Содержание
Системы смазки и охлаждения двигателей внутреннего сгорания
Система смазки служит для подачи масла к трущимся деталям двигателя с целью уменьшения потерь на трение и отвода части тепла, образующегося в процессе трения. Интенсивность смазки отдельных деталей и механизмов двигателя зависит от условий их работы. Наиболее обильная и непрерывная смазка требуется для подшипников коленчатого вала, менее обильная смазка — для цилиндрических втулок и поршней (во избежание образования нагара на днище поршня, поршневых кольцах и клапанах), для деталей механизма газораспределения и др. Непрерывная подача масла к трущимся поверхностям в современных судовых двигателях достигается путем циркуляции масла под давлением в циркуляционной масляной системе. Масляным резервуаром в этой системе может служить картер двигателя (в двигателях с мокрым картером) или специальная цистерна, расположенная вне двигателя, в двигателях с сухих картером. Судовые двигатели имеют в основном масляную систему с мокрым картером, принципиальная схема которой (совместно с системой охлаждения) представлена на рис. 56.
Рис. 56. Схема масляной и охлаждающей систем судового двигателя.
Из картера двигателя масло по трубе 9 забирается шестеренным насосом 7 под давлением 300—400 кн/м2 (3—4 кгс/см2), прокачивается через сдвоенный фильтр 2 и по трубе 1 подается в масляный холодильник 29, где охлаждается забортной водой. Перед фильтром 2 и после него установлены манометры 3, которые контролируют разность давлений масла в фильтре. Если разность показаний манометров превысит 50 кн/м2 (0,5 кгс/см2), это означает загрязнение одного из фильтров. В этом случае поток масла переключают на другой фильтр, а загрязненный очищают. При чрезмерном повышении давления масла перед фильтром срабатывает предохранительный клапан 5 и излишек масла перепускают снова во всасывающую магистраль по трубе 8.
Прокачивание масла вручную осуществляется при помощи поршневого насоса 6 ко всем трущимся узлам двигателя перед его запуском, а перекачивание масла вручную обратно во всасывающую магистраль — посредством клапанов 4 по трубе 8.
Фильтр тонкой очистки масла ставят параллельно нагнетательному трубопроводу 1. Через него по трубам 34 и 33 прокачивается только часть масла, так как фильтр тонкой очистки имеет повышенное сопротивление движению масла. Охлажденное в холодильнике 29 масло по трубопроводу 27 через редукционный клапан 30 поступает в главную распределительную магистраль 13, из которой подается к рамовым подшипникам (по трубкам 10), к моты-левым и головным подшипникам (по сверлениям в коленчатом валу и шатунах), к подшипникам распределительного вала и к шестерням его привода (по трубам 13 и 21), а также на охлаждение форсунок и поршней (по трубкам 15). Оставшееся масло идет на слив в картер двигателя, а по трубе 17 и через клапан 16 к механизму поста управления (в правую сторону) и на слив (в левую сторону). По трубе 25 масло может поступать к сервомотору реверсивного устройства, а по трубе 23 к другому двигателю в случае неисправности его масляного насоса.
Давление масла в главной распределительной магистрали контролируют при помощи манометра 28. Для автоматического контроля параметров масла в различных местах масляной системы устанавливают датчики давления и температуры, которые служат для подачи предупредительных сигналов и включения устройств автоматической остановки двигателя в случае падения давления масла (ниже допустимого) или повышения его температуры (выше допустимой).
Система охлаждения двигателей служит для подачи охлаждающей жидкости к наиболее нагретым деталям и узлам двигателя, а также для охлаждения масла и наддувочного воздуха в соответствующих холодильниках. В качестве охлаждающих жидкостей используют пресную и забортную воду и лишь для охлаждения головок поршней и форсунок быстроходных двигателей — масло.
Водяная система охлаждения может быть проточной (открытой), применяемой чаще всего в тихоходных двигателях, и замкнутой (закрытой) — для быстроходных двигателей. При проточной системе (рис. 56) охлаждение производится забортной водой, которая через открытый кингстон 40, управляемый рукояткой 37, поступает в теплый ящик забортной воды 39. Отсюда вода через сетчатый фильтр 38 забирается поршневым насосом 35 и прокачивается через масляный холодильник 29 в главную распределительную магистраль 24. Если охлаждения масла не требуется, вода поступает в эту магистраль, минуя холодильник масла, по обводной трубе 31 и через клапаны 32 и 26. Из распределительной магистрали вода подается в нижнюю часть зарубашечного пространства цилиндра и в водяную камеру выпускного коллектора (по трубкам 11), откуда по трубкам 12 вытекает, смешиваясь с водой, охлаждающей блок цилиндров. Затем по патрубкам 14 вода направляется на охлаждение крышек цилиндров, циркулирует там и по трубкам 18 отводится в общую сливную магистраль 19. По ответвлению 22 распределительной магистрали 24 вода поступает в компрессор 20 и в холодильник воздуха, а затем сливается по трубе 19.
Расход охлаждающей воды регулируют клапанами, установленными на трубках 18, а ее температуру контролируют термометрами, расположенными там же. Требуемые расход и температура воды на выходе из двигателя достигаются перепуском части горячей воды из сливного трубопровода 19 в приемный трубопровод 36.
Проточная система охлаждения является наиболее простой и не нуждается в большом количестве оборудования. Однако ее применение ограничено, так как она имеет существенный недостаток — образование отложений в виде накипи солей, песка и ила из морской воды на охлаждаемых стенках. Это ухудшает тепло-отвод от них, приводит к загрязнению водяных проходов, в результате чего повышаются тепловые напряжения и образуются трещины в нагретых деталях двигателя. С целью уменьшения слоя накипи ограничивают температуру охлаждающей воды на выходе из двигателя (не более 45—55° С) и повышают ее скорость в полостях охлаждения. Давление нагнетания воды в этом случае должно быть около 200—300 кн/м2 (2—3 кгс/см2), а ее температура на входе в двигатель — не ниже 20° С.
Замкнутая система охлаждения, принципиальная схема которой показана на рис. 57, лишена указанного недостатка, так как в этой системе охлаждение двигателя осуществляется пресной водой, циркулирующей по замкнутому кругу: расширительная цистерна 1 — термостат 8 — водяной 7 и масляный 6 холодильники — центробежный насос 5 — двигатель — цистерна 1. В свою очередь охлаждение пресной воды производится забортной водой в специальном водяном холодильнике 7, в который забортная вода поступает от на-насоса 2 через невозвратный клапан 5, и, охладив пресную воду, сливается за борт. Количество забортной воды, протекающей через холодильник, регулируют с помощью крана 4, который служит также для перепуска за борт избыточного количества воды.
Рис. 57. Схема замкнутой системы охлаждения.
Наличие в системе термостата 8 позволяет автоматически регулировать количество пресной воды. Тем самым создается возможность поддерживать постоянство температуры на выходе из двигателя (75—85° С) при различных режимах его работы и значительно сократить период прогрева двигателя при его пуске.
Несмотря на некоторое усложнение замкнутой системы охлаждения по сравнению с проточной, ее применение позволяет снизить удельный расход топлива и удлинить срок службы двигателя.
В состав оборудования масляной и охлаждающей систем входят, как было указано ранее, насосы, фильтры, сепараторы масла; масло- и водоохладители. Ниже дается описание некоторых механизмов и устройств, навешиваемых на двигатель или непосредственно обеспечивающих его работу.
Наибольшее применение для циркуляционной масляной системы низкого давления получили шестеренные насосы. Малые габариты, равномерная подача масла, продолжительный срок службы и высокая надежность работы позволяют их использовать в качестве топливоподкачивающих насосов. Эти насосы могут приводиться в действие непосредственно от двигателя (нереверсивные двигатели) или иметь самостоятельный привод от электромотора (реверсивные двигатели). В последнем случае насос будет иметь более сложное устройство.
Общий вид масляного шестеренного насоса и схема, поясняющая принцип его работы, приведены на рис. 58. К чугунному корпусу 1 при помощи шпилек крепятся с двух сторон крышки. Внутри корпуса размещена ведущая шестерня 6, закрепленная с помощью шпонки на валике 5, и ведомая шестерня 2, свободно вращающаяся на оси 3 благодаря бронзовой втулке, запрессованной в ее ступицу. Подшипниками валика 5 также являются бронзовые втулки, расположенные в крышках насоса. На конце валика закреплена приводная шестерня 4, получающая вращение через систему шестерен от коленчатого вала двигателя. Внутри корпуса расположены две пары всасывающих и нагнетательных клапанов, выполненных в виде легких заслонок, прижимаемых к гнездам слабыми пружинами.
Рис. 58. Конструкция (а) и принцип работы (б) масляного шестеренного насоса.
При направлениях вращения шестерен, указанных на рис. 58,6 стрелками, масло, поступающее через входное отверстие 1 в полость 2, будет захватываться зубьями шестерен 3 и 6, заполнять впадины между зубьями и постепенно удаляться из этой полости. Так как шестерни вращаются непрерывно, то в полости 2 образуется разрежение и сюда постоянно будет всасываться масло из маслосборника. Зазор между зубьями шестерен и стенками корпуса очень мал, поэтому шестерни, вращаясь, будут постоянно переносить находящееся во впадинах зубьев масло вдоль стенок корпуса в полость 5. При вхождении зубьев в зацепление масло будет выдавливаться и нагнетаться через выходное отверстие 4 в нагнетательную магистраль.
При изменении направлений вращения шестерен процесс всасывания и нагнетания масла идет аналогично, но в работу вступает параллельная пара клапанов (всасывающий и нагнетательный).
В случае, когда для какого-либо узла двигателя требуется повышенное давление смазки, применяют масляные плунжерные насосы, каждый из которых может иметь свой плунжер с индивидуальным регулированием подачи масла для отдельной смазываемой точки. Описание конструкции плунжерных насосов дано в гл. V.
Для обслуживания системы циркуляционной смазки судовых дизелей чаще всего используют механические фильтры, которые хорошо задерживают твердые частицы и смолистые вещества, находящиеся в загрязненном масле. В качестве фильтрующего материала в них применяют металлические сетки, сукно, войлок, бумагу и синтетические материалы.
Сдвоенный сетчатый фильтр грубой очистки (рис. 59) состоит из двух отлитых в один блок чугунных корпусов 1, в которых расположены фильтрующие патроны 2, состоящие из металлических сеток, зажатых между дисками. Каждый корпус закрывается чугунной крышкой 3, которую можно легко снять при очистке фильтра. На крышках предусмотрены краны 4 для выпуска воздуха, а в днищах корпуса — пробки 7 или краны 6 для удаления грязного масла. Трехходовой кран 5 служит для переключения потока масла с одного корпуса фильтра на другой в случае загрязнения одного из них. Неочищенное масло заполняет кольцевое пространство между стенками корпуса и фильтрующим патроном. Под давлением, создаваемым масляным насосом, оно проходит через наружные боковые отверстия в дисках, через сетки и внутренние боковые отверстия дисков поступает в центральную трубу, а из нее в отводящую верхнюю полость фильтра.
Рис. 59. Сдвоенный сетчатый фильтр грубой очистки масла: а — общий вид;
б — разрез.
Фильтры тонкой очистки масла представляют собой аналогичные конструкции, только на фильтрующий сетчатый патрон (или каркас) дополнительно навивается слой войлока, хлопчатобумажной пряжи или специальной фильтрующей бумаги, что значительно повышает сопротивление фильтра и уменьшает примерно в 10 раз его производительность. Тем не менее включение фильтра тонкой очистки параллельно масляной магистрали улучшает качество очистки масла, увеличивает срок его службы и тем самым уменьшает износ трущихся деталей двигателя.
Наряду с фильтрацией масла в судовых дизельных установках используют и такие методы очистки масла, как отстой и сепарацию. Наиболее крупные механические включения и влага отделяются в результате отстоя в запасных масляных цистернах или в специальных устройствах, называемых сепараторами.
Сепаратор — стальной цилиндрический барабан, находящийся внутри корпуса, отлитого заодно со станиной и кронштейном. Внутри барабана расположено необходимое количество стальных конусов (тарелок) с отверстиями, разделяющих внутреннюю полость барабана на множество тонких конических слоев высотой 1—2 мм. Вследствие вращения барабана возникает центробежная сила, под действием которой механические частицы и капельки воды, как наиболее тяжелые, увлекаются к периферии, а частицы очищенного масла, как более легкие, непрерывным потоком устремляются к центру барабана, откуда сливаются наружу.
Конструкция масляного холодильника, применяемого в циркуляционной масляной системе судовой дизельной установки, приведена на рис. 32. Подобную конструкцию имеет и водяной холодильник, но в отличие от масляного у него по трубкам протекает охлаждаемая пресная вода, а забортная охлаждающая вода омывает трубки снаружи.
В качестве водяных насосов в системе охлаждения двигателей применяют поршневые центробежные, крыльчатые и шестеренные насосы. Они имеют или независимый привод от электродвигателя, или приводятся в действие от коленчатого вала двигателя. Центробежные и крыльчатые насосы чаще всего используют в замкнутых системах охлаждения быстроходных и среднескоростных дизелей. Для охлаждения тихоходных судовых дизелей обычно применяют поршневые насосы с приводом от коленчатого вала двигателя.
Системы охлаждения и смазки двигателя
все марки авто мира
BMW Ford Hyundai Kia Porsche В гараже Все для авто Двигатель Интересное Ликбез Не про авто Ремонт и подготовка двигателя Техническое обслуживание автомобиля Технологические указания по уходу за основными узлами трактора Электрооборудование автомобиля
Skoda Fabia Monte Carlo Если вернуться в историю автомобилестроения, то первая Monte Carlo появилась пред изумленной публикой в далеком тридцать восьмом году двадцатого века, причем одновременно с моделью Skoda Popular Sport, что была ориентирована на спортивный стиль. Из семидесяти экземпляров, вышедших тогда «в свет», подавляющее …
Автомобиль ŠKODA
Устройство и работа системы водяного охлаждения
7 марта 2011г.
Вода, нагретая в рубашке 1 охлаждения блока цилиндров и головки блока, поступает в радиатор 2, где она растекается по тонким трубкам и отдает им свою теплоту. Схема системы охлаждения двигателя ГАЗ-51 Схема системы охлаждения двигателя ГАЗ-51: 1 — рубашка охлаждения; 2 — радиатор; 3 — вентилятор; 4 — водяной насос; 5 — ремень; 6 —…
Жалюзи
7 марта 2011г.
Жалюзи (металлические створки), установленные перед радиатором, позволяют водителю регулировать поток воздуха, проходящий через радиатор. При прогреве двигателя и движении в холодное время жалюзи прикрывают, чтобы обеспечить наиболее выгодную температуру охлаждающей жидкости. Температуру воды в системе охлаждения контролируют по электротепловому термометру. Он состоит из датчика, установленного в головке блока цилиндров и указателя, расположенного на щитке приборов….
Пробка радиатора
7 марта 2011г.
Пробка радиатора закрывается герметично, что уменьшает потери воды от испарения или расплескивания. Паровой клапан 1 предохраняет систему, и особенно радиатор, от разрыва и выпучивания: он открывается, когда вода закипает и давление в системе достигает 1,25 кгс/см2 (125 кн/м2). Воздушный клапан 2 предотвращает смятие радиатора при охлаждении (конденсации паров воды). При разрежении 0,8 кгс/см2 (80 кн/м2)…
Техническое обслуживание системы охлаждения
7 марта 2011г.
Ежедневно перед выездом открывают пробку радиатора и проверяют уровень воды в системе охлаждения. При недостаточном уровне ее доливают. Путем осмотра соединений шлангов с патрубками и спускных краников, а также пола под автомобилем убеждаются, что вода не подтекает. То же самое проделывают после пуска и прогрева двигателя до начала движения. Подтекания устраняют. При ТО-1 смазывают солидолом…
Система смазки
7 марта 2011г.
В систему смазки входят маслоприемник 3, насос 5, фильтры 15 и 12, масляный радиатор 17 и манометр. Все они соединены между собой и трущимися деталями двигателя трубопроводами и каналами. Система смазки двигателя ГАЗ-51 Система смазки двигателя ГАЗ-51: а — общая схема; б — схема подачи масла на кулачки и толкатели; в — схема работы масляного…
Фильтр тонкой очистки, редукционный и перепускной клапан
7 марта 2011г.
Фильтр тонкой очистки включен в систему смазки параллельно и состоит из корпуса 6, в который устанавливают фильтрующий элемент (пакет) 8. В нем удерживаются механические примеси размером до 0,001 мм и загустевшие частицы масла. Очищенное масло сливается в поддон. Загрязненный фильтрующий элемент заменяют новым. Фильтр тонкой очистки двигателя ГАЗ-51 Фильтр тонкой очистки двигателя ГАЗ-51: а —…
Предохранительный клапан
7 марта 2011г.
Предохранительный клапан пропускает масло в радиатор, когда давление в системе превышает 1 кгс/см2 (100 кн/м2). Во время работы двигателя через зазоры между цилиндрами и поршнями в картер проникают отработавшие газы и пары бензина, ухудшающие качество масла. Поэтому на современных двигателях устраивают систему вентиляции картера. У двигателя ГАЗ-51 от клапанной коробки к воздушному фильтру 1 отходит…
Техническое обслуживание системы смазки
7 марта 2011г.
Ежедневно проверяют систему смазки и доливают масло, контролируют ее герметичность и очищают пластины фильтра грубой очистки, два-три раза повернув его рукоятку. Во время работы двигателя постоянно следят за давлением масла по манометру. При внезапном падении давления немедленно останавливают двигатель, выясняют и устраняют причину. При ТО-1 проверяют и, если необходимо, подтягивают крепления приборов системы смазки на…
Технические характеристики систем охлаждения и смазки автомобильных двигателей
7 марта 2011г.
Модель двигателя Параметры Емкость системы охлаждения, л Емкость системы смазки, л Сорт применяемого масла Число секций масляного насоса Наличие масляного радиатора MeM3-966A — 2,8 Летом — АС-10 или Дп-11, зимой — АС-8 или Дп-8 1 Нет МеМЗ-966М — 2,8 При температурах выше минус 5°С — АС-10, выше минус 10°С — АС-8, выше минус 15°С —…
Лабораторно-практические работы (15 — 17)
7 марта 2011г.
Работа 15 Изучение системы охлаждения: Найдите на двигателе все приборы системы. Начертите схему системы, обозначьте все ее части и приборы, укажите их назначение. Цветными карандашами отметьте путь воды при открытом и закрытом основном клапане термостата. Разберите и соберите насос и вентилятор, ознакомьтесь с устройством их деталей. В отчете перечислите эти детали в порядке разборки, инструмент…
курсов PDH онлайн. PDH для профессиональных инженеров. ПДХ Инжиниринг.
«Мне нравится широта ваших курсов HVAC; не только экологические курсы или курсы по энергосбережению
.»
Рассел Бейли, ЧП
Нью-Йорк
«Это укрепило мои текущие знания и научило меня нескольким новым вещам, кроме того
познакомив меня с новыми источниками
информации».
Стивен Дедак, ЧП
Нью-Джерси
«Материал был очень информативным и организованным. Я многому научился, и они
очень быстро отвечали на вопросы.
Это было на высшем уровне. Буду использовать
снова. Спасибо».
Блэр Хейуорд, P.E.0003 «Веб-сайт прост в использовании. Хорошо организован. Я действительно буду пользоваться вашими услугами снова.
Я передам название вашей компании
другим сотрудникам.»
Рой Пфлейдерер, ЧП
Нью-Йорк
«Справочный материал был превосходным, и курс был очень информативным, особенно потому, что я думал, что уже знаком
с деталями Канзас
Авария в City Hyatt.»
Майкл Морган, ЧП
Техас
«Мне очень нравится ваша бизнес-модель. Мне нравится, что я могу просмотреть текст перед покупкой. Я нашел курс
информативным и полезным
в своей работе. » 4
«У вас отличный выбор курсов и статей очень информативный. Вы
— лучшее, что я нашел».
«Я считаю, что такой подход позволяет работающему инженеру легко заработать PDH
материала». «Спасибо, что разрешили мне просмотреть неправильные ответы. На самом деле
человек учится большему
на неудачах». Pennsylvania
«Курс был хорошо составлен, и использование тематических исследований является эффективным
метод обучения.» 04
«Я очень впечатлен тем, как вы представляете курсы; т. е. позволяя
студент должен просмотреть курс
материалы перед оплатой и
получением теста. 004
Вирджиния
«Спасибо, что предлагаете все эти замечательные курсы. Я, конечно, многому научился и
получил огромное удовольствие».
«Я очень доволен предлагаемыми курсами, качеством содержания материалов и простотой поиска
онлайн-курсов
. »
Уильям Валериоти, ЧП
Техас
«Этот материал в значительной степени оправдал мои ожидания. Курс был прост для понимания. Фотографии в основном давали хорошее представление о
обсуждаемых темах.»
Майкл Райан, ЧП
Пенсильвания
«Именно то, что я искал. Нужен 1 балл по этике, и я нашел его здесь.»
Джеральд Нотт, П.Е.
Нью-Джерси
«Это был мой первый онлайн-опыт получения необходимых кредитов PDH. Это было
информативно, выгодно и экономично.
Я настоятельно рекомендую это
всем инженерам.»
«Я ценю, что вопросы относятся к «реальному миру» и имеют отношение к моей практике. , и
не основаны на каком-то неясном разделе
законов, которые не применяются
до 9000 4 «нормальная» практика».
Марк Каноник, ЧП
Нью-Йорк
«Большой опыт! Я многому научился, чтобы вернуться к своему медицинскому устройству
организации».
Иван Харлан, ЧП
Теннесси
«Материал курса имеет хорошее содержание, не слишком математический, с хорошим акцентом на практическое применение технологий».
Юджин Бойл, ЧП
Калифорния
«Это был очень приятный опыт. до
Использование Многие Спасибо.»
Патрисия Адамс, ЧП
Канзас
«Отличный способ добиться соответствия непрерывному обучению физкультуры в рамках временных ограничений лицензиата».
Джозеф Фриссора, ЧП
Нью-Джерси
«Должен признаться, я действительно многому научился. Это помогает распечатать тест во время просмотра текстового материала. I
также оценили просмотр предоставлены
фактические случаи».
Жаклин Брукс, ЧП
Флорида
«Документ Общие ошибки ADA в проектировании помещений очень полезен. Тест
потребовал исследований в документе
, но 9 0003 ответов были
легкодоступными».
Гарольд Катлер, ЧП
Массачусетс
«Это было эффективное использование моего времени. Спасибо за разнообразие выбора
в дорожной инженерии, который мне нужен
для выполнения требований сертификации
PTOE.»
Джозеф Гилрой, ЧП
Иллинойс
«Очень удобный и доступный способ заработать CEU для моих требований PG в штате Делавэр. 2 «Узнал много нового о защитном заземлении. До сих пор все курсы, которые я посещал, были отличными.
Надеюсь увидеть больше 40%
курсы со скидкой.» 002 Нью-Йорк
«Только что сдал экзамен по радиологическим стандартам и с нетерпением жду возможности сдать дополнительные
курсы. Процесс прост и
намного эффективнее, чем
необходимость путешествовать.»0004
Айдахо
«Услуги, предоставляемые CEDengineering, очень полезны для профессионалов
инженеров для получения единиц PDH
любой время. Очень удобно.»
Пол Абелла, ЧП
Аризона
«Пока все было отлично! Поскольку я постоянно работаю матерью двоих детей, у меня не так много
времени, чтобы исследовать, куда
получить мои кредиты от.»
Кристен Фаррелл, ЧП
Висконсин
900 02 «Это было очень информативно и поучительно. Легко для понимания с иллюстрациями
и графиками; определенно облегчает
усвоение всех
теорий.»
Виктор Окампо, P.Eng.
Альберта, Канада
«Хороший обзор принципов полупроводников.
на метро
на работу .»
Клиффорд Гринблатт, ЧП
Мэриленд
«Просто найти интересные курсы, скачать документы и получить
викторина. Я бы очень порекомендовал бы
вам всем PE нуждающимся
единицы CE.» 9000 5
Марк Хардкасл, ЧП
Миссури
«Очень хороший выбор тем во многих областях техники».0004
«Я заново узнал то, что забыл. Я также рад помочь финансово
по ваш рекламный адрес электронной почты который
сниженная цена
на 40%. »
Conrado Casem, P.E.
Теннесси
«Отличный курс по разумной цене. Буду пользоваться вашими услугами в будущем.»
Чарльз Флейшер, П.Е.
Нью -Йорк
«Это был хороший тест и на самом деле проверил, что я прочитал профессиональную этику
Коды и Нью -Мексико
».
Брун Гильберт, Ч.П.
Калифорния
«Мне очень понравились занятия. Они стоили времени и усилий.»
Дэвид Рейнольдс, ЧП
Канзас
«Очень доволен качеством тестовых документов. Воспользуюсь CEDengineerng
, когда потребуются дополнительные
9000 3 сертификация».
Томас Каппеллин, ЧП
Иллинойс
«У меня истек срок действия курса, но вы все равно выполнили обязательство и поставили
мне то, за что я заплатил — много
ценю!» Оклахома
«CEDengineering предлагает удобные, экономичные и актуальные курсы
для инженера». по разумной цене, а материал был кратким и
хорошо устроено. 0005
«Вопросы соответствуют урокам, а материал урока
хороший справочный материал
для дизайна под дерево.»
Bryan Adams, P.E. «Отлично, и я смог получить полезные рекомендации с помощью простого телефонного звонка».
Роберт Велнер, ЧП
Нью-Йорк
«У меня был большой опыт прохождения курса «Строительство прибрежных районов – Проектирование
Строительство и
очень рекомендую.»
Денис Солано, ЧП
Флорида
«Очень понятный, хорошо организованный веб-сайт. Материалы курса этики штата Нью-Джерси были очень
хорошо подготовлено.»
Юджин Брэкбилл, ЧП
Коннектикут 900 04
«Очень хорошее впечатление. Мне нравится возможность загружать учебные материалы по адресу
, просматривать где угодно и
, когда угодно».
Колорадо
«Отлично! Сохраняйте широкий выбор тем на выбор».
Уильям Бараттино, ЧП
Вирджиния
«Процесс прямой, никакой чепухи. Хороший опыт.»
Тайрон Бааш, ЧП
Иллинойс
«Вопросы на экзамене были наводящими и демонстрировали понимание
материала. Тщательный
и полный.»
Майкл Тобин, Ч.П. 3 «Это мой второй курс, и мне понравилось то, что курс предложил мне, что
поможет в моя линия
работы. 2 «Очень быстрая и простая навигация. Я обязательно воспользуюсь этим сайтом снова.»
Анджела Уотсон, ЧП
Монтана
«Простота в исполнении. Никакой путаницы при подходе к сдаче теста или записи сертификата.»
Кеннет Пейдж, ЧП
Мэриленд
«Это был отличный источник информации о нагревании воды с помощью солнечной энергии.
Луан Мане, ЧП
Conneticut
«Мне нравится подход, позволяющий зарегистрироваться и иметь возможность читать материалы в автономном режиме, а затем
вернуться, чтобы пройти тест.»
Алекс Млсна, ЧП
Индиана
«Я оценил количество информации, предоставленной для класса. Я знаю
это вся информация, которую я могу
использовать в реальных жизненных ситуациях.
Южная Дакота
курс.» 0002 Нью-Джерси
«Веб-сайт прост в использовании, вы можете скачать материал для изучения, затем вернуться
и пройти тест. Очень
удобно и на моем 9 0005
собственный график .»
Майкл Гладд, ЧП
Грузия
«Спасибо за хорошие курсы на протяжении многих лет.»
Деннис Фундзак, ЧП
Огайо
«Очень легко зарегистрироваться, получить доступ к курсу, пройти тест и распечатать сертификат PDH
. Спасибо за создание
900 03 процесс прост.»
Фред Шайбе, ЧП
Висконсин
«Положительный опыт. Быстро нашел курс, который соответствует моим потребностям, и закончил
PDH за один час за
один час.»
Стив Торкилдсон, Ч.П. 03 «Мне понравилось, что можно загрузить документы для проверки содержания
и пригодности до
наличие для оплаты
материалов. »
Richard Wymelenberg, P.E. 002 Мэриленд
«Это хорошее пособие по ЭЭ для инженеров, не являющихся электриками.»
Дуглас Стаффорд, ЧП
Техас
«Всегда есть место для улучшения, но я не могу придумать ничего в вашем
процессе, который нуждается в
улучшении.»
Томас Сталкап, ЧП
Арканзас
«Мне очень нравится удобство прохождения онлайн-викторины и немедленного получения сертификата
.»
Марлен Делани, ЧП
Иллинойс
«Обучающие модули CEDengineering — это очень удобный способ доступа к информации по
многим различным техническим областям снаружи
собственная специализация без
необходимость путешествовать. 05
Системы смазки и охлаждения авиационных двигателей
Основная цель смазочного материала — уменьшить трение между движущимися частями. Моторная смазка также используется для охлаждения двигателя, герметизации и амортизации движущихся частей, очистки внутренней части двигателя и защиты от коррозии. Поскольку двигателям требуется смазка, которая может свободно циркулировать, жидкие смазки (такие как масла) используются наиболее широко. в авиационных двигателях
Основной целью системы смазки поршневого двигателя является подача масла к внутренним компонентам двигателя. Наиболее распространенными способами распределения масла являются смазка под давлением, разбрызгиванием и разбрызгиванием. Чтобы обеспечить адекватную смазку, поршневые двигатели используют комбинацию смазки под давлением и смазки разбрызгиванием. Однако в более крупных двигателях адекватная циркуляция масла может быть достигнута только за счет использования смазки под давлением, разбрызгиванием и распылением.
Система смазки газотурбинного двигателя подает масло к внутренним движущимся частям для уменьшения трения и нагрева. В большинстве случаев для смазки всех необходимых компонентов газотурбинного двигателя используется давление. В отличие от поршневых двигателей, движущиеся части которых могут разбрызгивать масло вокруг двигателя, движущиеся части газотурбинного двигателя просто вращаются на подшипниках. Поскольку турбинные двигатели работают при гораздо более высоких температурах, чем их поршневые аналоги, система смазки должна отводить большее количество тепла от смазываемых компонентов. Для этого масло обычно циркулирует через газотурбинный двигатель с высокой скоростью потока.
Авиационные двигатели преобразуют тепловую энергию в механическую. Однако при этом только около одной трети выделяемого тепла используется для тяги. Остальные две трети тратятся впустую и должны быть удалены из двигателя. Таким образом, системы охлаждения предназначены для удаления неиспользованной тепловой энергии, образующейся при сгорании, чтобы двигатель мог работать с максимальной эффективностью.
Примерно 30 процентов тепла, выделяемого двигателем внутреннего сгорания, преобразуется в полезную работу, а от 40 до 45 процентов выбрасывается через выхлопные газы. Остальные 25-30 процентов поглощаются масляной и металлической массой двигателя. Именно это тепло отводится системой охлаждения самолета. Без охлаждения производительность двигателя снижается из-за уменьшения объемного КПД. Кроме того, чрезмерное тепло сокращает срок службы деталей двигателя и снижает смазывающие свойства масла. Двумя наиболее распространенными методами охлаждения двигателя являются прямое воздушное охлаждение и жидкостное охлаждение.
Как и поршневые двигатели, турбинные двигатели преобразуют тепловую энергию в работу. Однако непрерывный процесс сгорания в газотурбинном двигателе производит больше тепла, поэтому большая часть охлаждающего воздуха проходит через внутреннюю часть газотурбинного двигателя. В противном случае внутренняя температура двигателя может подняться выше 4000 градусов по Фаренгейту.