Поршневой двигатель внутреннего сгорания: ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ • Большая российская энциклопедия

История и причины появления поршневых двигателей внутреннего сгорания

Первые поршневые двигатели внутреннего сгорания, получившие довольно широкое распространение в шестидесятых годах XIX века, работали на светильном газе. Их конструктором был Э.Ленуар, двигатели работали без предварительного сжатия рабочей смеси. Появившиеся вслед за ними двигатели, построенные немецким изобретателем Н. Отто в 1867-1872 гг., также работали на светильном газе, были четырехтактными, имели предварительное сжатие рабочей смеси и искровое зажигание. Теоретические основы рабочих процессов этих двигателей были разработаны значительно раньше появления реальных машин французскими учеными С. Карно (1721 г.) и Бо-де Роша (1854 г.).

 С появлением дизельных двигателей (кстати, впервые электростанции Energo (Франция) стали использовать данный тип оборудования), экономично работающих на тяжелом нефтяном топливе, и бензиновых двигателей, газ как топливо был практически полностью вытеснен жидкими нефтяными продуктами. Своим успехом последние обязаны высокой концентрации энергии в единице объема, простоте перевозки и хранения. Газовые двигатели продолжали применять только на крупных металлургических предприятиях, где они работали на местном доменном, коксовом или угольном газах.

 Однако по основным техническим показателям, характеризующим эффективность использования топлива в двигателе, жидкие нефтяные топлива уступают газам. Так, при применении газового топлива в 1,5–2 раза уменьшается износ основных деталей цилиндро-поршневой группы, существенно снижается токсичность выпускных газов, увеличивается срок службы и уменьшается расход смазки, а также снижаются расходы на топливо. Поэтому, как только добыча и производство природного газа и сжиженных бутано-пропановых смесей достигли большого объема, применение газовых двигателей, выполненных к тому же на новом, более высоком техническом уровне, стало технически и экономически оправданным.

 Основные факторы, которые обусловили возрождение газовых двигателей, сводятся к следующему:

  • бурное развитие газовой промышленности;

  • технико-экономическое и экологическое преимущества газа как топлива;

  • технический прогресс газовых двигателей, обеспечивающий полное использование выгодных свойств газа как топлива для двигателей.


Коэффициент полезного действия (КПД) газовых двигателей практически равен КПД дизелей такого же класса (обратите внимание, что этими показателями не могут похвастаться дизельные генераторы). Как правило, газовые двигатели строят на базе дизелей, с которыми они конструктивно и технологически хорошо унифицируются. Именно этим объясняется то, что большинство фирм, выпускающих дизели, предлагают потребителю их газовые модификации.

Двигатели, работающие на природном газе, широко используют для привода электрогенераторов, насосов, компрессоров. Их единичная мощность достигает десятков мегаватт, а электростанций с газовыми двигателями — сотен мегаватт.

 Сжиженные газы применяют для двигателей малой и средней мощности, предназначенных, главным образом, для установки на тракторы, бурильные установки, автобусы и легковые автомобили. Кроме того, сжиженные газы применяют для отопления жилых домов, теплиц и бытовых установок.

Основными требованиями, предъявляемыми к газовым двигателям и агрегатам на их базе, являются надежность, оптимальный режим работы, ориентированный на получение максимального технического эффекта (в частности, высокого КПД), оптимальный объем автоматизации, простота обслуживания, ремонтопригодность и, возможно, низкая стоимость.

Аксиальные двигатели внутреннего сгорания / Хабр

Аксиальный ДВС Duke Engine

Мы привыкли к классическому дизайну двигателей внутреннего сгорания, который, по сути, существует уже целый век. Быстрое сгорание горючей смеси внутри цилиндра приводит к увеличению давления, которое толкает поршень. Тот, в свою очередь, через шатун и кривошип крутит вал.

Классический ДВС

Если мы хотим сделать двигатель помощнее, в первую очередь нужно увеличивать объём камеры сгорания. Увеличивая диаметр, мы увеличиваем вес поршней, что отрицательно сказывается на результате. Увеличивая длину, мы удлиняем и шатун, и увеличиваем весь двигатель в целом. Или же можно добавить цилиндров — что, естественно, также увеличивает результирующий объём двигателя.

С такими проблемами столкнулись инженеры ДВС для первых самолётов. Они, в конце концов, пришли к красивой схеме «звездообразного» двигателя, где поршни и цилиндры расположены по кругу относительно вала через равные углы. Такая система хорошо охлаждается потоком воздуха, но очень уж она габаритная. Поэтому поиски решений продолжались.

В 1911 году Macomber Rotary Engine Company из Лос-Анджелеса представила первый из аксиальных (осевых) ДВС. Их ещё называют «бочковыми», двигателями с качающейся (или косой) шайбой. Оригинальная схема позволяет разместить поршни и цилиндры вокруг основного вала и параллельно ему. Вращение вала происходит за счёт качающейся шайбы, на которую поочерёдно давят шатуны поршней.


У двигателя Макомбера было 7 цилиндров. Изготовитель утверждал, что двигатель был способен работать на скоростях от 150 до 1500 об/мин. При этом на 1000 об/мин он выдавал 50 л.с. Будучи изготовлен из доступных в то время материалов, он весил 100 кг и имел размеры 710×480 мм. Такой двигатель был установлен в самолёт авиатора-первопроходца Чарльза Фрэнсиса Уолша «Серебряный дротик Уолша».

Не остались в стороне и советские инженеры. В 1916-м году появился двигатель конструкции А.  А. Микулина и Б. С. Стечкина, а в 1924 г — двигатель Старостина. Об этих двигателях знают, пожалуй, только любители истории авиации. Известно, что детальные испытания, проведенные в 1924 г, выявили повышенные потери на трение и большие нагрузки на отдельные элементы таких двигателей.

Двигатель Старостина из музея авиации в Монино

Гениальный и слегка безумный инженер, изобретатель, конструктор и бизнесмен Джон Захария Делореан мечтал построить новую автомобильную империю в пику существующим, и сделать совершенно уникальный «автомобиль мечты». Все мы знаем машину DMC-12, которую называют просто DeLorean. Она не только стала звездой экрана в фильме «Назад в будущее», но и отличалась уникальными решениями во всём — начиная от алюминиевого кузова на плексигласовом каркасе и заканчивая дверями «крылья чайки». К сожалению, на фоне экономического кризиса производство машины не оправдало себя. А затем Делореан долго судился по подложному делу о наркотиках.

Но мало кто знает, что Делореан хотел дополнить уникальный внешний вид машины ещё и уникальным мотором — среди найденных после его смерти чертежей были и чертежи аксиального ДВС. Судя по его письмам, он задумал такой двигатель ещё в 1954 году, а всерьёз принялся за разработку в 1979-м. В двигателе Делореана было три поршня, и они располагались равносторонним треугольником вокруг вала. Но каждый поршень был двусторонним — каждый из концов поршня должен был работать в своём цилиндре.

Чертёж из тетради Делореана

По каким-то причинам рождение двигателя не состоялось — возможно, потому, что разработка автомобиля с нуля вышло достаточно сложным предприятием. На DMC-12 устанавливали 2,8-литровый двигатель V6 совместной разработки Peugeot, Renault и Volvo мощностью 130 л. с. Пытливый читатель может изучить сканы чертежей и заметок Делореана на этой странице.

Экзотический вариант аксиального двигателя — «двигатель Требента»

Тем не менее, такие двигатели не получили широкого распространения — в большой авиации постепенно состоялся переход на турбореактивные двигатели, а в автомобилях по сию пору используется схема, в которой вал перпендикулярен цилиндрам. Интересно только, почему такая схема не прижилась в мотоциклах, где компактность пришлась бы как раз кстати. По-видимому, они не смогли предложить какой-либо существенной выгоды по сравнению с привычным нам дизайном. Сейчас такие двигатели существуют, но устанавливаются в основном в торпедах — благодаря тому, как хорошо они вписываются в цилиндр.

Вариант под названием «Цилиндрический энергетический модуль» с двусторонними поршнями. Перпендикулярные штоки в поршнях описывают синусоиду, двигаясь по волнистой поверхности

Главная отличительная черта аксиального ДВС — компактность. Кроме того, в его возможности входит изменение степени сжатия (объёма камеры сгорания) просто путём изменения угла наклона шайбы. Шайба качается на валу благодаря сферическому подшипнику.

Однако новозеландская компания Duke Engines в 2013 году представила свой современный вариант аксиального ДВС. В их агрегате пять цилиндров, но всего лишь три форсунки для впрыска топлива и — ни одного клапана. Также интересной особенностью двигателя является тот факт, что вал и шайба вращаются в противоположных направлениях.

Внутри двигателя вращаются не только шайба и вал, но и набор цилиндров с поршнями. Благодаря этому удалось избавиться от системы клапанов — движущийся цилиндр в момент зажигания просто проходит мимо отверстия, куда впрыскивается топливо и где стоит свеча зажигания. На стадии выпуска цилиндр проходит мимо выпускного отверстия для газов.

Благодаря такой системе количество необходимых свечей и форсунок получается меньшим, чем количество цилиндров. А на один оборот приходится в сумме столько же рабочих ходов поршня, как у 6-цилиндрового двигателя обычного дизайна. При этом вес аксиального двигателя на 30% меньше.

Кроме того, инженеры из Duke Engines утверждают, что и степень сжатия их двигателя превосходит обычные аналоги и составляет 15:1 для 91-го бензина (у стандартных автомобильных ДВС этот показатель равен обычно 11:1). Все эти показатели могут привести к уменьшению расхода топлива, и, как следствие — к уменьшению вредного воздействия на окружающую среду (ну или к увеличению мощности двигателя — в зависимости от ваших целей).

Сейчас компания доводит двигатели до коммерческого применения. В наш век отработанных технологий, диверсификации, экономии на масштабе и т.п. сложно представить, как можно серьёзно повлиять на индустрию. В Duke Engines, по-видимому, это тоже представляют, поэтому намереваются предлагать свои двигатели для моторных лодок, генераторов и малой авиации.

Демострация малых вибраций двигателя Duke

Основы работы поршневого двигателя

Многие люди проводят всю свою жизнь за рулем автомобиля, так и не поняв механики его работы. Обладание этими знаниями дает много преимуществ. Курсы обучения водителей отлично подходят для обучения людей правилам дорожного движения, но многие даже не охватывают основы механики.

Большинство современных автомобилей оснащены двигателями внутреннего сгорания. Это тип поршневого двигателя, в котором поршни используются для преобразования давления в движение. Хотя это может показаться сложным, самый простой способ понять ваш двигатель — изучить его различные части и то, что они делают во время этих циклов.

Преимущества понимания вашего двигателя  

Существует множество причин, по которым необходимо иметь фундаментальное представление о том, как работает двигатель вашего автомобиля. Во-первых, это даст вам преимущество при покупке автомобиля, потому что вы сможете сравнивать разные автомобили на основе того, что находится под капотом. Когда у вас есть собственный автомобиль, знание устройства двигателя облегчит обслуживание автомобиля и устранение механических проблем.

Точно так же, если вам когда-нибудь понадобится отвезти машину на ремонт, знакомство с двигателем поможет вам понять, какие работы необходимо выполнить и почему. Вы также можете определить, действительно ли некоторые предлагаемые ремонтные работы не нужны.

Основные компоненты двигателя внутреннего сгорания  

Сердцем двигателя транспортного средства являются цилиндры. У большинства автомобилей их четыре, шесть или восемь. Внутри каждого цилиндра находится поршень, который скользит вверх и вниз и при этом вращает коленчатый вал, прикрепленный к коробке передач, которая, в свою очередь, приводит в движение колеса автомобиля. Цилиндры также оснащены клапанами, которые впускают воздух и топливо и позволяют выхлопным газам выходить. Топливо внутри двигателя воспламеняется свечами зажигания, и это сгорание приводит в движение поршни.

Четырехтактный цикл

 

Двигатели внутреннего сгорания, которыми оснащены многие современные легковые и грузовые автомобили, обычно работают по четырехтактному циклу, и эти четыре стадии включают впуск, сжатие, сгорание и выпуск. Поскольку автомобили обычно имеют по крайней мере четыре цилиндра, которые срабатывают последовательно, цилиндры всегда проходят разные этапы цикла, а это означает, что всегда есть поршень, движущийся для приведения в действие коленчатого вала.

  • Цикл впуска : Во время цикла впуска впускной клапан цилиндра открывается, когда поршень движется вниз по цилиндру, и вакуум, создаваемый движением поршня вниз, всасывает воздух и топливо в камеру сгорания цилиндра.
  • Цикл сжатия : Как только поршень достигает дна цилиндра, впускной клапан закрывается и сжимает воздух и топливо внутри камеры сгорания.
  • Цикл сгорания : Поршни всегда движутся вверх и вниз, когда поршень движется вверх, он сжимает воздух и топливо в камере сгорания. Как только это происходит, свеча зажигания используется для воспламенения топлива и воздуха, и возникающий в результате взрыв толкает поршень обратно вниз.
  • Выпускной цикл : На заключительном этапе цикла выпускной клапан открывается, когда поршень достигает дна цилиндра, и остатки топлива и воздуха из камеры сгорания выпускаются.

Знание основ работы двигателя автомобиля полезно при покупке и обслуживании автомобиля, а также может помочь в диагностике проблем, когда что-то идет не так. Изучение двигателя вашего автомобиля — это лишь один из компонентов комплексной подготовки водителей, но во многих случаях эти знания могут помочь вам выбраться из затруднительного положения.

Чтобы узнать больше о своем автомобиле и получить навыки вождения, которые обезопасят вас и других на дороге, запишитесь на занятия в автошколу Western Slope в Литтлтоне. Мы являемся лучшим автошколом в регионе как для новичков, так и для опытных водителей.

Поршни | Mein Autolexikon

Во время рабочего цикла двигателя внутреннего сгорания энергия, содержащаяся в топливе, за очень короткий промежуток времени преобразуется в тепло и давление в цилиндре. Этот процесс носит взрывной характер. Это вызывает температуру и давление…

Функция

Во время рабочего цикла двигателя внутреннего сгорания энергия, содержащаяся в топливе, за очень короткий промежуток времени преобразуется в тепло и давление в цилиндре. Этот процесс носит взрывной характер. Это приводит к очень значительному повышению значений температуры и давления в цилиндре за доли секунды.

Поршень — подвижная часть камеры сгорания. Он отвечает за преобразование энергии, выделяемой в процессе горения, в механическую работу. Поршень также выполняет ряд других важных задач:

  • Уплотняет камеру сгорания.
  • Направляет шатун (в тронковых двигателях). поддерживает приготовление смеси благодаря специальной конструкции поверхности поршня со стороны камеры сгорания, известной как днище поршня.
  • В нем находятся уплотнительные элементы (поршневые кольца).

Зоны

По своей базовой конструкции поршень представляет собой полый цилиндр, герметизированный с одной стороны. Он состоит из следующих частей:

  • Головка поршня с кольцевым ремнем,
  • ступица поршня и
  • вал.

Головка поршня передает силы сжатия, возникающие при сгорании топливно-воздушной смеси, на коленчатый вал через ступицу поршня, головку поршня и шатун.

Функциональность поршня

Поршень подвергается воздействию различных сил. Когда двигатель работает, он постоянно движется вверх и вниз в цилиндре. В каждой точке поворота он резко тормозится, а затем снова ускоряется. Это создает силы инерции массы, действующие на поршень. Вместе с силами, создаваемыми давлением газа, они образуют поршневую силу.

Усилие поршня передается на шатун и коленчатый вал. Однако шатун строго вертикальен только в верхней и нижней точках реверсирования (известных как мертвая точка). Наклон шатуна толкает поршень в сторону, т.е. к стенке цилиндра. Степень этой силы (также известной как боковая сила или нормальная сила) несколько раз меняет направление в течение рабочего цикла. Оно определяется силой поршня и углом днища поршня по отношению к оси шатуна. Боковая сила может быть получена из параллелограмма сил.

Каждый поршень оснащен поршневыми кольцами. Поршневые кольца должны изолировать камеру сгорания и рабочее пространство от картера и снимать масло со стенок цилиндра, тем самым регулируя расход масла. Они также должны отводить тепло, поглощаемое поршнем во время сгорания, на охлаждаемый цилиндр.

Охрана окружающей среды

Конструкция, конструкция и состав материалов поршней, используемых в современных двигателях внутреннего сгорания, в значительной степени способствуют достижению низкого уровня выбросов и полному сгоранию. Кроме того, современные поршни по своей конструкции снижают трение и расход масла. При этом они вносят существенный вклад в защиту окружающей среды и сохранение ресурсов.

Амортизация

Чтобы поршень надежно выполнял свою задачу на протяжении всего срока службы автомобиля, в бензиновых двигателях можно использовать только топливо с октановым числом, установленным производителем. Это также относится к свечам зажигания, которые также необходимо регулярно проверять. Если используется биотопливо, масло необходимо менять через гораздо более частые промежутки времени.

Кроме того, при осмотре и техническом обслуживании необходимо следить за тем, чтобы использовались только моторные масла, одобренные изготовителем двигателя. Также необходимо проверить давление масла. Если давление масла слишком низкое, масляный насос может быть изношен, масляный фильтр может быть загрязнен, клапан избыточного давления в масляном насосе может быть неисправен или масло может быть разбавлено.