Типы клапанов гидравлических: Обзорная статья на тему — клапанная аппаратура: типы клапанов и принцип действия

Обзорная статья на тему — клапанная аппаратура: типы клапанов и принцип действия

Если вы хотите сказать спасибо автору, просто нажмите кнопку: 


   

Каждая гидросистема помимо насоса, исполнительных гидродвигателей и распределительной гидроаппаратуры имеет в своем составе клапаны. Количество клапанов в зависимости от сложности системы варьируется от единиц до нескольких десятков, а в некоторых случаях их количество измеряется сотнями.


В данной статье будут описаны основные типы клапанов, наиболее часто встречающиеся в гидросистемах:

  • Предохранительные клапаны

  • Редукционные клапаны

  • Обратные клапаны

  • Управляемые обратные клапаны

  • Тормозные (контрбалансные) клапаны.

Основной принцип действия клапана


Принцип действия простейшего клапана заключается в уравновешивании силы создаваемой давлением рабочей жидкости на площади седла и силы упругости пружины. Седло клапана — это конструктивный элемент, образующий рабочую кромку, обеспечивающую герметичное прилегание запорного элемента. Простейший клапан имеет конструкцию, изображенную на рисунке 1а. В корпусе 1 имеется рабочая кромка, к которой плотно прилегает поджатый пружиной 3 запорный элемент 2. Сила, создаваемая пружиной 3, определяет разницу давлений между полостями P и T при которой происходит открытие клапана. На рисунке 1б показан клапан в открытом состоянии, где стрелками показано направление движения рабочей жидкости. Двухступенчатые клапаны в зависимости от назначения могут иметь различную конструкцию и будут рассмотрены ниже.

Классификация


По виду запорного элемента различают несколько типов клапанов. Наиболее часто встречаются: сферический (шариковый), конический, плоский (см. рисунок 2). Благодаря высоким герметизирующим свойствам и технологичности наибольшее распространение получили сферические (шариковые) и конические клапаны.



По способу монтажа различают клапаны картриджные, трубного, стыкового (фланцевого) и модульного монтажа. Картриджные клапаны дополнительно подразделяют на вворачиваемые (резьбовые) и закладные. Существует еще одна категория – бескорпусные клапаны. Бескорпусные клапаны это, как правило, набор составляющих элементов клапана предназначенный для установки в клапанную плиту или корпус.


Картриджные и бескорпусные клапаны могут быть использованы в гидросистеме только в составе клапанного блока или установленными в индивидуальный корпус. На рис. 3, на примере клапанного блока картриджные и бескорпусные клапаны показаны до установки и в установленном состоянии.


Клапаны трубного монтажа имеют резьбовые порты для присоединения гидравлических линий. Клапаны стыкового монтажа обычно предназначены для установки непосредственно на гидроагрегат (например, на гидроцилиндр или гидромотор) и фиксируются группой резьбовых крепежных элементов. Клапаны трубного и стыкового монтажа показаны на рис. 4. и рис. 5.






К подгруппе клапанов стыкового монтажа относится модульная гидроаппаратура СЕТОР (см. рис. 6). В зависимости от максимально пропускаемого потока рабочей жидкости аппаратура разбита на несколько групп: CETOP 02, 03, 05, 07 и 08. Перечень компонентов СЕТОР включает в себя целый ряд гидрокомпонентов: это и всевозможные клапаны, и гидрораспределители, и аппаратура управления расходом, и даже фильтрация рабочей жидкости. Все элементы монтируются группами или по отдельности на монтажные плиты. Пример сборки гидросистемы на элементной базе CETOP 03 показан на рис.7.



Предохранительные клапаны


Предохранительный клапан относится к клапанам регулирования давления с кратковременным срабатыванием. Он устанавливается в гидросистему для ограничения максимально возможного давления в линии. Каждая гидросистема имеет предохранительный клапан в линии высокого давления выходящей из насоса. Предохранительные клапаны могут быть установлены в линиях, давление в которых не должно превышать заданной величины. Например, в линии питания гидродвигателей устанавливают предохранительные клапаны для ограничения в них давления и, как следствие, ограничения максимального создаваемого двигателем усилия. Кроме указанных выше у предохранительных клапанов имеется множество типовых применений.


Согласно ГОСТ 2.781-96 предохранительные клапаны на схемах обозначаются как показано на рисунке 8.



В схемных решениях предохранительный клапан может быть применен для обеспечения минимально заданного уровня давления или подпора в линии гидросистемы. При таком применении предохранительные клапаны принято называть подпорными, что отражает характер их работы.


Схематично устройство предохранительного клапана прямого действия изображено на рисунке. 9. В корпусе 1 установлен конический запорный элемент 2, прижимаемый к седлу пружиной 3. Настройка пружины осуществляется регулировочным винтом 4. Контргайка 5 служит для фиксации регулировочного положения винта. Подвижная опора пружины 8 уплотнена по зазору с корпусом 1. Замкнутый объем 6 и зазор 7 являются демпфером колебаний запорного элемента клапана. Клапаны прямого действия имеют высокую скорость срабатывания, что является их основным достоинством. К недостаткам можно отнести нестабильную работу и склонность к автоколебаниям. Также при увеличении рабочих расходов сильно увеличивается и размер клапана. 


Подобных недостатков лишены клапаны непрямого действия, которые часто называют двухступенчатыми или сервоклапанами. Устройство такого клапана показано на рисунке 10. К седлу корпуса 1 пружиной 9 прижат основной запорный элемент 2. В запорном элементе имеется дроссельное отверстие 3. Рабочую полость от линии слива Т отделяет пилотный клапан с запорным элементом 4, поджатый к седлу пружиной 5. Механизм регулировки поджатия пружины состоит из регулировочного винта 7 с контргайкой 10, опоры 6 и уплотнения 8.




Работа клапана происходит следующим образом: при давлении в линии Р ниже настройки срабатывания клапана, уровни давлений в рабочей полости и линии Р одинаковы, основной запорный элемент прижат к седлу пружиной 9. Начальные положения элементов клапана показаны на рисунке 10. При достижении давлением значения настройки пилотного клапана, последний открывается, и рабочая жидкость проходя через дроссельное отверстие 3 устремляется в линию Т. При прохождении рабочей жидкости через дроссельное отверстие создается перепад давлений между линией P и рабочей полостью. Этот перепад давлений воздействует на запорный элемент 2 и преодолевая усилие пружины 9, смещается, что приводит к открытию основного клапана.

Редукционные клапаны


Редукционный клапан относится к клапанам регулирования давления. Он устанавливается в гидросистему для поддержания давления в линии на более низком уровне, чем в основной линии. Иными словами, можно сказать, что редукционный клапан поддерживает давление на постоянном уровне «после себя», имея на входе более высокий уровень давления. Самым распространённым применением является поддержание давления в линии управления распределителями. Редукционные клапаны могут быть установлены в линиях питания гидродвигателей для ограничения в них давления и, как следствие, ограничения создаваемого двигателем усилия.


Согласно ГОСТ 2.781-96 редукционные клапаны на схемах обозначаются как показано на рисунке 11.


 


Схематично устройство редукционного клапана прямого действия изображено на рисунке 12. В корпусе 1 установлен конический запорный элемент 2, прижимаемый к корпусу пружиной 3. При давлении в линии А ниже настройки редукционного клапана рабочая жидкость беспрепятственно перетекает в линию А. После того, как усилие, создаваемое давлением на запорном элементе в линии А превысит усилие, создаваемое пружиной, запорный элемент смещаясь влево, перекроет ток рабочей жидкости из линии Р в А. При этом происходит дросселирование (понижение давления) жидкости на рабочей кромке, вызывая снижение давления в линии А, уравновешивая клапан в некотором положении. Для стабильного поддержания давления редукционным клапаном, полость пружины должна сообщаться с баком. Если в полости пружины создавать некоторое давление, то значение давления, поддерживаемое в линии А, будет увеличиваться прямопропорционально давлению в полости пружины. В этом случае речь идет о редукционном клапане с внешним управлением, а давление в полости пружины называют давлением управления.


Редукционные клапаны седельного типа (см. рис.12) обладают высокой скоростью срабатывания, что может привести к частым и сильным колебаниям давления. Для снижения колебаний давления применяют клапаны золотникового типа. Они обеспечивают более плавную характеристику без забросов давления, но не герметичны и имеют перетечку рабочей жидкости по зазору золотника. Редукционный клапан золотникового типа в рабочем положении показан на рисунке 13.


Для сохранения герметичности и обеспечения плавной характеристики применяются редукционные клапаны непрямого (двуступенчатого) действия. Устройство такого клапана показано на рисунке 14. К корпусу 1 пружиной 9 прижат основной запорный элемент 2. В запорном элементе имеется дроссельное отверстие 3. Рабочую полость А от линии слива Т отделяет пилотный клапан с запорным элементом 4, поджатым к седлу пружиной 5. Механизм регулировки поджатия пружины состоит из регулировочного винта 7 с контргайкой 10, опоры 6 и уплотнения 8.








Работа клапана происходит следующим образом: при давлении в линии А ниже настройки срабатывания клапана, уровни давлений в рабочей полости и линии А одинаковы, основной запорный элемент прижат к корпусу пружиной 9. При достижении давлением значения настройки пилотного клапана, последний открывается, и рабочая жидкость проходя через дроссельное отверстие 3 устремляется в линию Т. При этом создается перепад давлений между линией А и рабочей полостью, воздействующий на запорный элемент 2 и преодолевающий усилие пружины 9, смещает запорный элемент 2 вверх, что приводит к уменьшению проходного сечения (седло-клапан), снижению давления в линии А и уравновешиванию клапана в некотором положении, обеспечивающем заданное давление в линии А.


При понижении давления в линии А клапан под воздействием пружины опускается, увеличивая проходное сечение седло-клапан, что приводит к увеличению давления в линии А и уравновешиванию клапана в новом положении.


Еще одной разновидностью редукционного клапана можно считать редукционно-предохранительный или трехходовой редукционный клапан. Его обозначение на принципиальных гидравлических схемах показано на рис. 15.


Принцип работы редукционно-предохранительного клапана показан на рисунке 16. В корпусе 1 установлены основные элементы: пружина 3 и золотник 2. Пока давление в линии А ниже чем в питающей линии Р клапан 2 находится в правом положении и свободно пропускает жидкость из линии Р в линию А. (см. рис. 16А). При повышении давления в линии Р выше настройки пружины 3, золотник 2 смещается влево и начинает дросселировать жидкость прикрывая окно линии P (см. рис. 16Б), вплоть до полного закрытия (рис. 16В). Если при полном закрытии давление в линии А продолжает расти, то золотник смещается еще левее, приоткрывает окно линии Т и начинает сбрасывать жидкость из линии А в слив (см. рис 16Г)

Обратные клапаны


Обратные клапаны относятся к клапанам управления расходом. Основным их назначением является пропускание потока рабочей жидкости в прямом и блокирование в обратном направлениях. Конструктивно обратные клапаны схожи с предохранительными, но не имеют механизма регулировки сжатия пружины, а часто и самой пружины.


Согласно ГОСТ 2.781-96 обратные клапаны на схемах обозначаются как показано на рис. 17.



Рис. 17


Устройство простейшего обратного клапана соответствует показанному на рис.1а. Где жидкость имеет возможность проходить от линии P к линии Т, преодолев сопротивление пружины, которое эквивалентно значению из диапазона от 0,02 до 1МПа. При этом в обратном направлении жидкость пройти не может. Также распространены конструкции обратных клапанов без пружины.


Часто при проектировании гидросистемы появляется необходимость в применении обратного клапана способного пропускать поток жидкости в обратном направлении по внешнему сигналу управления. В таких случаях речь заходит об управляемых обратных клапанах.


Управляемые обратные клапаны называются гидрозамками и в соответствии с ГОСТ 2.781-96, имеют обозначения, показанные на рисунке 18:



Рис. 18


Схематично устройство гидрозамка изображено на рисунке 19. В корпусе 1 установлены управляющий поршень 4 и конический запорный элемент 2, прижимаемый к корпусу пружиной 3. Рабочим является закрытое положение клапана, при котором рабочая жидкость заперта в линии C2 (см. рис. 19А). Для принудительного открытия клапана давление подаётся в линию V1-C1. После того, как усилие на поршне 4, создаваемое давлением в полости V1-C1, превысит усилие на запорном элементе 2, создаваемое давлением в линии C2 и пружиной 3, поршень 4 переместится вправо и, смещая запорный элемент 2, откроет доступ жидкости из линии C2 в линию V2 (см. рис. 19Б). При подъеме нагрузки (см. рис. 19В) линия V2-C2 свободно пропускает жидкость к гидродвигателю (гидроцилиндру).


При определенных условиях в момент открытия гидрозамков в гидросистеме могут возникать ударные нагрузки, вызванные резким падением давления. Такие нагрузки отрицательно сказываются на большинстве элементов гидросистемы и снижают их ресурс. Для борьбы с этим явлением в гидрозамок встраивают декомпрессор 5 (см. рис. 20). Принцип работы замка с декомпрессором отличается от обычного тем, что при смещении управляющего поршня 4 первым открывается клапан декомпрессора 5. Смещаясь декомпрессор 5 создает небольшую перетечку жидкости из линии С2 в линию V2 и тем самым снижает в нагруженной линии давление. После этого происходит открытие основного клапана 2 и сброс жидкости из С2 в порт V2. Таким образом мгновенного соединения линии, находящейся под высоким давлением, с линией слива удается избежать.





Рис. 20


Одним из важнейших параметров гидрозамков является соотношение площадей седла основного клапана и управляющего поршня. Фактически соотношение определяет во сколько раз, запертое в полости C2 давление, может превышать давление в полости управления V1-C1 при сохранении работоспособности замка. Для замков без декомпрессора значение соотношения определяется как показано на рисунке 21А. Обычно значение соотношения лежит в диапазоне от 1:3 до 1:7. Для замков с декомпрессором определение значения соотношения показано на рис. 21Б. Значения соотношений для гидрозамков с декомпрессором может достигать значения 1:20 и более.



Рис. 21


Широкое распространение получили сдвоенные (двухсторонние) гидрозамки, предназначенные для фиксирования гидродвигателя в заданном положении независимо от направления приложенных к гидродвигателю усилий.


Согласно ГОСТ 2.781-96 двухсторонние гидрозамки на схемах обозначаются, как показано на рис 22.



Рис. 22


Устройство и принцип работы односторонних и сдвоенных (двухсторонних) гидрозамков аналогичны. В закрытом состоянии к седлам в корпусе 1 пружинами 5 и 6 прижаты запорные элементы 3 и 4 (см. рис. 23А). Управляющий поршень 2 в зависимости от наличия давления в линиях V1 и V2 смещается и открывает один из запорных элементов 3 или 4 (см. рис. 23Б)




Рис. 23


При проектировании гидравлических систем, содержащих гидрозамки нужно учитывать несколько условий:


·        В закрытом состоянии для надежного удержания нагрузки линии гидрозамков, ведущие к гидрораспределителю, должны быть разгружены в слив (см. рис. 24) Пренебрежение этим правилом ведет к неполному запиранию магистралей и «сползанию» нагрузки.


·        Для обеспечения безопасности при удержании нагрузки гидрозамки рекомендуется устанавливать, как можно ближе к исполнительному гидродвигателю или непосредственно на него.


·        При совпадении направления нагрузки на исполнительный орган гидродвигателя с направлением его движения (попутная нагрузка), гидрозамок может работать некорректно, постоянно закрываясь и открываясь. Этот режим работы приводит к возникновению ударных нагрузок в гидросистеме и преждевременному выходу из строя ее компонентов. В подобных случаях необходимо вместо гидрозамков применять тормозные клапаны.


Типовые схемы включения односторонних и двухсторонних гидрозамков показаны на рисунке 24.



При проектировании гидравлических систем, содержащих гидрозамки, необходимо учитывать, что для их корректной работы в режиме удержания нагрузки требуется, чтобы порты V1 и V2 были открыты в сливную линию. Это требование обычно обеспечивается установкой гидрораспределителя с золотником, линии А и В которого в нейтральном положении соединены с сливной линией. Примеры подключения показаны на рисунке 24

Тормозные клапаны


Тормозной клапан относится к клапанам регулирования давления. В технической литературе данный вид клапанов часто называют уравновешивающими или контрбалансными (counterbalance). Основное применение эти клапаны находят в системах где на гидродвигателях требуется длительное удержание нагрузки и возможно возникновение нагрузки, совпадающей по направлению с движением исполнительного органа гидродвигателя (попутной нагрузки). По количеству контролируемых линий гидродвигателя тормозные клапаны бывают односторонние и двухсторонние.


На схемах тормозные клапаны обозначаются как показано на рисунке 25.



Рис. 25


Далее будет рассмотрен принцип работы тормозных клапанов на примере работы гидроцилиндра.


Односторонний тормозной клапан.      


На рисунке 26 показано устройство одностороннего тормозного клапана, находящегося в состоянии удержания нагрузки. Клапан состоит из корпуса 10, в котором установлены: дроссель 11, клапан 4, седло 3 с пружиной 2, опорная шайба 1, обойма 7, упор 5, пружина 6 и регулировочный винт 8 с контргайкой 9. Гидравлический цилиндр удерживает нагрузку поршневой полостью. В отличие от гидравлического замка, который удерживает нагрузку независимо от ее величины, тормозной клапан откроется и сработает как предохранительный при величине давления определяемой настройкой поджатия пружины 6. Поэтому, для гарантированного удержания нагрузки такими клапанами давление их настройки выбирают выше максимального на величину от 20% до 50%.



Рис. 26


На рисунке 27 показан тормозной клапан, находящийся в состоянии подъема груза. Для подъема груза гидроцилиндром в порт V2 подается рабочая жидкость. При этом седло 3 смещается влево, преодолевая усилие, создаваемое пружиной 2. Рабочая жидкость из штоковой полости гидроцилиндра свободно уходит в сливную линию. Таким образом осуществляется подъем груза гидроцилиндром. При последующем соединении порта V2 со сливной линией тормозной клапан переходит в режим удержания груза. Дроссель 11 выполняет роль демпфера, который обеспечивает относительно плавное перемещение клапана 4.



Рис. 27


На рисунке 28 показан тормозной клапан в режиме работы с попутной нагрузкой. В начальный момент времени тормозной клапан, запертой им поршневой полостью удерживает груз. Поскольку поршневая полость заперта, то при подаче рабочей жидкости в штоковую полость, в ней создается давление, которое через дроссель 11 воздействует на клапан 4. Под воздействием давления в штоковой полости, клапан 4 преодолевает усилие пружины 6 и смещаясь вправо приоткрывает в слив линию С2, соединенную с поршневой полостью цилиндра. Шток гидроцилиндра приходит в движение. В режиме компенсации попутной нагрузки клапан 4 находится в некотором равновесном состоянии, при котором скорость движения штока гидроцилиндра строго определяется расходом рабочей жидкости, поступающим в штоковую полость. При отклонении клапана от равновесного состояния происходит следующее:


·        При слишком большом открытии клапана 4 расход жидкости С2-V2. превышает величину расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Происходит падение давления в штоковой полости и зазор между клапаном 4 и седлом 3 уменьшается. При этом расход С2-V2 снижается до величины соответствующей величине расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Клапан приходит в равновесное состояние.


·        При слишком малом открытии клапана 4 расход жидкости С2-V2 ниже величины расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Происходит увеличение давления в штоковой полости и зазор между клапаном 4 и седлом 3 увеличивается. При этом расход С2-V2 увеличивается до величины соответствующей величине расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Клапан приходит в равновесное состояние.



 Рис. 28

Двухсторонний тормозной клапан.        


В отличие от одностороннего тормозного клапана двухсторонний клапан используется в системах где есть необходимость удерживать гидравлические двигатели под знакопеременной нагрузкой и периодическим воздействием попутной нагрузки при движении как в прямом так и обратном направлениях.


На рисунке 29 показан двухсторонний тормозной клапан в состоянии удержания нагрузки. Его устройство идентично устройству одностороннего тормозного клапана. В его состав входят корпус 20, в котором установлены: разделительный клапан 10, клапан 4(14), седло 3(13) с пружиной 2(12), опорная шайба 1(11), обойма 7(17), упор 5(15), пружина 6(16) и регулировочный винт 8(18) с гайкой 9(19). Гидравлический цилиндр на рисунке 29 может удерживать нагрузку в поршневой или штоковой полости.



Рис. 29


На рисунке 30 двухсторонний тормозной клапан показан в состоянии подъема груза. При подаче рабочей жидкости в порт V2 седло 13, преодолев сопротивление пружины 11, сместится влево и жидкость поступит в порт С2 и поршневую полость гидроцилиндра. Рабочая жидкость из полости V2, проходя через канал в клапане 14, воздействует на клапан 4, смещая его влево. Разделительный клапан 10 в этот момент закрывает канал в клапане 4. При этом между клапаном 4 и седлом 3 образуется зазор, через который рабочая жидкость из штоковой полости гидроцилиндра проходит в сливную линию. Таким образом происходит подъем груза гидроцилиндром. При последующем соединении порта V2 и V1 со сливной линией, тормозной клапан переходит в режим удержания нагрузки. При восприятии нагрузки штоковой полостью гидроцилиндра работа клапана происходит аналогично.



Рис. 30


На рисунке 31 показан тормозной клапан в режиме работы с попутной нагрузкой. В начальный момент времени тормозной клапан, запертой им поршневой полостью удерживает груз. Компенсация попутной нагрузки будет проходить в плече C2-V2. Рабочая жидкость, поданная в порт V1, преодолев усилие пружины 2, смещает седло 3 вправо и через порт С1 попадает в штоковую полость гидроцилиндра. Поскольку поршневая полость заперта, то при подаче рабочей жидкости в штоковую полость, в линии V1-C1 возникает давление, которое через канал в клапане 4 проходит к торцу клапана 14 и преодолев усилие пружины 16 смещает его вправо. Разделительный клапан 10 закрывает канал в клапане 14. При этом появляется зазор между клапаном 14 и седлом 13, через который рабочая жидкость из поршневой полости уходит в сливную линию и шток гидроцилиндра движется вниз. В режиме компенсации попутной нагрузки плечом С2-V2 клапан 14 находится в некотором равновесном состоянии, при котором скорость движения штока гидроцилиндра строго определяется расходом рабочей жидкости, поступающим в штоковую полость. При отклонении клапана от равновесного состояния происходит следующее:


При слишком большом открытии клапана 14 расход жидкости С2-V2. превышает величину расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Происходит падение давления в штоковой полости и зазор между клапаном 14 и седлом 13 уменьшается. При этом расход С2-V2 снижается до величины соответствующей величине расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Клапан приходит в равновесное состояние.


При слишком малом открытии клапана 14 расход жидкости С2-V2 ниже величины расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Происходит увеличение давления в штоковой полости и зазор между клапаном 14 и седлом 13 увеличивается. При этом расход С2-V2 увеличивается до величины соответствующей величине расхода V1-C1 (с учетом соотношения рабочих площадей штоковой и поршневой полостей гидроцилиндра). Клапан приходит в равновесное состояние.


При удержании нагрузки штоковой полостью, компенсация попутной нагрузки будет проходить в плече C1-V1 и клапан 4 будет находится в равновесном состоянии. Порядок поддержания равновесного состояния аналогичен описанному.



Рис. 31


Так же как у гидрозамков, важнейшим параметром тормозных клапанов является отношение рабочей площади основного клапана к площади основного пилотного элемента. Фактически этот параметр показывает соотношение давлений в полостях V1 и C2 необходимых для преодоления усилия пружины 6. Обычно значения соотношений для тормозных клапанов лежат в диапазоне от 1:3 до 1:8. На рисунке 32 показано как определяется соотношение площадей исходя из геометрических размеров клапана.




Рис.32


При проектировании гидравлических систем, содержащих тормозные клапаны, необходимо учитывать, что для их корректной работы в режиме удержания нагрузки требуется, чтобы порты V1 и V2 были открыты в сливную линию. Это требование обычно обеспечивается установкой гидрораспределителя с золотником, линии А и В которого в нейтральном положении соединены с сливной линией. Примеры подключения показаны на рисунке 33


Внимание! Данная статья авторская. При копировании ее с сайта обязательно указывать источник!


С Уважением,


Начальник конструкторского отдела


Лебедев М.К.


Тел.: (495) 225-61-00 доб. 234


E-mail: [email protected]

Клапаны гидравлические (самоучитель по чтению гидросхем)


<<< Чтение гидросхем – самоучитель


Один и тот же клапан может служить нескольким целям в зависимости от своего расположения в гидросхеме, а также от расположения выхода и входа пилотной линии, схемы реализации слива утечек (дренажа) – зависимой или независимой.

Предохранительные клапаны

Предохранительные клапаны, как показано на рисунке выше (a, b, c), ограничивают максимальное давление в системе. Предохранительные клапаны – это нормально закрытые клапаны, которые воспринимают давление перед клапаном. Когда давление достигает установки (уставки или отсечки) клапана, клапан открывается для того, чтобы сбросить излишки жидкости (давления) к резервуар (гидробак). На рисунке выше (a) показан клапан прямого действия. Пунктирная пилотная линия указывает на то, что давление “снимается” непосредственно перед клапаном и запорный элемент клапана, непосредственно, воспринимает давление подаваемое на него.  Пружинная полость клапана напрямую соединена со вторичным портом, хотя данная функция не отображается текущими символами ISO 1219-1. Обратное давление в линии слива действует со стороны пружины и добавляет (приплюсовывает) к установленному давлению настройки своё давление. Это означает, например, что в случае давления в 10 бар в линии слива (давление подпора в линии слива), клапан откроется при давлении на 10 бар большем, чем было установлено, хотя перепад давлений через клапан не изменяется.

На рисунке выше (b) показан упрощенный символ предохранительного клапана с пилотным управлением или, по-другому, двухступенчатый клапан, а на рисунке (c) показан детализированный символ для двухступенчатого предохранительного клапана. Благодаря своей конструкции пилот предохранительного клапана может быть удалён и находиться в кабине оператора.

После неурегулированного гидронасоса обязательно должен быть установлен предохранительный клапан.

Несмотря на то, что регулируемые гидронасосы имеют компенсаторы по давлению, после них в гидроцепи желательно также устанавливать предохранительный клапан. Клапаны, стоящие после гидронасоса, обычно называются главными клапанами и защищают всю гидросистему. Также для защиты отдельных узлов (гидромоторов, гидроцилиндров) предохранительные клапаны могут устанавливаться в ответвлениях гидроцепи.

На рисунке выше (d) показан нормально открытый редукционный клапан, который используются для ограничения максимального давления приводов в ответвлениях гидролинии. Эти клапаны контролируют давление за счёт контроля давления на вторичном выходе клапана. Данная функция показывается пунктирной пилотной линией на выходе клапана. Так как давление определяется как сопротивление потоку, то регулируя расход масла (РГЖ) через клапан возможно изменять перепад давления на клапане, тем самым регулируя вторичное давление. Так как клапан “снимает” давление непосредственно на выходе, то данный клапан априори является клапаном с внешним дренажом.

На рисунке выше (е) показан символ редукционного клапана, который, помимо давления, понижает поток масла через клапан.

Клапаны разгрузки  используются с насосами постоянного объёма или в линии аккумулятора для сохранения энергии привода. Некоторые производители изготавливают клапаны с внешней разгрузкой – такой клапан показан на рисунке выше (f). В данных клапанах разгрузка осуществляется по команде пилотного давления из другой гидролинии или гидролинии оператора.

На данной гидросхеме ограничение давления происходит как от внешнего, так и от внутреннего пилотного давления. При увеличении любого пилотного давления сверх показания установленного – происходит открытие клапана:

На рисунке ниже показана типичная гидросхема с насосами высокого давления (малого объёма) и низкого давления (большого объёма). Разгрузка насоса низкого давления происходит от пилотного давления, подаваемого после обратного клапана. Для защиты линии высокого давления после закрытия обратного клапана, за насосом высокого давления устанавливается предохранительный клапан.

В данной гидросхеме клапаны S1 и S2 являются клапанами последовательности:

В начале цикла происходит подъём бура и только после достижения давления уставки клапана S2 происходит разжим струбцины – система приводится в исходное положение и теперь можно начинать рабочий цикл. При подаче напряжения на катушку произойдёт зажим струбцины и по достижению уставки давления клапана S1 начнется рабочий ход бура. Особенностью клапана последовательности является наличие независимого слива, так как со стороны слива действует противодавление, которое будет менять уставку давления при отсутствии независимого слива. Такие клапаны могут дополняться обратными клапанами для свободного движения масла в обратном направлении.

На рисунке ниже изображён клапан подпора:

Цель клапана подпора – удержание штока гидроцилиндра от свободного падения под действием силы тяжести при опускании или в промежуточном положении. Клапан настраивается приблизительно на давление 10 бар и благодаря этому шток гидроцилиндра опускается равномерно, без рывков. Недостатком этого клапана является понижение КПД гидроцилиндра, так как требуется преодолевать дополнительное противодавление клапана в 10 бар. Для исправления этого недостатка некоторые производители выпускают клапаны подпора с внешней пилотной линией.

На гидросхеме ниже при опускании штока вниз клапан полностью открывается под воздействием внешнего пилотного давления:

В случаях работы гидравлики с переменной нагрузкой, применение клапана подпора с внешней пилотной линией (клапана контрбаланса) однозначно необходимо. В случае, когда в гидроцилиндре создаётся “тянущая” нагрузка, имеется вероятность неравномерного опускания штока.

Такой режим работы, например, у стрелы автокрана, где нагрузка изменяется во время движения стрелы по вертикальной плоскости.

Клапаны контроля движения изготавливаются двух типов: тарельчатого и золотникового.

Преимуществом тарельчатого клапана перед золотниковым является меньшие внутренние утечки. В случае если большее время удержания нагрузки происходит на вытянутом штоке гидроцилиндра – должен применяться тарельчатый клапан.

Подпорный клапан необходим для установки в линию гидромотора в качестве предупреждения неконтролируемой “раскрутки” гидромотора под воздействием веса груза. Когда подача насоса меньше скорости вращения гидромотора, то есть гидромотор раскручивается под собственным весом груза, торможение производится за счёт внутренней пилотной линии. Если вращение происходит за счёт нагнетания РГЖ насосом, внешняя пилотная линия приоткрывает клапан подпора, тем самым уменьшая сопротивление линии подпора. В случае применения реверсивного гидромотора в конструкции клапана подпора необходимо наличие обратного клапана. Так как клапан подпора из-из внутренних утечек не препятствует медленному вращению гидромотора, то в некоторых конструкциях гидромотора предусмотрен внутренний тормоз.

Ещё одним видом клапана для удерживания нагрузи является гидрозамок.  Клапан свободно пропускает масло в одном направлении и жёстко запирает поток в обратном направлении. Открытие клапана в обратную сторону происходит только под воздействием пилотного давления. В отличие от клапана подпора, гидрозамок не имеет внутренних утечек, благодаря чему не происходит “сползания” груза под нагрузкой.

Гидрозамки используют в случаях необходимости удерживания статической нагрузки, а клапаны подпора требуются при динамической нагрузке.


Видео стендовых испытаний гидроаппаратуры и гидронасосов

Стендовая диагностика проп. распределителя Rexroth 4WARPEH 6.C3 B12l-20=G24K0
Стендовые испытания дренчерных клапанов Spool SV-01/T 24B ДУ 65мм
Стендовые испытания и настройка после ремонта гидронасоса Rexroth A4VSO 180 HSE

Объяснение различных типов гидравлических клапанов.


Гидравлический клапан представляет собой механическое устройство, предназначенное для управления направлением жидкости, обычно масла, в гидравлическом контуре. Имея решающее значение для любой гидравлической системы, они могут регулировать скорость двигателей и движение цилиндров.

Клапаны, обычно изготавливаемые из стали, железа или других металлов, предназначены для работы в условиях высокого давления, чтобы обеспечить постоянную эффективность и производительность гидравлических систем.

В своей основной форме гидравлический клапан работает путем открытия и закрытия, чтобы обеспечить регулируемый поток к другим компонентам. Другие клапаны предотвращают превышение максимального давления. Однако при покупке гидравлического клапана вы заметите, что это не так просто — на самом деле, выбор вариантов несколько огромен.

В этой статье мы обсудим три наиболее распространенных типа гидравлических клапанов и различные роли, которые они играют в гидравлической системе.

Гидравлический клапан Eaton Vickers

Существует множество различных гидравлических клапанов от разных производителей, разработанных в соответствии с несколькими международными стандартами. Клапаны различаются по размеру и имеют различные возможности, что делает некоторые из них более подходящими, чем другие, в зависимости от требований к производительности системы.

В некоторых системах может потребоваться только один гидравлический клапан, в других может использоваться несколько, чтобы гарантировать оптимальную эффективность. Поскольку они предлагают множество функций, тип выбранного клапана имеет решающее значение для производительности приложения.

Три наиболее распространенных типа гидравлических клапанов: направляющие регулирующие клапаны, регулирующие клапаны давления и регулирующие клапаны потока.

Направленные регулирующие клапаны

Направленные регулирующие клапаны также могут называться переключающими клапанами. Они используются для управления направлением, ускорением или скоростью привода и могут запускать, останавливать и приостанавливать поток жидкости через систему.

Классификация гидрораспределителя обозначается стандартизированной системой нумерации, которая указывает, сколько положений золотника и рабочих портов он включает. Золотники в направляющем распределительном клапане могут приводиться в действие в различных положениях и обычно скользят или вращаются внутри клапана, чтобы гидравлическая жидкость могла течь через открытые порты.

Как правило, они имеют по крайней мере два положения золотника и два рабочих порта – они известны как 2-ходовые клапаны и являются самыми простыми из ходовых регулирующих клапанов, которые будут четко обозначены как 2/2. Другой часто встречающийся направляющий клапан — это 4-ходовой (4/3), что означает четыре проходных клапана с тремя достижимыми положениями (нейтральное, выдвинутое и втянутое).

Гидравлический распределительный клапан

Клапаны регулирования давления

Функция гидравлического регулирующего клапана заключается в регулировании давления жидкости, проходящей по трубе в гидравлической системе. Это делается путем поддержания необходимого давления и поддержания его на безопасном уровне, при этом сбрасывая любое избыточное давление, которое может привести к утечке или разрыву труб.

Как правило, в любой гидравлической системе имеется клапан регулирования давления той или иной формы. Различные типы предлагают различные функции в зависимости от требований применения, например:

Клапаны сброса давления

Они используются для поддержания рабочего давления гидравлических систем в определенном диапазоне. Клапаны сброса давления ограничивают максимальное давление, открываясь при достижении максимального входного давления и направляя избыточный поток из системы обратно в резервуар.

Они играют решающую роль в предотвращении повышения давления до уровня, при котором жидкость может вытечь или трубы могут лопнуть.

Редукционные клапаны

В отличие от предохранительных клапанов, которые регулируют входное давление, редукционные клапаны регулируют выходное давление. Например, если выходное давление системы горячего водоснабжения слишком высокое, это может повлиять на расход воды и общую производительность системы.

Редукционный клапан поможет обеспечить постоянный поток воды за счет снижения давления в одной части контура до более низкого уровня, чем давление в системе, для достижения заданного значения.

Напорные клапаны с фиксированной дроссельной заслонкой

Эти типы клапанов также обеспечивают возможность регулирования давления с помощью задачи переключения, чтобы изменение положения клапана происходило внезапно, когда это необходимо, а не постепенно, как при другие клапаны давления. Их можно разделить на две категории:

  • Клапаны последовательности работают, направляя поток в другую часть гидравлического контура при достижении заданного давления.
  • Разгрузочные клапаны  направляют поток обратно в резервуар при достижении максимального давления в определенном месте контура.

секционный гидравлический клапан

Клапаны управления потоком

Гидравлические клапаны управления потоком используются для регулирования скорости в определенной части гидравлической системы для обеспечения оптимальной работы в любое время. Поддерживая скорость потока и давление жидкости, они напрямую регулируют скорость двигателей и цилиндров.

По своей конструкции клапаны управления потоком в их простейшей форме содержат отверстие, которое закрывается или открывается для увеличения или уменьшения скорости потока в зависимости от установленных вручную требований. Они постоянно контролируют любые колебания давления в системе и предотвращают поток к другим компонентам.

Наиболее распространенными типами регулирующих клапанов являются задвижки, игольчатые клапаны, мембранные клапаны, пережимные клапаны и запорные клапаны.

Таким образом, гидравлические клапаны являются важнейшим компонентом любой гидравлической системы, независимо от масштаба или цели применения. Они предназначены для эффективной работы в экстремальных условиях и при широком диапазоне температур.

Правильный выбор гидравлического клапана для вашего применения имеет решающее значение для обеспечения производительности, надежности и срока службы вашей системы. Клапаны должны иметь правильный размер и выбираться в зависимости от цели, для которой они предназначены — будь то сброс давления или регулирование потока.

Гидравлические клапаны легко заменяются в существующем контуре, но при проектировании новой гидравлической системы требуются более глубокие знания и понимание установленных ожиданий, чтобы выбрать правильный продукт. Если вам нужна помощь в выборе гидрораспределителя, мы можем помочь.

Компания Flowtech является ведущим британским дистрибьютором гидравлических компонентов и фитингов от лучших в своем классе производителей с командой технических экспертов, готовых найти для вас идеальное решение. У нас есть собственные возможности для создания или модификации существующих продуктов в соответствии с вашими требованиями. Просто свяжитесь с нами через Интернет или позвоните нам по телефону 03300022223

Наиболее распространенные типы гидравлических клапанов

На рынке гидравлики вы можете найти различные типы гидравлических клапанов от разных производителей, предназначенных для выполнения различных задач в различных областях применения. Для некоторых гидравлических приложений требуется отдельный клапан, тогда как более сложные гидравлические системы могут использовать комбинацию клапанов для выполнения своей функции. Ниже мы выделяем некоторые из наиболее часто используемых клапанов, чтобы показать, как различаются их роли.

Направленные регулирующие клапаны

Как следует из названия, направляющие регулирующие клапаны используются для направления потока жидкости через систему. Эти клапаны могут управлять запуском, остановкой, паузой и изменением направления потока рабочей среды. По этой причине их также называют переключающими клапанами.

Функция гидрораспределителя определяется количеством рабочих портов и количеством положений золотника. Распределитель имеет по крайней мере два золотниковых положения и два рабочих порта.

Наиболее распространенным гидрораспределителем является 4/3-ходовой клапан, что означает, что клапан имеет четыре рабочих отверстия и три положения золотника. Двухходовой гидрораспределитель — это простейший гидрораспределитель, который имеет два порта, называемых впускным и выпускным. 3-ходовой гидрораспределитель имеет 3 рабочих порта, называемых впускным, выпускным и выпускным. Они используются в цилиндрах одностороннего действия, а третий рабочий порт может блокировать поток всех портов.

Гидравлические клапаны регулирования давления

Клапаны регулирования давления являются наиболее распространенными клапанами для регулирования давления. К ним относятся предохранительные, редукционные, последовательные, уравновешивающие и разгрузочные клапаны. Гидравлический клапан регулирования давления играет жизненно важную роль в предотвращении утечек и разрывов труб или трубопроводов. Клапаны регулирования давления регулируют давление жидкости, проходящей через трубу или трубопровод, сбрасывая избыточное давление. Эти клапаны поддерживают давление, введенное вручную оператором.

Клапаны регулирования давления присутствуют практически в каждой гидравлической системе и помогают выполнять множество функций, от поддержания давления в системе на безопасном уровне до поддержания заданного давления в части контура.

Гидравлические клапаны управления потоком

Целью управления потоком в гидравлической системе является регулирование скорости. Клапаны управления потоком регулируют скорость привода, регулируя скорость потока. Скорость потока также определяет скорость передачи энергии при любом заданном давлении в системе. Клапаны управления потоком
используются для контроля и регулировки потока жидкости или газа через систему. Эти клапаны могут оптимизировать работу вашей гидравлической системы. Клапаны управления потоком контролируют и регулируют колебания давления в системе и предотвращают поток к компонентам системы.

Не знаете, почему выбрать клапан?

Независимо от типа клапана или области применения, PHC предлагает широкий ассортимент клапанов различных марок. Наш большой объем запасов пневматических и гидравлических продуктов гарантирует, что у нас есть клапаны, которые вам нужны, когда они вам нужны. У нас есть клапаны от лучших гидравлических брендов на рынке, включая Hawe и SMC.