Для подшипников качения смазки: Смазка подшипников качения | OKS Spezialschmierstoffe GmbH

Содержание

Смазка подшипников качения | OKS Spezialschmierstoffe GmbH


Правильная смазка подшипников качения снижает количество случаев выхода машин из строя по причине повреждения подшипников и повышает эксплуатационную надежность

Принцип действия и типы подшипника качения

Подшипники качения обеспечивают вращательное движение с уменьшением трения между различными компонентами машины.

Поэтому в технике подшипники качения используются, в том числе, для приведения в движение и поддерживания валов и осей. В основе работы подшипников качения лежит принцип трения качения: они состоят из внутреннего и внешнего кольца, между которыми перекатываются тела качения, которые для еще большего снижения трения и износа отделяются друг от друга сепаратором. В зависимости от нагрузки тела качения могут иметь различные формы, например, шарики или ролики. По причине трения качения, связанного с формой тела качения, шариковые подшипники подходят больше для использования с большой частотой вращения, а роликовые подшипники, напротив, лучше использовать при высоких нагрузках.

Задачи смазки подшипников качения

Цель смазки подшипников качения состоит в том, чтобы за счет смазочной пленки предотвратить соприкосновение металлических поверхностей катания и скольжения и, таким образом, еще сильнее уменьшить трение скольжения в подшипнике качения. Кроме того, смазка подшипника качения улучшает защиту от износа. Благодаря этому предотвращаются повреждения подшипников, продлевается срок службы подшипника и повышается эксплуатационная надежность. К дополнительным задачам, которые выполняет смазка в подшипнике качения, в зависимости от типа смазочного материала (масло или консистентная смазка с соответствующим использованием присадок), относятся: защита от коррозии, отвод тепла из подшипника, защита подшипника от загрязнений внутри и снаружи, уменьшение шума при работе подшипника, а также обеспечение уплотняющего эффекта уплотнений подшипника.

Критерии выбора консистентной или масляной смазки

В примерно 90% всех подшипников качения используется консистентная смазка. Существенными преимуществами консистентной смазки являются:

  • очень низкие конструктивные затраты
  • хорошее уплотнение подшипника
  • длительный срок эксплуатации
  • низкий момент сил трения
  • хорошая аварийная антизадирная способность при использовании твердых смазочных веществ
  • хорошие шумопонижающие свойства

При правильном выборе консистентные смазки обеспечивают для всех конструкций подшипников (кроме аксиальных самоустанавливающихся роликоподшипников) надежную смазку при широком диапазоне скорости вращения и нагрузки.

Структура и характеристики консистентных смазок

Консистентные смазки состоят из основного масла, связанного сгустителем. Благодаря этому масло остается на месте смазки. Там оно обеспечивает защиту от трения и износа и уплотняет место смазки, защищая его от внешних воздействий, например, влаги и посторонних материалов. Поэтому консистентные смазки идеально подходят для применения в подшипниках качения. Типичные рабочие характеристики консистентной смазки, например, температура каплепадения, способность к восприятию нагрузки и водостойкость, определяются основным маслом и сгустителем. Улучшение защиты от коррозии и износа, способности к восприятию нагрузки, адгезионной способности и стойкости к старению достигается за счет добавляемых в консистентную смазку присадок.

Параметры для выбора консистентной смазки для подшипников качения

Выбор консистентной смазки для подшипников качения зависит от конструкции подшипника качения и материала сепаратора подшипника качения (металлы или пластмассы), а также от таких условий применения, как рабочая температура, диапазон частоты вращения, давление и влияние окружающей среды (вода, пыль или агрессивные среды). Для характеристики консистентной смазки для подшипников качения используются следующие параметры.

1. Класс NLGI

Для консистентных смазок консистенция является мерой твердости. Консистентные смазки классифицируются по NLGI от очень мягких (класс 000) до очень твердых (класс 6). Для использования в подшипниках качения подходят консистентные смазки классов NLGI 1-4.

2. Температура каплепадения (в °C)

Температурой каплепадения консистентной смазки считается температура, при которой происходит сжижение консистентной смазки. Эта температура существенно выше рекомендуемой рабочей температуры, которая определяется в подшипнике качения не только температурой окружающей среды, но и теплом, возникающим при его эксплуатации.

3. Показатель качества смазочного материала, полученный на четырехшариковой машине

Четырехшариковый аппарат – это испытательное устройство для смазочных материалов, которые используются при высоких контактных напряжениях. Он состоит из вращающегося шарика, скользящего по трем неподвижным шарикам. При испытаниях на максимальное восприятие нагрузки смазочного вещества на вращающийся шарик действует испытательная нагрузка, которая ступенчато повышается, пока под воздействием теплоты трения не произойдет сваривание системы четырех шариков.

4. Величина DN (коэффициент числа оборотов)

Величина DN указывает на то, до какой максимальной окружной скорости может использоваться консистентная смазка в подшипнике качения. Она рассчитывается из скорости вращения подшипника, среднего диаметра подшипника (в мм) и коэффициента для учета доли трения скольжения при соответствующей конструкции подшипника.

5. Значение SKF-Emcor

Метод SKF-Emcor используется для оценки антикоррозионных свойств консистентных смазок для подшипников качения. При этом в консистентную смазку добавляется вода, а самоустанавливающиеся шарикоподшипники проверяются на наличие коррозии при заданной продолжительности работы, скорости вращения и длительных простоях в соответствии с DIN 51802. Если визуальный контроль испытуемых колец не показал наличия коррозии, то степень коррозии равна 0. При очень сильной коррозии присваивается степень коррозии 5.

Смазка подшипников качения

Важной предпосылкой для достижения высокой эксплуатационный надежности подшипника качения является его непрерывное снабжение смазочным материалом. При первой или повторной смазке подшипника нужно соблюдать указания производителя подшипника. Заполнять подшипник нужно таким образом, чтобы все его функциональные поверхности покрывались консистентной смазкой. Медленно вращающиеся подшипники (величина DN < 50.000) и их корпус могут быть заполнены полностью, а быстро вращающиеся подшипники (величина DN > 400.000) – до 1/4 свободной внутренней полости подшипника. В остальных случаях рекомендуется заполнять подшипники на 1/3.

Смазываемые консистентной смазкой подшипники обладают достаточной эксплуатационной надежностью, если сроки добавления смазки не превышены. Добавление смазки необходимо в том случае, если срок годности консистентной смазки меньше, чем ожидаемый срок службы подшипника. Добавление смазки выполняется с помощью смазочного шприца или автоматических смазочных систем. По возможности добавление смазки следует выполнять во время эксплуатации. Количество добавляемой смазки составляет 50–80% от количества смазки при первом заполнении. Если нет возможности для отвода старой консистентной смазки, то количество консистентной смазки должно быть ограничено, чтобы предотвратить избыточное смазывание подшипника.

При больших интервалах добавления смазки следует стремиться к полной замене консистентной смазки. Перед переходом на другой вид консистентной смазки необходимо тщательно очистить подшипник качения или добавлять консистентную смазку до тех пор, пока старая консистентная смазка не будет полостью вытеснена из подшипника. В этом случае следует предварительно проверить смешиваемость и совместимость смазочных материалов.

Назад к обзору

Смазка подшипников качения: особенности выбора и эксплуатации

В современном мире подшипники качения, представленные многочисленными конструктивными модификациями, все шире оснащают опоры осей и валов различных агрегатов и механизмов. Одновременно с этим увеличиваются и требования к их быстроходности, грузоподъемности, бесшумности и другим потребительским свойствам.

Но широкая номенклатура обуславливает разные условия эксплуатации и необходимость применения унифицированных и специализированных смазочных материалов. Например, подшипники сельскохозяйственных машин выходят из строя в результате загрязнения, а на подвижном составе и газотурбинном оборудовании их отбраковывают из-за точечной коррозии. Следовательно, консистентные смазки и масла являются материалами, которые напрямую влияют на степень функциональности и долговечности данных деталей, этом должны соответствовать конкретным условиям работы и подбираться с учетом эксплуатационных характеристик оборудования.

Особенности смазки подшипников качения

Ключевая функция подшипника как механического узла – обеспечение равномерного осевого вращения. При этом его элементы подвержены значительным динамическим нагрузкам, воздействию внешних температур, конструктивному нагреву в результате трения и негативным факторам окружающей среды.

Соответственно применение эффективных смазочных материалов – основное условие нормального функционирования не только подшипников качения, но и всего оборудования в целом, так как они:

  • обеспечивают снижение трения между телами качения, кольцами и сепараторами;
  • защищают от коррозийных процессов и загрязнения механическими взвесями;
  • герметизируют и снижают уровень вибраций и шума.

Данные вещества также используют, чтобы эффективно отводить тепло и исключить появление задиров, сваривание и износ. При этом они должны обеспечить простоту замены отработанного материала, минимальные потери мощности и снижение затрат на техобслуживание.

Эксплуатационные факторы, влияющие на выбор

Чтобы правильно выбрать жидкую или пластичную смазку для подшипника качения и обеспечить его стабильную и длительную работу, необходимо учитывать:

  1. частоту вращения. При этом следует руководствоваться элементарным правилом: чем больше число оборотов, тем меньше должна быть вязкость базового масла;

  2. режим работы и нагрузку, оказываемую на корпус подшипника. При разрыве масляной пленки создается прямой контакт «металл-металл», что при простое в доли секунду может вызвать схватывание сопряженных поверхностей и выход узла из строя. Поэтому в большинстве случае, подшипники качения целесообразно обрабатывать пластичной смазкой. Их рекомендуют использовать при высоких нагрузках и малых оборотах, ударных и периодических пиковых нагрузках, переменных скоростях и частых остановах. Жидкие масла также применяются, но их доля составляет приблизительно 20% против 80%, которые приходятся на различные консистентные продукты. Твердые смазки для этих целей используются лишь в очень ограниченном количестве и для особых случаев: вакуум, рентгеновские установки;

  3. рабочую температуру. С повышением градусов снижаются вязкостные и антифрикционные свойства смазочных материалов, а перегрев подшипника в результате длительного воздействия температур выше + 90˚С вызывает термический отпуск металла и резкое снижение прочностных и усталостных характеристик. При минусовых температурах, застывая, смазки провоцируют стопорение и появление воздушных зазоров и капсул, а скопившаяся в них влага усугубляет развитие коррозии;

  4. условия окружающей среды (повышенная влажность, наличие агрессивных и летучих веществ, мелкодисперсной бумажной, древесной и металлической пыли). Воздействие влаги и реагентов будет провоцировать коррозию, снижение срока службы узла, появление ложного бринеллирования, а затвердевшая от загрязнения абразивными частицами смазка будет через стопорение вращения препятствовать нормальной работе узла.

Выбор основных свойств

Так как смазкой определяется общие эксплуатационные качества подшипников качения, она должна обладать:

  • термоокислительной, химической и механической стабильностью;
  • стойкостью к выдавливанию, загрязнению и расслоению;
  • повышенной адгезией;
  • работоспособностью и сопротивлением старению;
  • инертностью к воздействию влаги, пара и агрессивных компонентов;

Важнейшим показателем смазки подшипника качения является вязкость – способность вещества сопротивляться механическому сдвигу. Она же выступаете фактором, определяющим грузоподъемность смазочной пленки в подшипнике, пусковые характеристики и интенсивность отвода тепла. Но в первую очередь степень вязкости влияет на упругую деформацию сопряженных поверхностей и зависит от давления и температуры.

Числовой расчет данного параметра, который часто путают с консистенцией смазочных веществ, довольно сложный и учитывает линейный контакт, боковые утечки, сдвиговые напряжения, среднюю скорость, развиваемую телами качения, и другие физические параметры. Для упрощенного подбора можно воспользоваться типовыми рекомендациями производителя.

Для выбора пластичных смазок также руководствуются:

  • каналообразованием. Этот параметр дает возможность понять какой текучестью, проникающей и обволакивающей способностью характеризуется продукт;
  • типом загустителя. Он может улучшить вязкостные свойства при не жестких условиях эксплуатации, но при высокоскоростных режимах следует особо тщательно подбирать комплекс загустителя и присадок. Материалы, содержащие кальциевые мыла, при смазывании подшипника демонстрируют водонерастворимость и коллоидную стабильность, литиевые – также гидрофобны и устойчивы к воздействию паров и влаги, а натриевые – растворяются и вымываются водой;
  • температура каплепадения. Смазка подшипников качения, эксплуатируемых при высоких температурах, априори должна иметь повышенные показатели данного параметра; 
  • классом NLGI. Являясь своеобразным квалитетом консистенции, он предполагает классификацию смазочных материалов по 9 категориям от 000 до 6. Чем выше цифровой порядок, тем больше плотность. Для упреждения деструкции смазки, рекомендуется придерживаться баланса: вязкость выше – класс NLGI ниже и наоборот.

Использование жидких масел

Для средних и крупногабаритных роликовых и шариковых подшипников, эксплуатируемых при незначительных скоростях (DNm 10000 и 300000) и температурах от -5 до + 50˚С, можно применять минеральные масла с кинетической вязкостью 12 мм2/с, для конических и упорных роликоподшипников выбирают продукты уже с повышенной вязкостью – 20 и 30 мм2/с соответственно.

Для высоких частот вращения и при малых габаритах потребуется обеспечить значительные пусковые моменты, соответственно, в таких случаях целесообразно использовать масло с вязкостью менее 12 мм2/с.

К сожалению, жидкие материалы вне зависимости от комплекса присадок и условий применения активно окисляются при контакте с воздухом, а образовывающие продукты окисления ухудшают антифрикционные свойства. При повышенных температурах и высоких скоростях данные процессы только усугубляются, что и ограничивает сферу применения жидкого масла и обуславливает его частую замену.

Преимущества пластичных продуктов

Сегодня уже доказано, что при вращении подшипников качения в них реализуется упругогидродинамический режим смазки, а вязкость базового масла определяет вязкостные характеристики мазеподобных веществ. Это объясняет тот факт, что пластичные материалы, несмотря на объемные свойства, практически не влияют на величину сопротивления осевому вращению, к тому же они:

  • надежно изолируют узел от негативных факторов внешней среды;
  • не требуют сложных уплотнительных устройств;
  • минимизируют уровень энергетических потерь;
  • снижают риск смазочного «голодания»;
  • просты в эксплуатации.

Пластичные материалы, растекаясь по рабочим поверхностям и формируя прочный слой между телом качения и дорожкой, обеспечивают полноценное смазывание и не вытекают из узла. Причем толщина антифрикционной пленки лежит в пределах от 0.2 до 0.8 мкм и даже при длительной работе изменяется лишь незначительно. За счет возможности нанести оптимальное количество смазки в подшипник качения вполне реально обеспечить экономный расход материала и значительно минимизировать конструктивный износ, ведь известно, что ее излишки вызывают перегрев, а недостаток сокращает срок службы.

Таким образом, для непродолжительной осевой нагрузки при низких температурах лучше использовать жидкие масла, а для постоянных, переменных и случайных осевых нагрузок при высокой, умеренной и низкой температуре рекомендуется использование пластичных смазок. Другой вопрос, какими антифрикционными, антизадирными, противокоррозионными и другими потребительскими качествами они будут обладать из-за химической природы базового масла, загустителя и комплекса присадок.

Многоцелевые смазки для подшипников качения

Такие продукты рассчитаны на обширную сферу применения и температурный диапазон до +140˚С и характеризуются унифицированными эксплуатационными качествами. Их изготавливают на основе минеральных масел с добавлением кальциевых, литиевых и натриевых мыл в качестве загустителя. Основной ассортимент таких материалов составляют многофункциональные пластичные смазки, среди которых выделяются «Эрна-МФ» и «Молиол».

Термо- и морозостойкие продукты

Подшипникам, которые эксплуатируются при стабильных высоких и низких температурах и постоянных знакопеременных колебаниях окружающей среды, необходимо подбирать смазочные вещества не только по характеру нагрузки и скоростного режима, но и с увеличенным закладочным интервалом, высокой стойкостью к старению, великолепными антикоррозионными, антифрикционными и противозадирными свойствами.

Компания «Интеравто» предлагает для эксплуатационных температур, достигающих минус 60˚С, эффективную и, главное, способную достойно конкурировать с дорогостоящими импортными аналогами, низкотемпературную смазку «Полюс». Она разработана на основе полиальфаолефинов и имеет уникальный комплекс присадок, что делает ее невероятно работоспособной в диапазоне от -60 до + 150˚С, стойкой к коррозии и универсальной в применении.

Для узлов, эксплуатируемых при высоких температурах, мы предлагаем широкий выбор материалов: «Ассоль», «УДМ», «ИПФ-250» и «Эрна-300». Такой обширный ряд дает возможность подобрать смазочные материалы с учетом специфики производства: пищевая отрасль, асфальтоукладчики, тяжело нагруженные агрегаты, условия вакуума и т.д.

Смазка высоконагруженных и высокооборотных подшипников

Для таких узлов рекомендуется применять материалы на синтетической основе и с улучшенными свойствами влагостойкости, ведь чем больше нагрузка, тем выше вероятность расслоения, проявления коррозийных процессов и возникновение масляного «голода» на металлических поверхностях. Мы рекомендуем обратить внимание на молибденсодержащую смазку «Моли-ДЛ», а также на смазки «Орион» и «СКАТ» производства компании «Интеравто».

Но какую бы вы жидкую или пластичную смазку не использовали для обработки подшипников качения, главное, помнить, что подбор материала следует производить с помощью специалистов и необходимо как можно полнее описать проблему с которой вы столкнулись и оборудование для которого необходимо произвести подбор. 

Смазка подшипников качения для критических условий эксплуатации

Консистентная смазка является наиболее распространенным типом смазки, используемой сегодня для смазки подшипников качения. Около 90 процентов всех подшипников смазываются таким образом. Важно правильно выбрать смазку для конкретных требований и рассчитать жизненный цикл смазки. Для точного расчета срока службы смазки необходимо знать и применять ограничивающие факторы. Правильный расчет позволит использовать минимальное количество смазки (MQL).

Шариковые и цилиндрические роликоподшипники, используемые в электродвигателях, являются примером подшипников качения с MQL. Однако, если подшипники этих типов подвергаются негативным воздействиям, эффективный срок службы смазки может быстро сократиться, что может привести к повреждению подшипников.

В этой статье обсуждаются некоторые из этих негативных влияний и их последствия на практических примерах. Практическое значение будет представлено через проблему электрической непрерывности (подшипниковые токи или искровая эрозия подшипников) и влияние на смазку и подшипники качения.


Консистентная смазка и консистентная смазка подшипников качения

Консистентная смазка для подшипников качения состоит из загустителя, масла и специально подобранных присадок для улучшения желаемых свойств. Фактической смазкой для подшипника качения является масло, которое может быть минеральным маслом, полностью синтетическим или их смесью.

В эти масла добавляются различные типы присадок, чтобы повлиять на свойства коррозионной стойкости и/или создать слои, которые защищают металлическую поверхность в экстремальных условиях. Присадки также улучшают поведение вязкости при различных температурах.

Задача загустителя – поглощать масло и выделять его в небольших количествах на подшипник в течение длительного времени.

На практике для смазывания подшипников качения используется всего несколько граммов смазки, и этого количества обычно хватает на длительное время. Поэтому точный расчет срока службы смазки имеет особое значение.

Расчет срока службы смазки

Срок службы смазки для подшипников качения зависит от выбора смазки, типа подшипника, условий работы и воздействия окружающей среды.

Основу расчета срока службы смазки можно увидеть на общепринятой схеме (рис. 2).


На этой диаграмме сравнивается то, что часто называют «консистентной смазкой общего назначения» (литиевая смазка на основе минерального масла, смазка A), и кривая срока службы высококачественной смазки на основе синтетического эфирного масла с полиуретановым загустителем (смазка B). .

Преимущества синтетических масел, загущенных полимочевиной, возрастают при более высоких температурах. Они могут легко обеспечить срок службы смазки, который в 20 раз превышает срок службы стандартных смазок, в зависимости от температуры. Это означает, что пользователь может увеличить запас прочности для повреждения подшипников, связанного со смазкой, и одновременно увеличить интервалы повторного смазывания.

Так называемое значение типа подшипника (kf) предполагает фактическую конструкцию смазываемого подшипника. Этот коэффициент может принимать значения от 0,9 до 10 для кинематически простых шарикоподшипников.

Для кинематически сложных подшипников (таких как упорные цилиндрические роликоподшипники с высоким трением скольжения) коэффициент kf может достигать значений до 90. Чем больше число, тем больше площадь поверхности и большее общее напряжение, прикладываемое к маслу и матрице загустителя. Сферические роликоподшипники как категория имеют тенденцию оказывать наибольшее давление на смазку.

Коэффициент скорости n*dm (об/мин * средний диаметр подшипника) является классификационным номером скорости вращения подшипника качения и зависит от условий эксплуатации.

Таким образом, уже можно определить доступный срок службы конкретного используемого типа смазки, хотя это только теоретическое значение. В следующем расчете необходимо учитывать влияющие факторы фактического применения и оценивать их важность.

tfq = tf* f1* f2* f3* f4* f5* f6
tfq … срок службы смазки в часах на практике
tf … срок службы смазки с рисунка 2
f1 … f6 … факторы влияния

Эти факторы отражают известное отрицательное влияние на срок службы смазки подшипников качения, что сокращает срок службы смазки согласно значениям, показанным на рис. 2.

Факторы влияния

Необходимо учитывать влияние загрязнения (f1), вибрации (f2), повышенной температуры подшипника (f3), высокой нагрузки на подшипник (f4) и циркуляции воздуха (f5) на подшипнике или вокруг него.

Значения могут легко варьироваться от 0,1 до 1 (не влияет), что означает, что результат фактического расчета сильно зависит от уровня опыта человека, оценивающего значения факторов.

Структурные факторы (f6) также могут значительно сократить срок службы смазки. Например, направление сборки подшипника (горизонтальное, вертикальное или угловое) важно для интервала повторного смазывания. Из-за различного влияния центробежных сил на смазку необходимо учитывать путь ведомой дорожки подшипника (вращающийся IR или OR).

Диапазоны коэффициентов уменьшения должны быть выбраны из диапазона. По мере усложнения условий значение коэффициента уменьшается, что сокращает расчет срока службы смазки. Опыт играет ключевую роль в точной оценке.

f1 = Среда окружающей среды, степень загрязнения (от 0,1 до 0,9)
f2 = динамика нагрузки, удары (от 0,1 до 0,9)
f3 = температура подшипника (от 0,1 до 0,9)
f4 = нагрузка на подшипник (от 0,1 до 1,0)
f5 = воздушный поток (от 0,1 до 0,7)
f6 = тип крепления, центробежная энергия (от 0,5 до 0,7)

В то время как понижающие коэффициенты 1, 2, 5 и 6 основаны на эмпирических значениях, температура подшипника (3) и нагрузка (4) могут быть отнесены к химико-физическим связям и зависят от типа смазки.

Для стандартной смазки (литиевое мыло и минеральное масло) термическое старение непропорционально увеличивается при повышении температуры выше 140°C. Срок службы смазки сокращается почти до нуля, когда она достигает точки каплепадения примерно при 190°С. Можно было бы ожидать повышенного отделения масла и, благодаря усиленной циркуляции, заметного увеличения скорости окисления.

Когда смазка достигает точки каплепадения, происходит необратимое и самопроизвольное выделение масла, и смазка теряет свои свойства. Срок службы смазки также снижается при экстремально низких температурах, но это невозможно измерить при той же конфигурации испытательного стенда. Следовательно, можно определить коэффициенты срока службы смазки на основе характеристик в диапазоне температур.

Подшипники с консистентной смазкой в ​​электродвигателях

Смазанный роликовый подшипник в электродвигателе предлагается для демонстрации возможного срока службы смазки. В общем, подвеска роторов с подшипниками качения, смазываемыми консистентной смазкой, является широко используемым и хорошо известным применением и является хорошим примером для подшипников, подверженных различным влияющим факторам.

С появлением современных методов преобразования частоты было обнаружено дополнительное негативное влияние на срок службы подшипников, которое продолжает вызывать отказы: подшипниковые токи.

Обычно подшипники качения в электрических машинах имеют минимальную нагрузку, типичная нагрузка находится в пределах от P/C=0,05 до C/P=20. Нагрузка по отношению к грузоподъемности подшипника настолько минимальна, что должно быть возможным достижение максимального диапазона выносливости.

На самом деле отказы подшипников такого типа по-прежнему возникают через 15 000–20 000 часов работы. При правильном повторном смазывании срок службы пластичной смазки можно согласовать с оптимальным сроком службы подшипника и, таким образом, легко достичь 100 000 часов и более.

В стратегиях планового профилактического обслуживания электродвигатели часто заменяются после двух-трех лет эксплуатации. На интервал влияет множество факторов, но обычно это связано с предыдущим опытом жизненного цикла приложения. Ремонт двигателя требует времени, стоит дорого и сопряжен с повышенным риском с каждой новой установкой.

В новом оборудовании современные методы преобразования частоты, такие как высокочастотные двигатели с регулируемой скоростью, регулирование скорости двигателя, увеличение скорости и увеличение продолжительности рабочего времени, по-разному сокращают срок службы (см. врезку). Более высокие скоростные характеристики электродвигателя приведут к повышенным температурам подшипников, подвергая смазку более сильным центробежным силам.

Эти центробежные силы удаляют масло с контактных поверхностей в то время, когда это наиболее важно для функционирования и выживания подшипников. Это может привести к преждевременному старению (окислению и затвердеванию) из-за перенапряжения рабочих характеристик смазок общего назначения.

Экстремальные температуры подшипника 212°F (100°C) могут вызвать испарение масла, конденсацию и проблемы со стабильностью смазки и подшипника. В последние годы к этим проблемам добавилось увеличение количества отказов из-за электрической дуги (переменный ток высокой частоты, проходящий между ротором и рамой через подшипник) в высокочастотных приводах.

При переключении прямоугольного напряжения возникают гармоники в мегагерцовом диапазоне, которые невозможно изолировать обычными изоляционными материалами. Традиционные меры, применяемые производителями подшипников (изоляция поверхности кольца подшипника керамическим слоем толщиной около 100 микрон), уже не работают. Эти методы эффективны только при работе с постоянным током (DC) или низкочастотным переменным током (AC).

Предполагается, что в этих высокочастотных токах остается так много энергии, что заземление происходит через смазочную пленку, а элемент и смазка повреждаются. Это влияние не принимается во внимание сегодняшними традиционными расчетами и, в свою очередь, привело к повреждению подшипников в современных машинах, использующих методы преобразования частоты для регулирования скорости.

Распознавание влияния окружающей среды (f1 и f3) и выбор надлежащих сокращенных факторов жизненного цикла может способствовать преодолению нагрузки на элемент, вызванной дугой. Владелец оборудования может помочь компенсировать влияние загрязнения и температурных загрязняющих веществ, которые будут присутствовать в этих обстоятельствах, уменьшив количество и увеличив частоту пополнения смазочного материала в процессе эксплуатации.

Отказы подшипников

Наблюдается сильное окисление и затвердевание смазки, происходящее после высокотемпературного воздействия, возникающего при электрическом заземлении (дуговом разряде). Потеря качества смазки приводит к смешанному трению и износу в зоне контакта роликов.

Тот факт, что подшипник не может быть легко повторно смазан снаружи, играет решающую роль в возможном отказе элемента. Вновь добавленная смазка не может вытеснить уже присутствующую затвердевшую и окисленную смазку и делает замену смазки невозможной. При нормальных интервалах повторного смазывания отказ подшипника неизбежен (рис. 3–8).


Рис. 3. Стареющая смазка между клеткой и IR


Рис. 4. Повторное смазывание невозможно


Рисунок 5. Смешанная смазка в CRB


Рис. 6. Повреждение из-за плохой смазки


Рисунок 7. Вода снаружи


Рис. 8. Проблема конденсации воды

Как уже упоминалось, наблюдается заметное увеличение повреждения электрическим током из-за высокочастотного переменного тока (AC). Типичны матовые коричневые дорожки качения и дорожки на шарике или роликах (рис. 9).по 14).


Рис. 9. CRB-Внешнее кольцо коричневого цвета


Рисунок 10. Шар с коричневыми полосами


Рис. 11. Повреждение радиального шарикоподшипника


Рис. 12. СЭМ-изображение, показывающее Race


Рис. 13. Поврежденный ток CRB


Рисунок 14. Поврежденная смазка

Как показано на рисунке 12, фактический кратер от электрического тока небольшой и может быть идентифицирован только с помощью РЭМ. Сегодня типичный диаметр почти круглых кратеров, присутствующих при наиболее распространенных отказах, составляет от 1 до 4 мкм.

Практический опыт показывает, что опорные поверхности повреждаются даже при минимальной нагрузке. Эти дуги также приводят к катастрофическому старению смазки в зоне контакта качения, вызванному окислением, что резко сокращает срок службы смазки (рис. 13 и 14).

В точках контакта роликов испорченная смазка больше не может эффективно смазывать, в то время как внешние части подшипника сохраняют свежую смазку.

Это состояние иногда характеризуется как недостаточная смазка, что может быть точным описанием вторичного механизма отказа, но не обязательно является основной причиной отказа. Корректирующие меры обычно не увенчались успехом, если фактическая причина не была правильно определена и устранена.


Рис. 15. Типовой рисунок канавки
(Предоставлено MH Electric Motor and Control Corp.)

Последняя стадия характеризуется типичным рифлением в результате подшипниковых токов (рис. 15).


Рис. 16. DuoMax 160

Смазка подшипников качения консистентной смазкой является обычной практикой для долговременной смазки. Для достижения ожидаемого срока службы необходимо уделять особое внимание правильному расчету срока службы смазки. Устранение ряда влияющих факторов может значительно сократить срок службы смазки. Современные электродвигатели с частотными преобразователями для регулирования скорости вращения имеют повышенные проблемы из-за подшипниковых токов в точках контакта качения.

Эти токи приводят к повреждению поверхностей подшипников качения микрократерами после термического разрушения смазки в точках контакта с металлом небольшими электрическими дугами. Это конкретное сокращение срока службы смазки еще не учитывалось при обычных расчетах срока службы смазки. Отказы из-за подшипниковых токов продолжают увеличиваться в связи с частым использованием современной приводной техники для управления двигателем.

Преобразователи IGBT

Биполярные транзисторы с изолированным затвором (IGBT) появились в 1990-х годах. Они представляли собой огромное улучшение технологии привода, увеличивая частоту переключения до 20 кГц, уменьшая гармоники и слышимый шум.

Однако в последнее время стало очевидно, что эти усовершенствования были куплены дорогой ценой: технология IGBT возродила проблемы с подшипниками из-за электрического разряда, создав новую проблему для производителей электродвигателей.

Механизм переключения инвертора также создает так называемое синфазное напряжение.

Из-за высоких частот переключения IGBT-инверторов становятся существенными паразитные емкости между обмоткой статора и статором, а также между обмоткой ротора и статора.

Об авторе

Советы по смазке подшипников и возможные ошибки

Смазка подшипников жизненно важна для сохранения рабочих характеристик и срока службы подшипников качения. Смазка помогает разделить движущиеся части относительно друг друга, такие как ролики и дорожки качения или шарики, для предотвращения износа и трения.

Несмотря на то, что некоторые считают смазку подшипников грязным вспомогательным процессом, которому следуют со времен индустриальной эры, на самом деле это важнейшая технология, которая может улучшить или разрушить ваши производственные процессы на вашем предприятии.

На самом деле отсутствие надлежащей смазки подшипников обычно считается одной из наиболее распространенных причин отказа подшипников.

Смазка подшипников выполняет несколько функций, обеспечивающих наилучшую работу подшипников, например:

  • Защита поверхностей от коррозии
  • Герметизация от загрязнений
  • Создание барьера между контактом качения и поверхностями скольжения 
  • Обеспечение теплопередачи

Как эксперты по смазочным материалам, которым доверяют основные производители, мы знаем, что найти подходящую смазку для вашего подшипника может быть нелегко. Благодаря нашему более чем 30-летнему опыту и знаниям мы можем взять на себя часть этого бремени и помочь вам в оптимизации смазочных материалов.

Поскольку мы стремимся продлить срок службы ваших подшипников, мы составили это подробное руководство, чтобы обсудить различные типы смазочных материалов, наилучшие методы смазки подшипников, правильную процедуру применения и ошибки, которые вы можете обеспечить долгий срок службы ваших подшипников.

Но сначала мы начнем с различных типов смазки подшипников, представленных на рынке…

Разделы

  • 1Различные типы смазки
  • 2Наилучшие методы смазки подшипников
  • 3 Советы по правильной процедуре нанесения
  • 43 ошибки, которые могут разрушить ваши отношения
ГЛАВА 1:

Различные типы смазочных материалов

На рынке представлены два типа смазочных материалов: масло и консистентная смазка.

Выбор правильной смазки для вашего применения зависит от нескольких факторов.

К ним относятся «тип машины, тип подшипника, размер, температура, условия нагрузки, диапазон скоростей, условия эксплуатации (такие как вибрация и горизонтальное/вертикальное расположение вала) и внешняя среда», согласно журналу Efficient Plant Magazine.

Источник: American Roller Bearing Company

В большинстве случаев лучше всего начинать с выбора правильной смазки, следуя рекомендациям производителя подшипника.

Однако есть и другие рекомендации, которым следует следовать при выборе правильного для задания.

Как правило, подшипники работают с наименьшими температурами и с наименьшим трением, когда используется минимальное количество самой легкой смазки, которая будет удерживать поверхности подшипников друг от друга, согласно knowyourparts.com.

Хорошим примером этого является «метод разбрызгивания», при котором масло распределяется затеканием или погружением.

Часто более тяжелая смазка используется в трех уникальных случаях:

  1. Требуется по условиям эксплуатации
  2. Требуется специально в приложении
  3. Слишком большая нагрузка для текущей смазки

Масляная смазка: 

Масляная смазка обычно используется для высокоскоростных или высокотемпературных применений, требующих отвода тепла от рабочих поверхностей подшипников. Масла состоят либо из натурального минерального масла (с присадками, предотвращающими окисление и ржавчину), либо из синтетического масла.

При этом обычно используются четыре типа масел: нефтяные масла, диэфиры, силиконы и фторуглероды.

Масляные системы для вышеуказанных типов масел включают:

  • Ванна
  • Всплеск
  • Воздух/масляный туман
  • Джет

Основой синтетических масел обычно являются полиальфаолефины (ПАО), полиалкиленгликоли (ПАГ), сложные эфиры и силиконы для холодных условий и условий с низким крутящим моментом.

Несмотря на то, что эти два типа масел похожи, они обладают уникальными свойствами и не могут быть взаимозаменяемы. Минеральные масла более распространены, чем синтетические.

Вязкость является одной из ключевых характеристик при выборе подходящего масла для подшипника. Хорошее эмпирическое правило: жидкости с низкой вязкостью тоньше, чем вода, а жидкости с высокой вязкостью гуще, как патока.

По словам Майка Сантора из Bearing Tips,

«Инженеры выражают сопротивление жидкости течению в универсальных секундах Сейболта (SUS) и сантистоксах (мм2/сек, сСт). Разница в вязкости при разных температурах называется индексом вязкости (VI)».

Вязкость масла коррелирует с толщиной пленки, которую оно может создать, что имеет решающее значение для разделения частей качения и скольжения подшипника.

Консистентная смазка Смазка: 

В то время как в некоторых подшипниках в качестве смазки используется масло, консистентная смазка является предпочтительной смазкой для 80–90 процентов подшипников.

Почему консистентная смазка часто является лучшим вариантом смазки для большего количества вариантов?

Смазка прилипает к поверхностям подшипников лучше, чем масло, имеет более длительный срок службы и с меньшей вероятностью стекает или выбрасывается из вращающихся частей. [источник]

Он также может быть предварительно смазан, что устраняет необходимость во внешней системе смазки и означает меньшее техническое обслуживание в будущем.

Консистентные смазки состоят из трех компонентов: присадок (обычно ингибиторов коррозии), базового масла и загустителя. При выборе консистентной смазки важно помнить, что вязкость базового масла (называемая «вязкостью базового масла») определяет характер образования смазочной пленки.

По данным Национального института смазочных материалов (NLGI), класс консистенции смазки указывает, как смазка будет течь и распределяться внутри подшипника.

Важно помнить, что независимо от того, какой тип смазки вы выберете, со временем она естественным образом потеряет свои смазывающие свойства и, если ее не обслуживать должным образом с помощью опытной службы смазки, в конечном итоге приведет к выходу из строя подшипника.

Если вы хотите узнать больше о том, что такое поломка подшипника, и о ее различных типах, с которыми вы можете столкнуться на своем предприятии, загрузите наше руководство «Причины поломки подшипников и необходимые меры профилактики».

Все еще не знаете, с чего начать? Вот удобная таблица, в которой более подробно описаны распространенные типы смазочных материалов для подшипников и их применение.

Теперь давайте перейдем к лучшим методам смазки подшипников, о которых вам нужно помнить…

Дополнительные ресурсы:

-videos-internet/

ГЛАВА 2

Лучшие методы смазки подшипников

Фото предоставлено: «Headset-Grease and ball Bearings» компании schmilblick, лицензировано согласно CC BY 2.0

Как мы уже говорили, смазка подшипников играет решающую роль в сроке службы и производительности подшипников, поскольку она помогает отделить движущиеся части, чтобы минимизировать трение и предотвратить износ.

Помимо обеспечения этого разделения, он также рассеивает тепло трения (что предотвращает перегрев и порчу смазки) и защищает от других известных проблем, таких как коррозия, влажность и другие загрязнения.

Смазочные материалы должны иметь следующие идеальные характеристики для поддержки подшипника качения:

  • Обеспечивает защиту от влаги и загрязнений
  • Совместимость с соседними компонентами
  • Неагрессивный
  • Стабильная конструкция для обеспечения длительного срока службы подшипника
  • Сохраняет стабильную вязкость в диапазоне температур
  • Хорошая прочность пленки, чтобы выдерживать нагрузки

Для нанесения масел и смазок можно использовать множество различных методов, однако существует четыре стандартных метода, которые обычно используются для подачи смазки в подшипники.

  1. Капельная смазка маслом
  2. Смазка разбрызгиванием масла
  3. Смазка с принудительной подачей масла
  4. Консистентная смазка

Смазка обычно наносится с помощью специального оборудования, которое наносит смазку между шариками, что заставляет ее внутри и вокруг поверхности контакта шарика или дорожки качения ролика. В отличие от масла, смазка обычно обозначается в процентах (например, 30% заполнения), что представляет собой фактический объем смазки по сравнению со свободным внутренним пространством внутри подшипника. [источник]

Производитель обычно наносит масло на специальном оборудовании, однако количество добавляемого в подшипник не указывается.

Какой метод подходит для вашего приложения? Давайте выясним…

Капельное смазывание:

Проще говоря, этот метод (часто называемый системой подачи самотеком) «состоит из неплотно закрытой чаши или коллектора масла, расположенного над подшипником, который дозирует масло при установленный интервал», — сообщает Tech Transfer.

В системах, где ожидаются низкие нагрузки и скорости от низких до средних, подшипники этого типа требуют небольшого количества масла, которое наносится через равные промежутки времени.

Этот тип смазки в прошлом наносился вручную, но на самом деле он создает риски, такие как избыточное или недостаточное смазывание. Системы смазки с капельной подачей чаще используются для этих применений, чтобы подавать нужное количество масла через правильные интервалы времени.

Смазка разбрызгиванием:

При этом типе смазки подшипники разбрызгиваются маслом движущимися частями, которые регулярно погружаются в смазочное масло. Этот метод предпочтителен, когда скорость вращения недостаточна для взбивания масла.

Распространенным типом смазывания разбрызгиванием является система масляных колец. Этот тип метода снижает рабочую температуру подшипника и отлично подходит для приложений, работающих при более высоких скоростях и температурах.

Единственным его недостатком является то, что он работает только для горизонтального применения из-за динамики маслосъемного кольца.

Система принудительной подачи:

При эксплуатации оборудования при больших нагрузках и высоких скоростях необходимо защитить оборудование от высоких температур в результате фиктивного за счет подачи большого расхода масла.

В системе принудительной смазки масляный насос нагнетает масло, которое затем направляется на вращающийся компонент. Примеры систем, в которых используется этот метод, включают питательные насосы котлов, компрессоры, редукторы и турбогенераторы.

Консистентная смазка:

Поскольку консистентные смазки являются полутвердыми смазочными материалами, они часто используются, когда смазка должна оставаться на одном месте или прилипать к детали, и являются идеальными, поскольку требуют меньше обслуживания.

Они также используются, когда к компоненту нельзя получить доступ во время работы или его нельзя часто смазывать.

Смазки не так легко вытекают, как масла, однако, поскольку они настолько вязкие, их нельзя непрерывно прокачивать через оборудование для отвода тепла.

Теперь, когда мы узнали больше о различных методах нанесения смазки, давайте углубимся в правильную процедуру нанесения.

ГЛАВА 3

Советы по правильной процедуре применения

Ни для кого не секрет, что правильная смазка оказывает наибольшее влияние на срок службы подшипника. На самом деле, общепринятое в отрасли понимание того, что не менее 80% отказов подшипников связаны со смазкой и загрязнением. [источник]

Надлежащая смазка помогает бороться с распространенными проблемами подшипников, такими как коррозия, износ и перегрев.

Итак, как узнать, правильно ли вы смазываете подшипники?

Для каждого применения требуется правильный выбор смазки (как мы обсуждали выше), правильное ее применение и соблюдение графика смазки, соответствующего потребностям оборудования.

Хотя это несложный процесс, он требует соблюдения определенных правил, которые не выполняются должным образом. В результате на многих заводах и объектах используются неадекватные программы смазки, из-за чего подшипники выходят из строя.

Ниже приведены некоторые типичные причины неисправности, связанные со смазкой.

Потеря смазки — если подшипник не смазывается через надлежащие интервалы времени и не смазывается надлежащим количеством смазки, это может привести к потере смазки и смазки, что приведет к отказу оборудования.

Неподходящая смазка — Убедитесь, что вы используете правильную смазку для вашего применения. Согласно данным Machinery Lubrication, в некоторых областях применения требуется смазка, не предназначенная для экстремального давления (не EP), или смазка общего назначения (GP), в то время как для других может потребоваться смазка с экстремальным давлением (EP).

Избыточная смазка — Это происходит, когда избыток смазки вызывает чрезмерное повышение температуры в подшипнике, что обычно происходит только в подшипниках с открытым торцом.

Разрушение смазки — Общие типы разложения смазки включают отделение масла от основы смазки, химическое разрушение из-за перегрева и затвердевание смазки.

Несовместимость консистентной смазки — Очень важно использовать одну и ту же смазку (или совместимую замену) на протяжении всего срока службы подшипника. Не все смазки совместимы друг с другом.

Правильная процедура нанесения так же важна, как и выбор правильной смазки. Наиболее важными областями применения смазки являются очистка подшипников, качество заполнения смазкой и приработка подшипников.

Этап 1: Очистка

На этом первом этапе необходимо удалить все имеющиеся масла, антикоррозионные покрытия и смазки. Эта часть важна, потому что срок службы и надежность становятся более важными и помогают устранить любые потенциальные несовместимости.

Компании-производители подшипников обычно поставляют изделия с предварительно нанесенным масляным покрытием или антикоррозионным покрытием. Если покрытие имеет микротолщину и совместимо с выбранным вами смазочным материалом, предварительная очистка может не потребоваться в соответствии с Руководством по надлежащим процедурам смазки подшипников от Klüber Lubrication.

Обязательно используйте безостаточный растворитель при очистке поверхностей подшипников, чтобы обеспечить оптимальные условия смазки.

Шаг 2: Обеспечение надлежащего количества наполнения

Надлежащее количество наполнения гарантирует, что все контактные поверхности имеют подходящую смазочную пленку. Этот шаг имеет решающее значение, потому что, как мы уже обсуждали, избыточная и недостаточная смазка отрицательно сказываются на сроке службы подшипника.

Чрезмерная смазка может увеличить внутреннее трение, что приведет к дополнительному выделению тепла, в то время как недостаточная смазка может привести к износу или нехватке смазки из-за недостаточного смазывания контактных поверхностей.

Правильное количество смазочного материала можно определить по рабочим скоростям, конструкции, объему резервуара и степени герметизации или экранирования при применении.

Шаг 3: Определение свободного пространства подшипника

Надлежащее количество смазки подшипника, смазываемого консистентной смазкой, часто указывается в процентах от свободного пространства подшипника, поэтому важно правильно определить свободное пространство.

Ниже приведены некоторые методы определения свободного пространства подшипника…

Опубликованные технические данные — Производители, возможно, сделали всю работу за вас, определив свободное место для ряда своих «каталожных подшипников». Это означает, что простое электронное письмо или телефонный звонок в инженерный отдел производителя могут дать вам необходимые ответы.

Опубликованные справочные таблицы — Производители также разработали обобщенные диаграммы свободного пространства подшипника, которые помогут вам рассчитать свободное пространство конкретного подшипника на основе внутреннего диаметра и конструктивной конфигурации.

Эти диаграммы являются отличными справочными материалами, однако важно помнить, что информация о свободном пространстве, представленная в них, является обобщенной.

Эмпирическое уравнение — Этот метод является одним из наиболее сложных для определения качества заполнения, и также стоит отметить, что этот метод является именно таковым, «эмпирическим правилом» с ограниченной точностью.

Этот метод лучше всего подходит для приложений, которые работают с низкой скоростью или имеют доступные полости для смазки, поскольку они не требуют чрезвычайно точного измерения свободного пространства.

Вот уравнение: 

Этап 4. Процедуры обкатки

Надлежащая процедура обкатки имеет решающее значение для работы подшипника и смазочного материала в тех случаях, когда решающее значение имеют высокие скорости, объемы заполнения и определенные предварительные нагрузки. .

В соответствии с Руководством по надлежащим процедурам смазки подшипников от Klüber Lubrication , если все сделано правильно, процедура обкатки:

  • Удаляет избыток смазки, обнаруженный в системе
  • Расположите смазочную пленку на каждой контактной поверхности
  • Создать манжету для смазки, которая подает масло в зону контакта
  • Установить низкую равновесную рабочую температуру
  • Обеспечить герметичную смазку на весь срок службы

Если не выполнить процедуру приработки, произойдет избыточная смазка и/или чрезмерная рабочая температура.

Теперь, когда мы рассмотрели передовые методы смазывания подшипников, давайте выясним, какие три ошибки при смазке могут привести к выходу из строя ваших подшипников.

ГЛАВА 4

3 Ошибки, которые могут повредить ваши подшипники

Ошибки при смазке могут иметь далеко идущие последствия. Общие побочные эффекты неправильной смазки включают перегрев или чрезмерный износ, что может привести к выходу из строя подшипника. А это может привести к непредвиденным простоям и упущенной выгоде на вашем объекте.

Источник: SDT Ultrasound Solutions

 

Посмотрим правде в глаза, никто не хочет иметь с этим дело. Итак, как вы можете гарантировать, что это не произойдет в вашем учреждении?

Вот три распространенные ошибки при смазке, которые вы можете совершить, и как их избежать (или исправить), чтобы вы могли быть уверены в здоровье вашего подшипника.

Ошибка 1: Излишняя или недостаточная смазка

Добавление слишком большого или слишком малого количества смазки — одна из самых распространенных ошибок в нашей отрасли.

Как мы уже говорили, слишком много смазки накапливается и в конечном итоге вызывает повышенное трение и давление, что вызывает перегрев. Слишком малое количество смазки оказывает такой же эффект сокращения срока службы подшипников.

Как определить, что вы добавили нужное количество смазки?

Начните с контроля уровня трения подшипника с помощью ультразвука по мере нанесения новой смазки, по очереди (и, конечно, медленно). [источник]

Вы захотите послушать подшипник и попытаться измерить падение трения, когда смазка начнет поступать в подшипник. Следите за тем, как уровень децибел приближается к минимальному значению и стабилизируется, добавляйте одиночные выстрелы, и если уровень децибел начнет хоть немного увеличиваться, вы можете остановиться, потому что ваша работа сделана.

Ошибка 2. Смазка по расписанию, а не по условию

Смазка необходима в подшипниках по одной причине — для предотвращения и уменьшения трения. Если смазка хорошо выполняет свою работу, вам не нужно продолжать ее менять или добавлять.

Вы можете отслеживать, измерять и отслеживать уровни трения с помощью ультразвука вместо повторной смазки подшипника по расписанию, чтобы вы могли точно знать, когда настало подходящее время для смазки, согласно Maint World.

Ошибка 3: использование ультразвукового прибора, предназначенного только для прослушивания причинить вам боль в долгосрочной перспективе.

Только звуковая обратная связь не работает, потому что она слишком субъективна, чтобы делать какие-либо реальные выводы, поскольку два человека не слышат одно и то же. Также слишком сложно вспомнить, как мог звучать подшипник несколько месяцев назад, основываясь только на памяти.

Простое решение здесь — использовать ультразвук с цифровым замером в децибелах. Вы можете использовать устройство с несколькими индикаторами состояния, если оно у вас есть.

Оптимизация смазки подшипников и избежание этих трех ошибок дает очевидные преимущества. Это продлит срок службы ваших подшипников, сократит потребление смазки и сократит время, затрачиваемое на повторное смазывание, когда в этом нет необходимости.

Заключение

Смазка подшипников, хотя и является простой концепцией, может иметь свои сложности и требует соблюдения конкретных рекомендаций для обеспечения правильного выполнения.

Со временем смазка в подшипнике естественным образом теряет свои смазывающие свойства, но по-прежнему крайне важно обращать пристальное внимание на качество исходной смазки и предпринимать описанные выше шаги, чтобы сохранить подшипник и его предполагаемый срок службы. .

Это обеспечит бесперебойную работу вашего предприятия и предотвратит незапланированные простои, упущенную выгоду и снижение эффективности работы из-за выхода из строя подшипника из-за проблем со смазкой.