смеси из вяжущего вещества, наполнителей и добавок. Также это название часто применяют для обозначения раствора, который уже смешали с водой и приготовили к укладке.
Существует большое количество разнообразных бетонных смесей, поэтому их классифицируют по нескольким параметрам:
- По назначению готового сооружения. Здесь представлены две основные группы: обычная и специальная. К обычной группе относятся материалы для строительства объектов гражданского и промышленного назначения, а специальная собрала материалы для возведения гидротехнических сооружений, дорог, атомных станций, мостов, а также растворы специального назначения – термостойкие, звукопоглощающие, стойкие к агрессивным химическим средам и т.д.;
- По виду применяемого вяжущего вещества различают асфальтовые, шлакощелочные, гипсовые, цементные, полимерные и силикатные бетоны. Мы говорим о цементном составе, так как именно портландцемент чаще всего используют для сооружения гидротехнических объектов;
- По виду наполнителя различают составы на пористых, плотных и специальных заполнителях. В нашем случае речь идет о плотных материалах – гравии и граните;
- Также различают материалы по структуре. Выделяют поризованные, плотные, крупнопористые и ячеистые бетоны. Мы будем говорить о плотной разновидности;
- Еще один важный показатель – условия твердения. Бывают растворы естественного твердения, а также те, которые требуют тепловлажностной обработки в условиях атмосферного или повышенного давления (автоклавного твердения). В нашем случае речь пойдет о растворе естественного твердения;
- По объемной массе бывают особо тяжелые (более 2500 кг/куб. м), тяжелые (2200 – 2500 кг/куб. м), облегченные (1800 – 2200 кг/куб. м), легкие (500 – 1800 кг/куб. м) и особо легкие (менее 500 кг/куб. м). Мы имеем дело с тяжелым бетоном;
- По крупности заполнителя бывают мелкозернистые и крупнозернистые разновидности.
Классификация бетонов.
Также можно добавить разделение по способу приготовления и составу, где различают тощие, жирные и товарные разновидности растворов. В тощих смесях понижено содержание цемента и повышено количество крупного заполнителя, в жирных, наоборот, больше цемента и меньше гравия, а товарные представляют собой оптимальное соотношение компонентов, приготовленное в соответствие со стандартной проверенной рецептурой.
Важно!
Для возведения гидротехнических сооружений используют только товарный бетон, приготовленный по стандартной или специально подобранной рецептуре с учетом всех условий эксплуатации этих сооружений.
Кроме того, независимо от предыдущей классификации, гидротехнический бетон по ГОСТу 26633-91 должен соответствовать ряду требований по прочности, водонепроницаемости, морозостойкости и степени готовности. Также в зависимости от условий литья может понадобиться раствор определенной подвижности и удобоукладываемости, которые тоже стандартизированы.
Соотношение марки, класса и средней прочности.
Для обозначения прочности материала рассматривают прочность на сжатие, на растяжение и на изгиб.
В нашем случае используют классы по прочности на сжатие: В3.5, В5, В7.5, В10, в12.5, <…>, В60, В65, В70, В75, В80.
Также используют марки от М50 до М1000, где число указывает на максимальное воздействие силы на квадратный сантиметр поверхности, которое способен выдержать материал.
Для определения прочности на осевое растяжение используют классы от Bt0.4 до Bt4 с шагом в 0.2. Прочность на изгиб характеризуют классы от Btb0.4 до Btb8 с тем же шагом.
Если вы встретили обозначение «гидротехнический бетон класс В25 М350», то это значит, что перед нами тяжелый бетон специального назначения класса прочности В25. Марка 350 указана для удобства, так как раньше была принята именно такая маркировка.
Испытание прочности на сжатие.
Кроме этих основных параметров при приготовлении раствора и определении его состава учитывают такие показатели, как теплота твердения, деформативная способность, стойкость к истиранию потоками воды и наносами и прочие характеристики.
Важно!
При определении классовой принадлежности, прочности, морозостойкости, водонепроницаемости и других параметров материала используют исключительно эмпирический подход и конкретную марку или класс присваивают только на основе испытаний.
Требования
Инструкция по строительству сооружений выдвигает ряд требований к конструкционным материалам.
Надо понимать, что такая подробная классификация введена не просто так. Дело в том, что гидротехнические разновидности бетонов используются для строительства сложных и весьма ответственных сооружений, таких как дамбы, плотины, опоры мостов, пирсы, волнорезы, причалы и т.д. Само собой, для таких целей материалы не готовят своими руками «на глаз», а придерживаются определенной рецептуры в условиях заводов.
Также важно учесть, что перечисленные объекты строят на основании серьезных расчетов, учтенных в проекте, где, кроме всего прочего, обязательно перечислены требования к прочности, водостойкости и другим параметрам бетона. Чтобы проще было предъявить эти требования заводу-производителю раствора, используют подробную классификацию и маркировку.
Результаты гидродинамических аварий трагичны.
Мера ответственности, возложенной на проектировщиков, архитекторов и строителей, огромна. Посудите сами, каковы последствия разрушения моста, плотины, гидроэлектростанции или дамбы? Поэтому подходить к выбору материалов здесь приходится особенно тщательно и серьезно.
Наиболее часто рассматривают требования по таким показателям, как водонепроницаемость, морозостойкость и прочность. О прочности мы подробно рассказали в предыдущем разделе, здесь лишь отметим, что наиболее распространенными классами по прочности являются В10 – В40.
Морозостойкость определяется количеством циклов замерзания-оттаивания, которые способен перенести материал без существенных потерь по прочности и другим показателям.
Для определения морозостойкости используют специальные климатические камеры, где образцы подвергают замораживанию и оттаиванию, а количество таких циклов фиксируют. В результате материалу присваивают класс, где указано количество перенесенных им без потерь циклов: F50, F75, F100, <…>, F600, F800, F1000.
Устойчивость к морозам – важный критерий качества.
Как правило, в строительстве используют такие марки по морозостойкости, как F50, F100, F200 и F300. Для получения большего числа циклов, чем 400, используют специальные добавки, но такие материалы применяют редко при работах в суровых и сверхсуровых условиях.
Как известно, существует три основных вида гидробетона по условиям эксплуатации:
- Подводный, который постоянно находится в толще воды и испытывает прямой контакт с напорной жидкостью;
- Пребывающий в зоне периодически изменяющегося уровня воды, то есть материал испытывает воздействие напорной жидкости не постоянно;
- Периодически омываемый водой, но находящийся выше ее уровня. Воздействия напорной жидкости не испытывает.
Установка для проведения испытаний на водонепроницаемость.
Очевидно, что все три разновидности так или иначе контактируют с водой, поэтому водостойкость – это крайне важный показатель для гидробетона. Для ее определения материал в возрасте 180-ти суток подвергают испытаниям воздействия воды под гидростатическим давлением.
Во время испытания бетонный куб со стороной 150 мм помещают в специальную камеру, где на него оказывают воздействие напором воды. Если материал выдерживает тот или иной напор, ему присваивают класс W2, W4, W6, <…>, W16, W18, W20. Число обозначает значение того давления, которое способен выдержать образец, измеряемое в кгс/кв. см. Наиболее часто встречаются гидробетоны четырех групп: W2, W4, W6, W8.
Образцы готовят к испытанию.
Особо важным для водостойкости является водоцементное отношение раствора. Чем оно ниже, тем ниже пористость структуры и выше водонепроницаемость. Также на этот показатель влияет наличие специальных добавок-пластификаторов, которые снижают потребление воды смесью.
Также непроницаемость для воды повышает применение пуццолановых добавок, а также глиноземистых, напрягающихся, расширяющихся и высокопрочных цементов. Кроме того, используют уплотнение бетона добавками сульфата алюминия и железа, нитрата кальция, а также механическое уплотнение центрифугированием, вибрацией, прессованием и вакуумированием.
Состав
Свойства материала определяет его состав.
Наиболее существенное влияние на все последующие свойства и характеристики сооружений оказывает состав гидротехнического бетона. При его подборе учитывается не только техническая сторона вопроса, но и цена полученной смеси, экономическая целесообразность ее применения в сравнении с другими вариантами и прочие показатели.
Для приготовления бетона гидротехнического назначения используют такие компоненты, как портландцемент, песок, щебень и воду. Кроме этих основных ингредиентов добавляют пластификаторы, гидрофобизаторы, воздухововлекающие добавки, уплотнители и прочие вещества, повышающие те или иные показатели раствора. Также для повышения водостойкости используют пуццолановый шлаковый цемент и сульфатостойкий цемент.
Сырье для приготовления бетонных растворов готовят и хранят в специальных хранилищах.
Расход цемента на один кубометр раствора не должен превышать 350 – 400 кг. Используют только качественный материал высоких марок, произведенный проверенным заводом с хорошей репутацией.
Песок лучше всего добавлять кварцевый, промытый от глины и пылевидных частиц, добытый в природных месторождениях. В качестве крупного заполнителя используют гравий и гранит, который соответствует требованиям фракционного состава и лещадности. В массивные сооружение допускается добавлять щебень размером зерна 150 мм и выше.
Допускается использование крупнозернистого щебня.
Важно!
Резка железобетона алмазными кругами и алмазное бурение отверстий в бетоне в нашем случае затруднено и требует использования профессионального инструмента и качественных режущих материалов.
Вывод
Мы рассмотрели гидротехнический бетон — класс В15 М200, В25 М350 и научились читать маркировку. Также мы определили основные требования и состав этого материала. Для большей наглядности и новой информации смотрите видео в этой статье.
Производство устойчивого цемента сложно, но, вероятно, возможно — Инженерный колледж
Искать:
28 сентября 2021 г.
Автор:
Веб-менеджер
Отделы:
Гражданская и экологическая инженерия
Цемент имеет проблему углеродного следа. Ключевой ингредиент бетона — одного из наиболее широко используемых искусственных строительных материалов на планете — это «паста», которая связывает воедино щебень и другие материалы.
Поскольку в 2020 году во всем мире было произведено более 4,1 миллиарда тонн цемента, он также является одним из самых производимых материалов в мире.
Фактически, только на производство цемента приходится около 8% мировых выбросов углерода каждый год; около половины этого общего количества приходится на выбросы, образующиеся при сжигании ископаемого топлива для высокотемпературного процесса и в процессах, связанных с производством цемента, например выбросы транспортных средств при транспортировке материалов или готовой продукции к месту назначения.
Остальные 4% возникают в результате фактического химического процесса создания цемента. Для производства цемента требуется щелочь, подобная оксиду кальция. Создание щелочи требует термической химической реакции, которая разрушает карбонат кальция или известняк, который также производит углекислый газ.
К сожалению, это неотъемлемая часть процесса, говорит Бу Ванг, доцент кафедры гражданского и экологического строительства в Университете Висконсин-Мэдисон. Он говорит, что были попытки полностью переделать процесс производства цемента, но до сих пор не удалось обойти эту необходимую реакцию.
«Чтобы сделать цемент, нужно обжечь ингредиенты примерно до 1500 градусов по Цельсию, — говорит Ван. «Вы должны сжигать топливо, чтобы достичь такой высокой температуры, что, конечно же, создает выбросы. Во время этого процесса нагрева известняк, используемый в качестве ингредиента, распадается на известь и углекислый газ, что создает дополнительные выбросы. Проблема здесь в том, что химическая реакция является необходимой частью производства цемента».
Уже существуют способы сокращения выбросов на некоторых этапах цикла производства цемента. Электромобили могут сократить выбросы от транспорта, и Ван говорит, что можно использовать возобновляемые источники энергии в качестве альтернативы сжиганию ископаемого топлива для нагревания ингредиентов цемента.
«Но что касается реакции, трудно обойти выбросы», — говорит Ван. «Если мы заглянем в будущее, не будет преувеличением предположить, что роль цемента в глобальных выбросах углерода может продолжать расти, потому что другие сектора могут стать чище. Из-за этой необходимой реакции сделать это с цементом намного сложнее. Вполне возможно, что к 2050 году на производство цемента будет приходиться 50 процентов всех выбросов CO2».
Ван возглавляет исследовательскую группу из нескольких институтов, которая стремится остановить эту надвигающуюся тенденцию. Он получил 1,9 доллара.миллионный грант от программы «Расширяющиеся границы в исследованиях и инновациях» Национального научного фонда на поиск устойчивых способов производства цемента.
Вместо того, чтобы пытаться заново изобретать велосипед, команда Вана пытается извлечь выгоду из повсеместного распространения цемента. Поскольку каждый год производится так много его — и производилось на протяжении десятилетий — в бетоне много щелочи, которая больше не используется. Теперь исследователи надеются извлечь необходимую щелочь из старого бетона, и большая часть проекта будет включать создание реакций и процессов, которые смогут максимально эффективно восстановить этот старый материал. Если их усилия окажутся успешными, они могут открыть новый, устойчивый способ производства цемента.
«Существующий цемент использует оксид кальция в качестве щелочи», — говорит Ван. «После того, как он превратился в бетон, этот кальций все еще остается там. Если мы сможем извлечь кальций из отработанного цементного теста, мы решим проблему — пока мы можем получить щелочь без дополнительного образования CO2, все в порядке».
Эффективность решения будет зависеть от наличия старого цемента относительно потребности в новом цементе. Например, Ван говорит, что район, где сносится столько же старых зданий, сколько строится новых, может найти баланс в цементе, извлеченном из старого бетона. Но в растущем регионе, где строится больше, чем старых зданий, этот баланс может измениться в неблагоприятную сторону.
Команда создаст метод общего регионального анализа, чтобы определить, достаточно ли в районе материалов, чтобы сделать этот метод жизнеспособным. При этом они будут учитывать такие факторы, как экономическая активность в регионе и выбросы, возникающие в результате перемещения переработанных материалов, чтобы определить, принесет ли этот метод пользу окружающей среде.
При отсутствии достаточных запасов бетона, по словам Вана, команда также рассмотрит возможность использования дополнительных перерабатываемых материалов, таких как угольная зола, цементная пыль, являющаяся отходом производства цемента, и шлак производства стали и чугуна.
«Мы производили эти материалы десятилетиями, — говорит Ван. «Несмотря на то, что угольные электростанции закрываются, на свалках есть материалы, которые мы могли бы использовать. Мы надеемся, что комбинирования этих переработанных материалов будет достаточно для сокращения общих выбросов CO2».
Их главная надежда состоит в том, что один или несколько из их методов могут стать альтернативой производству нового цемента. Хотя есть способы улучшить цемент, Ван говорит, что если они не будут легко доступны и недороги, они не приживутся.
«Большая проблема заключается в том, что из-за того, что этот материал используется так часто, нам нужны широкодоступные и дешевые материалы, — говорит Ван. «Вы можете найти или спроектировать что-то лучше бетона, но если это нелегко достать или дорого, люди не будут этим пользоваться. Мы надеемся, что этот процесс, поскольку бетон повсюду, может предоставить альтернативу, которая поможет решить эту проблему».
Ван также работает с Ю. Остином Чангом, доцентом кафедры материаловедения и инженерии Давэй Фэном и профессором биологической инженерии Робертом Анексом в Университете Вашингтона в Мэдисоне.