Содержание
Поршневая группа и шатуны
Поршневая группа и шатуны
Поршень. При такте рабочего хода поршень воспринимает давление газов и передает его через шатун на коленчатый вал. Поршень состоит из трехосновных частей: днища, уплотняющей части с проточенными в ней канавками для поршневых колец и юбки, поверхность которой соприкасается с зеркалом цилиндра. Днище поршня вместе с внутренней поверхностью головки цилиндра, образующее камеру сгорания, непосредственно воспринимает давление газов: оно может быть плоским (двигатели ЗИЛ-130, ГАЗ-53-11), выпуклым (двигатель автомобидя «Москвич-2140») и фасонным (дизели ЯМЗ, КамАЗ).
Наибольшее распространение в карбюраторных двигателях получили плоские днища, отличающиеся относительной простотой изготовления. Днище и уплотняющая часть составляют головку поршня, на которой располагаются компрессионные и маслосъемные кольца. Число колец зависит от типа двигателя и частоты вращения коленчатого вала. Зазор между головкой поршня и стенкОй цилиндра находится в пределах 0,4—0,6 мм.
Юбка поршня, имеющая форму конуса овального сечения, является направляющей при его движении в цилиндре. С внутренней стороны она имеет охлаждающие ребра и приливы — бобышки с отверстиями для поршневого пальца. На юбке поршня ряда двигателей с одной стороны сделаны Т- или П-об-разные тепловые прорези, предупреждающие заклинивание поршня при нагревании.
Рекламные предложения на основе ваших интересов:
Дополнительные материалы по теме:
Для свободного перемещения поршня необходим и зазор между его юбкой и зеркалом цилиндра, который при их нормальном тепловом состоянии (80—95 °С) для различных моделей двигателей равен 0,04— 0,08 мм.
Для предотвращения задиров поршня при нагреве на его поверхности около торцов поршневого пальца делают местные углубления — холодильники, которые также способствуют отводу тепла от поршня и улучшают условия его смазывания.
Рис. 1. Поршни:
а — карбюраторных двигателей; б — дизелей КамАЗ; в — дизелей ЯМЗ
В дизелях с непосредственным впрыском (дизели КамАЗ-740, ЯМЭ-238) в днище поршня располагается камера сгорания, а юбка поршня имеет также форму конуса овального сечения, но без прорезей, что придает ей необходимую прочность. Кроме того, в нижней части юбки поршня отдельных двигателей (КамАЗ-740, ВАЗ-2108) имеются боковые выемки для прохода противовесов коленчатого вала.
Чтобы уменьшить силы инерции возвратно-поступательно движущихся масс, поршни, как правило, изготовляют из легких кремнистых алюминиевых сплавов для уменьшения их массы. Для двигателя подбирают поршни, масса которых не отличается более чем на 2—8 г.
На днище поршня действуют высокие температуры, поэтому для повышения износостойкости первой канавки поршня под верхнее поршневое кольцо устанавливают чугунную кольцевую вставку (у двигателей ЗИЛ-130, КамАЗ-740 и др.).
При переходе поршня через в.м.т. он смещается в боковом направлении от одной стенки цилиндра к другой, что сопровождается стуками. Для их устранения на двигателях автомобилей ЗИЛ-130, ГАЗ-53-12, «Москвич-2140» и др. ось отверстия под поршневой палец смещают на 1,6 мм от диаметральной плоскости поршня в правую сторону двигателя (по ходу движения автомобиля)
Поршни в цилиндры следует устанавливать так, чтобы боковое давление во время рабочего хода испытывала та часть поршня, где нет тепловых прорезей. С этой целью на днище поршня делают метку или стрелку, которая при установке поршня в цилиндр, должна быть обращена к передней части двигателя.
Поршневые кольца. Основная функция поршневых колец — уплотнение камеры сгорания и обеспечение герметичности соединения деталей поршень — цилиндр — канавки. Кроме того, при сгорании рабочей смеси значительное количество тепла поглощается поршнем и отводится от него поршневыми кольцами.
Конструктивно поршневое кольцо представляет собой плоскую разрезную пружину с зазором, который называется замком. Замок позволяет устанавливать кольца на поршень и обеспечивает свободное расширение их при нагревании в процессе работы двигателя. Поршневые кольца делятся на компрессионные и маслосъемные.
Компрессионные кольца подбирают с определенным зазбром (0,02—0,07 мм) по высоте к канавке поршня. При установке поршня в цилиндр кольца сжимаются до небольшого зазора в замке и плотно прилегают к поверхности цилиндра, что предотвращает прорыв газов в картер двигателя и попадание масла со стенок цилиндра в камеру сгорания.
Маслосъемное кольцо снимает излишки масла со стенок цилиндра и отводит его в поддон картера.
Поршневые кольца изготовляют из легированного чугуна, а для двигателей с большими динамическими нагрузками — из специальной стали.
Поверхность верхнего компрессионного кольца для повышения износостойкости подвергают пористому хромированию, а остальные кольца для ускорения приработки покрывают тонким слоем олова или молибдена.
Чугунное маслосъемное кольцо отличается от компрессионного прорезями для прохода масла. В канавке поршня под маслосъемное кольцо сверлят один или два ряда отверстий для отвода масла внутрь поршня. На многих двигателях применяют стальные составные масло-съемные кольца. Например, в двигателе ЗИЛ-130 на каждый поршень устанавливают три компрессионных кольца и одно составное маслосъемное. Составное маслосъемное кольцо разборное, оно состоит из двух стальных кольцевых дисков и двух расширителей: осевого и радиального.
Компрессионные кольца в канавках поршня и в чугунной вставке располагают так, чтобы выточки на внутренних цилиндрических поверхностях колец были обращены вверх, в сторону днища поршня. Наружная поверхность нижнего компрессионного кольца имеет небольшую конусность, большее основание которого обращено вниз, что способствует лучшему уплотнению соединения поршень — цилиндр.
У большинства двигателей зазор в замках двух верхних компрессионных колец и чугунного маслосъем-ного составляет 0,25—0,60 мм, в нижнем компрессионном кольце — 0,15— 0,40 мм, а в замке кольцевых дисков составного маслосъемного кольца — 0,8—1,4 мм.
При наличии чугунного масло-съемного кольца замки всех колец при установке их на поршень располагают по окружности под углом 90°. При установке стального составного маслосъемного кольца на равные угловые интервалы смещаются только замки компрессионных колец.
Поршневой палец. Для шарнирного соединения поршня с верхней головкой шатуна служит поршневой палец. Через пальцы передаются значительные усилия, поэтому их изготовляют из легированных или углеродистых сталей с последующей цементацией или закалкой ТВЧ (токами высокой частоты). Поршневой палец представляет собой толстостенную трубку с тщательно отшлифованной наружной поверхностью, проходящую через верхнюю головку шатуна и концами опирающуюся на бобышки поршня.
По способу соединения с шатуном и поршнем пальцы делятся на плавающие и закрепленные (обычно в головке шатуна). Наибольшее распространение получили плавающие поршневые пальцы, которые свободно поворачиваются в бобышках и во втулке, установленной в верхней головке шатуна. Осевое перемещение поршневого пальца ограничивается стопорными кольцами, расположенными в выточках бобышек поршня.
Рис. 2. Поршневые кольца:
а—типы поршневых колец; б—расположение колец на поршне
Рис. 3. Шатунно-поршневая группа
При работающем двигателе в бобышках поршня возможны стуки пальцев из-за различного коэффициента линейного расширения алюминиевого сплава и стали. Для устранения этого явления палец в бобышках устанавливают с натягом 0,01—0,02 мм, нагревая поршень до температуры 80—90 °С, что обеспечивает поддержание нормального теплового зазора (0,01—0,03 мм) в этом сопряжении на всех режимах работы двигателя.
Шатун. Он служит для соединения поршня с кривошипом коленчатого вала и обеспечивает при такте рабочего хода передачу усилия от давления газов на поршень к коленчатому валу, а при вспомогательных тактах (впуск, сжатие, выпуск), наоборот, от коленчатого вала к поршню. При работе двигателя шатун совершает сложное движение. Он движется возвратно-поступательно вдоль оси цилиндра и качается относительно оси поршневого пальца.
Шатун штампуют из легированной или углеродистой стали. Он состоит из стержня двутаврового сечения, верхней головки, нижней головки и крышки. В стержне шатуна при принудительном смазывании плавающего поршневого пальца (в основном у дизелей) сверлится сквозное отверстие — масляный канал.
Нижнюю головку, как правило, делают разъемной в плоскости, перпендикулярной к оси шатуна. В тех случаях, когда нижняя головка имеет значительные размеры и превышает диаметр цилиндра (у дизелей ЯМЗ), плоскость разъема головки делают под углом (косой срез), что позволяет уменьшить радиус окружности, описываемой нижней частью шатуна.
Крышка шатуна изготовляется из той же стали, что и шатун, и обрабатывается совместно с нижней головкой, поэтому перестановка крышки с одного шатуна на другой не допускается. На шатунах и крышках с этой целью делают метки. Чтобы обеспечить высокую точность при сборке нижней головки шатуна, его крышку фиксируют шлифованными поясками болтов, которые затягивают гайками и стопорят шплинтами или шайбами. В нижнюю головку устанавливают шатунный подшипник в виде тонкостенных стальных вкладышей, которые с внутренней стороны покрыты слоем антифрикционного сплава.
От осевого смещения и провертывания вкладыши удерживаются выступами (усиками), которые входят в канавки нижней головки шатуна и его крышки. В нижней головке шатуна и во вкладыше делается отверстие для периодического выбрызгивания масла на зеркало цилиндра или на распределительный вал (у двигателей ЗИЛ-130, ЗМЗ-53-11):
Для лучшей уравновешенности кривошипно-шатунного механизма разница в массе шатунов не должна превышать 6—8 г. В У-образных двигателях на каждой шатунной шейке коленчатого вала расположены два шатуна. В этих двигателях для правильной сборки шатунно-поршневой группы поршни и шатуны устанавливают строго по меткам.
На крышке и стержне шатуна дизеля КамАЗ-740 метки выбивают в виде трехзначных номеров. Кроме того, на крышке шатуна выбивают порядковый номер цилиндра. Так, у двигателя ЗИЛ-130 метка на днище поршня должна быть направлена к передней части двигателя. При этом метка на шатуне для левого ряда цилиндров должна быть направлена в одну сторону с меткой на поршне, а метка на шатуне для правого ряда цилиндров должна быть направлена в противоположную сторону относительно метки на поршне.
—
В поршневую группу входят поршни, поршневые кольца и поршневые пальцы. Поршень представляет собой металлический стакан, донышком обращенный вверх. Он воспринимает давление газов при рабочем ходе и передает его через поршневой палец и шатун на коленчатый вал. Отливают поршни из алюминиевого сплава.
Поршень имеет днище, уплотняющую и направляющую (юбка) части. Днище и уплотняющая часть составляют головку поршня.
Днище поршня вместе с головкой цилиндра образует камеру сгорания. В головке поршня проточены канавки для поршневых колец.
Рис. 4. Головка и блок цилиндров V-образного восьмицилиндрового двигателя 3M3-53:
1 — головка правого ряда цилиндров, 2 — гильза цилиндра, 3 — прокладка гильзы, 4 — направляющий поясок для гильзы, 5 — блок цилиндров, 6 — прокладка крышки распределительных шестерен, 7 — сальник переднего конца коленчатого вала, 8 — крышка распределительных шестерен, 9 — прокладка головки цилиндров
Рис. 5. Детали кривошипно-шатунного механизма двигателя ЗИЛ-130:
1 — поршень, 2 —вкладыши коренных подшипников коленчатого вала, 3 — маховик, 4— коренная шейка коленчатого вала, 5 — крышка заднего коренного подшипника, 6 — пробка, 7 — противовес, 8 — щека, 9 — крышка среднего коренного подшипника, 10 — передняя шейка копенчатого вала, 11 — крышка переднего коренного подшипника, 12—шестерня, 13 — носок коленчатого вала, 14 — шкив, 15—храповик, 16 — упорная шайба, 17 — биметаллические шайбы, 18 — шатунные шейки коленчатого вала, 19 — вкладыши шатунного подшипника, 20 — стопорное кольцо, 21 — поршневой палец, 22 — втулка верхней головки шатуна, 23 — шатун, 24 — крышка шатуна, 25 — сальник, 26 — маслоотгонная канавка, 27 — маслосбрасывающий гребень, 28 — дренажная канавка
Поршни двигателя ЯМЗ-740 изготовлены из высококремнистого алюминиевого сплава, имеют вставки из жаропрочного чугуна под верхнее компрессионное кольцо, в толстостенном днище поршня выполнена камера сгорания.
Уплотняющая часть поршня имеет диаметр, увеличивающийся книзу. Юбка поршня имеет две бобышки (приливы) с отверстиями для поршневого пальца. Каждая бобышка связана с днищем поршня двумя ребрами. Юбка поршня двигателя ЯМЗ-740 в нижней части имеет боковые выемки для прохода противовесов коленчатого вала при его вращении.
Юбка поршня обычно имеет прорези, которые предупреждают заедание поршня при нагреве и позволяют уменьшить зазор между гильзой цилиндра и поршнем. Заклинивание поршня исключают также приданием юбке овальной формы. Диаметр поршня в плоскости, перпендикулярной оси пальца, делают больше, чем в направлении оси поршневого пальца (у ЗИЛ-130 на 0,52 мм). При нагревании поршень расширяется сильнее в направлении оси поршневого пальца, где в бобышках сосредоточена наибольшая масса металла. Поэтому овальный поршень при нагреве получит цилиндрическую форму.
Отверстие под поршневой палец располагается не по оси симметрии поршня, а смещено на 1,5 мм (ЗМЗ-24, 3M3-53) вправо по ходу автомобиля. Этим уменьшается сила удара поршня о стенки гильзы при переходе его через в. м. т. в процессе сгорания — расширения газов.
Для улучшения приработки поршней к гильзам цилиндров и предохранения их от задиров юбку поршня покрывают тонким слоем олова или коллоидного графита (ЯМ3-740).
Поршневые кольца устанавливают в канавки, расположенные в головке поршня. Они подразделяются на компрессионные и маслосъемные. Компрессионные кольца уплотняют поршень в гильзе цилиндра и предотвращают прорыв газов через зазор между юбкой поршня и стенкой гильзы. Маслосъемные кольца, кроме того, снимают излишки масла со стенок гильз и не допускают попадания его в камеры сгорания.
Рис. 6. Поршневые кольца двигателей:
а — внешний вид, 6 — расположение колец на поршне (ЗИЛ-130), в — составное маслосъемное кольцо; 1 — компрессионное кольцо, 2 — маслосъемное кольцо, 3 — плоские стальные диски, 4 — осевой расширитель, 5 — радиальный расширитель
Поршневые кольца изготовляют из чугуна или стали. Для установки на поршень кольца имеют разрез, называемый замком. Маслосъемное кольцо отличается от компрессорных колец сквозными прорезями для прохода масла. В канавке поршня для маслосъемного кольца сверлят один или два ряда отверстий для отвода масла внутрь поршня.
В целях повышения износостойкости поверхность верхнего поршневого кольца подвергают пористому хромированию. Остальные кольца для ускорения приработки покрывают тонким слоем олова. Нижнее компрессионное кольцо двигателя ЯМЗ-740 покрыто молибденом.
На наружной и внутренней поверхностях компрессионных колец выполняют фаски или канавки.
Маслосъемное кольцо двигателей ЗМЗ и ЗИЛ состоит из двух стальных кольцевых дисков, осевого и радиального расширителей. Вследствие быстрой прирабатываемости и упругости стальные кольца хорошо прилегают к гильзе цилиндра.
Поршневой палец служит для соединения поршня с шатуном и представляет собой короткую трубку. Пальцы изготовляют из легированной цементованной стали или из углеродистой стали, Закаленной токами высокой частоты. Наиболее распространены «плавающие» пальцы, свободно поворачивающиеся во втулке верхней головки шатуна и в бобышках поршня. От осевого смещения поршневой палец предохраняется стопорными кольцами, вставляемыми в выточки обеих бобышек поршня.
Устройство и принцип работы двигателя внутреннего сгорания
В статье разберём подробно устройство двигателя ДВС и принцип работы двигателя ДВС. Разберёмся из каких частей состоит мотор и принцип его функционирования. Приведём основные понятия и термины как для опытных автолюбителей, так и для новичков в этой сфере.
Из каких основных частей состоит двигатель (мотор)
Мотор состоит из следующих основных частей:
— Кривошипно-шатунный механизм.
— Система газораспределения.
— Питающая система.
— Система выпуска.
— Система зажигания.
— Охлаждающая система.
— Смазочная система.
Устройство двигателя на примере одноцилиндрового ДВС
Для начала рассмотрим специфику устройства двигателя. Для примера возьмём мотор с всего одним цилиндром и разберёмся с его устройством и работой. Рассмотрим все процессы, которые в нём протекают и выясним что заставляет в конечном итоге колёса транспортного средства крутиться.
Одной из основных частей мотора является цилиндр. В цилиндре находится поршень. Поршень двигателя соединяется при помощи шатуна с коленчатым валом. Поршень движется в цилиндре вверх и вниз и таким образом приводит во вращение коленчатый вал мотора. Таким образом можно сказать что в ДВС осуществляется преобразование поступательного движения поршня во вращающееся движение колен вала. На конце колен вала закреплён маховик, который делает вращение вала равномерным. Сверху цилиндр плотно закрыт крышкой, в крышке цилиндра находятся два типа клапанов, для впуска и выпуска. Клапаны закрывают соответствующие каналы. Они открываются и закрываются под действием специальных устройств распред вала через передаточные детали. Распред вал вращается посредством вращения колен вала. Поршень в цилиндре может занимать два рабочих положения.
Клапаны открываются под действием специальных кулачков распред вала через передаточные детали. Распред вал приводится во вращение шестернями от колен вала. Поршень, который перемещается в цилиндре, занимает два крайних положения.
Для осуществления работы двигателя в цилиндры подаётся горючая смесь в определённом количестве, если это двигатель, работающий на бензине и, если это дизельный мотор топливо подаётся определёнными порциями под давлением. Все трущиеся части мотора смазываются в процессе работы маслом. Для обеспечения нормального теплового режима мотор охлаждается – эту функцию берёт на себя охлаждающая система.
Принцип работы двигателя (ДВС)
Поршень в цилиндре движется в поступательном режиме, то есть вверх и вниз. При этом колен вал совершает вращательное движение. Вращение колен вала осуществляется по часовой стрелке. За один оборот колен вала поршень совершает два хода (один ход вверх и один ход вниз).
При постоянной скорости вращения колен вала, поршень движется с ускорением – замедлением. Наименьшую скорость движения он имеет в верхней и в нижней точке. В верхней и в нижней части движения он останавливается и меняет направление движения.
Рабочий цикл четырёхтактного мотора:
— Впуск.
— Сжатие.
— Рабочий ход.
— Выпуск.
Работа мотора транспортного средства складывается из совокупности процессов, которые протекают в цилиндрах с определённой последовательностью. Эти процессы принято называть рабочим циклом.
Что такое поршень — определение, детали, типы, применение
Поршень описан наряду с основным пониманием, определением, типами, характеристиками, функциями, преимуществами, недостатками и т. д.
Что такое поршень?
Поршень Основы
Поршень является неотъемлемой частью поршневых двигателей. Они являются важным аспектом автомобильных транспортных средств. Встречается не только в двигателях,
- Компрессоры,
- Насосы, 9 шт.0012
- Гидравлические и пневматические цилиндры и многое другое.
По сути, это небольшая движущаяся деталь, плотно окруженная поршневыми кольцами. Мы познакомимся с более подробной информацией о поршнях и всей информацией, связанной с поршнями.
Поршень Определение
Поршень определяется как кусок металла, работающий против давления жидкости в цилиндре.
- В основном, поршень, используемый в двигателях, известен всем, они расширяют и сжимают топливо с помощью шатунов и других деталей внутри цилиндра сгорания.
- В случае насоса усилие передается от коленчатого вала к поршням для сжатия или выброса жидкости.
- Итак, все, что я должен сказать, это то, что поршни имеют более широкое применение, и не только в двигателях.
Что такое определение поршня
Форма поршня и материалы
Говоря о его форме, он имеет цилиндрическую форму. В случае двигателя возвратно-поступательное движение поршня преобразуется во вращательное движение коленчатого вала. Они сделаны из разных материалов. Как правило, поршни изготавливаются из литых алюминиевых сплавов. Есть и другие материалы, например,
- Чугунные поршни,
- Поршни из литой стали,
- Литой алюминий,
- Заэвтектический,
- , кованые поршни из алюминия.
Алюминиевый сплав
Эти материалы обладают высокой прочностью и используются в соответствии с требованиями. Для низкоскоростных применений используется чугун, а для высокоскоростных — алюминиевый сплав. Итак, прежде чем узнать больше о типах и деталях поршней, давайте узнаем об общих функциях поршней.
Функции поршней
Функции поршня следующие:
- В двигателях передавать силу взрыва на коленчатые валы.
- Служит теплоносителем для стенок цилиндров.
- Поршни также действуют как регулирующий клапан.
- Помогает направлять движение шатуна.
- Поршни как бы уплотняют, чтобы газы не уходили из камеры сгорания в картер.
Итак, чтобы поршень работал эффективно, он должен обладать некоторыми характеристиками. Вот некоторые желаемые характеристики, которыми должен обладать поршень для идеальной работы.
Желательные характеристики поршней
Давайте обратимся к основным желательным характеристикам поршня, как показано ниже:
- Поршень должен работать бесшумно.
- Должен обладать коррозионно-стойкими свойствами.
- Он должен быть легче по весу.
- Поршень должен иметь долгий срок службы и высокую теплопроводность.
- Он должен иметь как можно более короткую длину, а его конструкция должна исключать заедание.
Существуют различные типы поршней, и они называются в соответствии с их различными принципами работы и устройством. Мы рассмотрим обычно используемые поршни в кратких деталях. Давайте узнаем о деталях или компонентах поршней.
Части поршня
Есть несколько частей поршня, а именно:
- Поршневые кольца
- Канавки для поршневых колец
- Юбка поршня
- Поршневые пальцы
- Головка поршня
- Подшипники поршня
Детали поршня
Попробуем рассмотреть все это вкратце,
Поршневое кольцо
Поршневые кольца представляют собой разрезные кольца, которые устанавливаются в углублении поршня.
- Обычно используются 3 типа поршневых колец.
- Поршни могут иметь одно или три кольца в зависимости от требований.
- Кольца монтируются таким образом, что конструкция выглядит конусообразной.
Итак, какова функция поршневых колец? Они изолируют камеру сгорания и регулируют расход смазочного масла. Кроме того, они служат для отвода тепла к отверстию цилиндра. Как мы уже говорили выше, используются 3 типа колец. Давайте проверим каждый из них.
Компрессионные кольца
Компрессионные кольца расположены на верхней стороне поршня ближе к камере сгорания.
- Их также называют газовыми кольцами или прижимными кольцами.
- Как функция колец, компрессионные кольца предотвращают утечку продуктов сгорания и помогают передавать тепло от поршня к стенкам цилиндра.
Маслосъемные кольца
Маслосъемные кольца расположены посередине компрессионных и маслосъемных колец. Они имеют конусообразную поверхность и служат для герметизации камеры сгорания и удаления масла с поршневого цилиндра.
Масляные кольца или Масляные кольца
Они расположены под маслосъемными кольцами. Масляные кольца состоят из двух поверхностей с отверстиями по всему периметру. Эти прорези позволяют маслу стекать обратно в картер. Когда поршень движется вперед и назад, маслосъемные кольца удаляют избыток масла со стенок цилиндра.
Основы холодильного цикла I Части …
Пожалуйста, включите JavaScript
Основы холодильного цикла I Части I Функции I Работа #refrigerationcycle #цикл сжатия пара
Канавки для поршневых колец
Канавки для поршневых колец означают канавки или прорези, в которые входит поршневое кольцо.
Юбка поршня
Круглая часть поршня называется юбкой поршня.
- Изготовлены из чугуна благодаря высокой износостойкости и способности к самосмазыванию.
- Имеет канавки для установки поршневых маслосъемных колец, а также компрессионных колец.
Юбка поршня предназначена для направления поршня вверх и вниз по цилиндру. Конструкция сделана так, что поможет поршню преодолевать боковые силы. Используются два типа юбок.
- Пышная юбка – Пышная юбка известна как сплошная юбка; они имеют трубчатую форму и обычно используются в больших автомобилях.
- Юбка тапочка – Юбка тапочка используется на поршнях мотоциклов и автомобилей. Юбка тапочка имеет часть юбки, которая срезана, чтобы остались только поверхности на задней и передней стенке цилиндра.
Поршневые пальцы
Возможно, вы слышали название «поршневой палец», если когда-либо изучали поршень или знали о нем. Поршневой палец обеспечивает опору подшипника и помогает поршню правильно функционировать. Проще говоря, он соединяет шатун и поршень, как шарнирное соединение. Существует три способа установки пальцев на поршни.
- Фиксированная канцелярская принадлежность — В этом методе штифт будет крепиться к бобышке поршня с помощью винтов.
- Полуплавающий — этот штифт будет прикреплять шатун посередине, и штифт будет свободно перемещаться внутри подшипника и у бобышек.
- Полностью плавающий – В полностью плавающем штифт фиксируется заглушками. Этот может колебаться на бобышках, а также на шатуне.
Головка поршня
Головка поршня также известна как головка поршня. Как следует из названия, это верхние части поршней. Дымовые газы соприкасаются с днищем поршня. Поскольку температура продуктов сгорания высока, головки поршней изготавливаются из специальных сплавов, стальных сплавов. Вот функции головки поршня.
- Головка поршня создает завихрение, благодаря чему сгорание будет равномерным и равномерным.
- Головка поршня действует как тепловой барьер, поскольку ограничивает попадание высокотемпературного тепла к нижним частям поршня.
- Давления, ответственные за детонацию в цилиндре, головка поршня может их сдерживать.
Подшипники поршня
В месте, где происходят осевые вращения, предусмотрены подшипники.
- Они имеют полукруглую форму и входят в эти отверстия на шарнирах.
- Вкладыши поршневых колец доступны на большой головке, где шток соединяет коленчатые валы.
- Подшипники изготовлены из свинца, меди, кремнийорганических алюминиевых материалов.
Посмотрите хорошее ВИДЕО от Habib Mechanics!
Типы поршней
Существует множество типов поршней в зависимости от их устройства и применения. Итак, вот обычно используемые типы поршней.
- Штифт со смещением
- Тип заземления кулачка
- Тип с масляным охлаждением
- Тип конуса
- Стальной проволочный тип
- Аконогид, тип
- Поршень с тепловой заслонкой
- Автотермический тип
- Биметаллические поршни
Давайте изучим основы всех этих типов поршня,
Поршень со смещенным штифтом
Как следует из названия, в этом типе поршень смещен в сторону основной упорной стороны поршня. Такое расположение помогает уменьшить износ, а также шум поршня.
- Если вам интересно, что такое основная сторона тяги, то сторона тяги нагружается во время события питания.
- Принимая во внимание, что сторона малого осевого усилия нагружается во время сжатия.
Поршень со шлифованным кулачком
В основном используются поршни со шлифованным кулачком. Они не идеально круглые, и диаметр этих поршней большой на ненапорной стороне. Потому что, когда температура поршня увеличивается, они имеют тенденцию к расширению.
Поршень со шлифованным кулачком
Поршень с масляным охлаждением
В этом типе с масляным охлаждением под днищем поршня предусмотрена полость. Почему это? Потому что для снижения температуры поршня на верхнем кольце и предотвращения образования нагара в канавке. Они предусмотрены в средне- и высокоскоростных дизельных двигателях.
Конические поршни
В этом типе головка поршня меньше диаметра юбки. Когда высокая температура доходит до головки, сторона расширяется, и диаметр поршня становится однородным в условиях.
Поршни стальные проволочные
Лента из стальной проволоки под натяжением помещается между маслосъемным кольцом и поршневым пальцем.
Поршень Aconoguide
Эти поршни снабжены выступающими подушками особой формы, способствующими гидродинамической смазке.
Поршень с тепловой заслонкой
В этих поршнях в верхней части поршня имеется канавка. Это уменьшит передачу тепла от короны к юбке. Так юбка будет холоднее бегать и не будет сильно расширяться.
Автотермический поршень
Эти поршни содержат стальные вставки с низким коэффициентом расширения в бобышках поршневых пальцев. При более высоких температурах поршень расширяется вместе с поршневым пальцем.
Автотермический поршень
Сжатие происходит в направлении, перпендикулярном поршневому пальцу, за счет металлического воздействия.
Биметаллические поршни
Как следует из названия, они сделаны из двух металлов. Один стальной, другой алюминиевый. Юбка изготовлена из стали, а алюминиевые коты внутри образуют головку поршня и бобышки поршневого пальца. В некоторых случаях может произойти отказ поршня. Поэтому мы должны знать, как происходят обычные повреждения поршня и их описание.
Как работает поршень?
Принцип работы
Энергия вырабатывается в цилиндре в результате процесса сгорания. Поршень работает внутри цилиндра и связан с коленчатым валом через шатун. Итак, после сгорания эта энергия передается коленчатому валу через шатун. Поршень также рассеивает тепло, выделяемое при сгорании. Давайте посмотрим пошагово принцип работы поршня.
Пошаговый принцип работы
- Поршень движется от верхней мертвой точки к нижней мертвой точке,
- В цилиндре создается вакуум.
- Воздушно-топливная смесь поступает из-за разрежения.
- Поршень сжимает смесь.
- Повышение давления и температуры.
- Рабочий ход или сжигание топлива.
- Поршень перемещается из верхней мертвой точки в нижнюю.
- Мощность передается на шатун.
- От шатуна мощность передается на коленчатый вал.
- Наконец, выхлопные газы удаляются в такте выпуска.
Неисправности поршня
Рассмотрим основные неисправности,
Задиры на поршнях
Задиры на поршнях возникают из-за перегрева, из-за которого поршень расширяется и становится более тугим в цилиндре. Из-за расширения смазка будет выдавливаться из стенок цилиндра, вызывая контакт металла с металлом.
Прогоревший поршень
Прогоревший поршень может быть основной причиной детонации и преждевременного зажигания. При детонации газы выделяют огромное количество энергии. При преждевременном зажигании горящий оккус обычно находится возле головки поршня.
Сухой ход поршня
Выход из строя поршня на сухом ходу может быть вызван конденсацией несгоревшего топлива в цилиндре. Это приводит к длинным узким следам трения из-за взаимодействия скользящих частей.
Повреждение бобышки поршневого пальца
При механическом перенапряжении поршня повреждается бобышка поршневого пальца. Кроме того, при недостаточной подаче масла в бобышке поршневого пальца появится трещина, которая в дальнейшем будет равномерно распространяться при нормальных нагрузках и, в конце концов, поршень расколется.
Преимущества поршней
У поршней много преимуществ, а именно:
- Поршни проще механически.
- Они гибкие и имеют более высокую надежность.
- У них хорошее соотношение веса и мощности.
- Меньше обслуживания, вибрации и шума при работе
- Многотопливная способность, может работать на любом топливе
- Меньше производственных затрат благодаря массовому производству
- Поршень обеспечивает высокую маневренность
Недостатки поршней
У поршней также много недостатков:
- Экономия топлива может ухудшиться
- Стабильность топлива является проблемой
- Низкая эффективность при частичной нагрузке
- Требуется редуктор
Как мы уже говорили ранее, поршни имеют более широкое применение во многих машинах. Общие области применения поршней приведены ниже.
Применение поршня
- Наиболее популярным и известным применением является использование поршня в камере сгорания двигателей внутреннего сгорания.
- В самозарядном огнестрельном оружии поршень используется для толкания затвора.
- Они используются в гидравлических насосах и гидроцилиндрах в качестве цилиндров или приводов двойного действия.
- Воздушный компрессор.
- В кондиционерах для облегчения циркуляции рабочей жидкости.
- В паровых двигателях для преобразования потока в силовое движение.
- Тепловые насосы.
- Прочие автомобильные детали и оборудование.
Заключение
Таким образом, мы получили общее представление о том, что такое поршень, определение поршня, типы, различные детали, преимущества, недостатки и т. д. Если у вас возникнут сомнения, пожалуйста, сообщите нам об этом. Есть много интересных статей, можете сослаться,
Тормозная система
Турбокомпрессор
Нагнетатель
Центробежная муфта
Rotary vs Piston — журнал DSPORT
T Роторный двигатель Ванкеля: самое ценное предложение Mazda также является источником сотен веселых интернет-мемов. В то время, когда поршневые двигатели внутреннего сгорания были основной технологией, используемой в автомобилях, Mazda решила разработать конкурирующую технологию. В начале 70-х двигатель Rotary приводил в действие почти все автомобили модельного ряда Mazda. Когда случился кризис газа, он все еще использовался в высокопроизводительных автомобилях Mazda. Mazda Rotary обладала преимуществами по сравнению с поршневыми двигателями, но также обладала огромным списком недостатков. Давайте посмотрим, чем он отличается от поршневого двигателя, а также некоторые его плюсы и минусы.
Текст Bassem Girgis и Jim Mederer // Фотографии Staff and Racing Beat
ДСПОРТ Выпуск #206
Поршневой двигатель внутреннего сгорания состоит из блока, кривошипа, шатунов, поршней, головок, клапанов, распределительных валов, системы впуска, системы выпуска и системы зажигания. Все они работают вместе, чтобы преобразовать химическую энергию в механическую энергию, которая позволяет вашему автомобилю двигаться. Внутри блока коленчатый вал соединен с рядом шатунов (в зависимости от того, сколько цилиндров у вашего двигателя), а шатуны прикреплены к такому же количеству поршней. Когда поршни двигаются вверх и вниз, они вращают коленчатый вал с помощью шатунов.
Начиная с поршня в верхней мертвой точке (первый шаг в четырехтактном цикле), впускные клапаны открываются, а выпускные закрыты (открытие и закрытие управляется распределительным валом, который синхронизирован с коленчатым валом с помощью ремень или цепь). Когда коленчатый вал продолжает вращаться, он тянет поршень вниз, всасывая воздух в цилиндры. К тому времени, когда поршень достигает дна, цилиндр уже заполнен воздухом и топливом.
Для завершения полного четырехтактного процесса поршень должен совершить два полных прохода в цилиндре.
Затем поршень начинает двигаться вверх во время такта сжатия. Во время этого такта впускной и выпускной клапаны закрыты. Движение поршня вверх сжимает воздушно-топливную смесь, которая смешивает молекулы воздуха и топлива, когда они сближаются. Этот процесс создает смесь, оптимизированную для сгорания. Как только поршень снова приближается к верхней мертвой точке, свеча зажигания срабатывает, вызывая воспламенение в цилиндре.
Рабочий ход создает управляемое сгорание, вызванное искрой. Сгорание толкает поршень вниз по цилиндру. Давление, создаваемое сгоранием, является движущей силой, которая приводит в движение колеса вашего автомобиля. Когда поршень движется к нижней мертвой точке, выступ выпускного распредвала начинает открывать выпускной клапан, готовясь к последнему такту в четырехтактном цикле.
Когда цилиндр снова начинает подниматься вверх, выпускные клапаны полностью открываются. Это позволяет выхлопным газам выходить из цилиндров, чтобы снова освободить место для следующего четырехтактного цикла. Выхлопные газы выходят через выпускной коллектор, через каталитический нейтрализатор и через выхлопную трубу и глушитель. К тому времени, когда поршень возвращается в верхнюю мертвую точку, выпускной клапан почти закрыт, а впускной клапан начинает открываться. Затем процесс повторяется.
Роторный двигатель имеет тот же четырехтактный цикл, что и поршневой двигатель, для выработки мощности на маховике. В отличие от поршневого двигателя, в котором сгорание происходит в цилиндре, роторный двигатель опирается на давление, содержащееся в камере в корпусе, которая герметизирована одной стороной ротора. Два ротора используются вместо поршней. Ротор трехгранный, который вращается вокруг корпуса ротора с помощью эксцентрикового вала. Три стороны изогнуты в виде трех лепестков, а корпус ротора имеет форму грубой восьмерки (8). Когда ротор вращается внутри корпуса, зазор между ротором и корпусом то увеличивается, то уменьшается.
В то время как поршневой двигатель использует ремень ГРМ или цепь для распределительных валов и клапанов, в роторном двигателе используется только цепь для масляного насоса.
Воздух и топливо попадают в корпус ротора по мере увеличения объема между одной из лопастей ротора и стенкой корпуса. По мере вращения ротора и увеличения объема создается вакуум, который втягивает воздух и топливо в корпус. Как только кончик одной из сторон ротора выходит из этой области всасывания, следующая сторона ротора начинает процесс всасывания. Ротор продолжает вращаться до тех пор, пока объем между кулачком ротора и стенкой корпуса не начнет уменьшаться. Это сжимает воздушно-топливную смесь подобно тому, как это происходит в поршневом двигателе, когда поршень движется вверх. Затем сжатая смесь поступает в следующую часть корпуса, где находится свеча зажигания. Свеча зажигания воспламеняет сжатую смесь. В то время как нижняя свеча зажигания воспламеняет большую часть смеси через большее отверстие, верхняя свеча зажигания воспламеняет топливо в меньшем конце камеры сгорания. Воспламененный воздух и топливо сгорают (сгорают с контролируемой скоростью), что приводит в движение ротор по часовой стрелке. Поскольку ротор продолжает вращаться после первого удара, объем между ротором и корпусом увеличивается, что позволяет газам расширяться.
Последний шаг — это когда объем уменьшается в последний раз, чтобы вытолкнуть выхлопные газы через выпускные отверстия, прежде чем сделать еще один оборот и снова запустить четырехтактный цикл.
Сгорание — это то, что приводит в действие большинство двигателей. Как роторные, так и поршневые двигатели работают по четырехтактному циклу. Четырехтактный двигатель включает такт впуска, такт сжатия, рабочий такт и такт выпуска. Оба двигателя нуждаются в воздухе, топливе и искре для работы.
Все углы поворота указаны для выходного вала (эксцентрикового вала/коленчатого вала), а не для ротора. Оба двигателя сжигают сжатую топливно-воздушную смесь для развития мощности вращения. Оба двигателя четырехтактные.
Ротор вращается вокруг эксцентрикового вала внутри корпуса. Воздух сжимается вместе с топливом, затем вводится искра , и, наконец, выхлоп выходит через выпускное отверстие.
Однако одно большое различие между ними заключается в том, что реципиент имеет 180 градусов за ход (или 4 x 180 = 720 градусов за термодинамический цикл, это два оборота кривошипа для одного полного четырехтактного цикла в цилиндре), в то время как поворотный имеет 270 градусов за «ход» (или 4 х 270 = 1080 градусов за термодинамический цикл, это три оборота кривошипа за один полный оборот ротора). Да, вам, возможно, придется немного подумать об этом, но поверьте нам, это правда.
Для каждого полного ротора производится в два раза больше импульсов мощности, чем для одного цилиндра. Это означает, что 1,3-литровый двигатель выдает в 1,5 раза больше мощности и крутящего момента, чем двигатель аналогичного объема.
Это имеет хорошие и плохие последствия. Предполагая, что оба двигателя имеют одинаковые максимальные обороты, это означает, что у роторного двигателя есть в 1,5 раза больше миллисекунд для выполнения каждого «хода». Это одна из причин, почему ротарианцы так хорошо дышат — у них больше времени (в миллисекундах), чтобы втянуть и выплюнуть смесь.
У них также больше времени для рабочего хода – реальный плюс для получения максимальной отдачи от выхлопных газов, особенно на высоких оборотах. Теперь плохая часть. У ротора также есть в 1,5 раза больше миллисекунд для передачи тепла от горящей смеси к маслу и воде.
Это одна из причин, по которой вращающиеся устройства тратят больше тепла в процессе охлаждения. Другим последствием является то, что если вы рассматриваете только одну сторону одного ротора, ротор получает только 2/3 от количества импульсов мощности, чем реципиент. Однако на самом деле у каждого ротора есть три боковых стороны, каждая из которых находится в разных точках термодинамического цикла, поэтому каждый полный ротор фактически дает в два раза больше импульсов мощности (в 3 раза 2/3), чем одноцилиндровый реципиент. Смущенный? Найдите минутку, чтобы изучить рисунки 2 и 3 и вникнуть во все это. Суть в том, что 1,3-литровый роторный двигатель развивает мощность и крутящий момент в 1,5 раза больше, чем двигатель аналогичного размера. Это как 2,0-литровый поршневой двигатель.
Иными словами, 2-роторный роторный двигатель имеет такое же количество пусковых импульсов, что и 4-цилиндровый, но поскольку продолжительность каждого пускового импульса составляет 270 градусов, двигатель работает более плавно из-за перекрытия стреляющие импульсы.
Итак, в чем смысл всей этой математики? Ну, смысл в том, чтобы лучше понять, ПОЧЕМУ некоторые вещи так важны для роторного двигателя, особенно теплопередача. Помните, что тепло — это потенциальная мощность, поэтому сохранение тепла в горючей смеси увеличивает мощность, которую вы можете использовать.
К следующему пункту: По сравнению с реципиентом всасываемый заряд (когда он находится внутри двигателя) на самом деле проходит долгий и мучительный путь. На приведенных выше рисунках это показано в деталях.
В реципиенте центр тяжести всасываемого заряда перемещается только на дюйм или два, когда поршень перемещается вперед и назад между верхней мертвой точкой (ВМТ) и нижней мертвой точкой (НМТ). В роторной машине Mazda заряд перемещается на большое расстояние — около 20 дюймов — от впуска до выхлопа. Одним из плохих результатов является то, что существует много квадратных дюймов поверхности, через которую передается тепло, что снижает тепловую эффективность. Однако есть важный момент: вся масса всасываемого заряда должна пройти через узкую область между корпусом ротора и ротором, поскольку каждая боковая сторона ротора проходит через ВМТ. Это стало возможным благодаря «роторной выемке», отлитой в каждой боковой поверхности ротора — если бы не этот путь, частично сгоревшая смесь никогда не смогла бы протиснуться через узкий зазор между корпусом ротора и ротором ( обычно около 0,010 ~ 0,015 дюйма) при высоких оборотах. Существует грубая параллель с поршнем, который имеет «всплывающий» поршень, который стремится разрезать камеру сгорания надвое в ВМТ. Некоторые рецептуры даже прорезают «огневую щель» (выемку) в середине всплывающей области, чтобы она не мешала распространению фронта пламени в камере. По этой и другим причинам форма углубления ротора очень важна. Он также оказывает большое влияние на определение степени сжатия двигателя, и, как указано во всех учебниках по двигателю внутреннего сгорания, степень сжатия является основным фактором, определяющим мощность и эффективность любого двигателя. Собственно, это и указывает на слабое место ротора — максимальная ПРАКТИЧЕСКАЯ степень сжатия определяется не детонацией (как это принято в рецептах), а способностью горящего заряда проходить через разрежение ротора.
Если разрежение слишком маленькое, вблизи задней свечи зажигания создается давление, вызывающее НЕГАТИВНУЮ РАБОТУ! Это может привести к снижению мощности, перегреву задней свечи зажигания и значительному увеличению тепловыделения масла и воды. Таким образом, форма углубления ротора является методом проб и ошибок, чтобы найти наилучший компромисс. Прежде чем мы покинем тему углубления ротора, еще один момент: физическая форма углубления на его передней кромке во многом связана с максимально используемым опережением зажигания. Вы можете понять это лучше, если установите ротор последней модели на 35 градусов BTC, вытащите ведущую свечу зажигания № 1 и посмотрите в отверстие для свечи зажигания. Вы увидите, что изогнутая сторона ротора довольно плотно прилегает к нижней части отверстия свечи зажигания. Если бы в этот момент свеча зажигания воспламенилась, двигатель мог бы дать осечку, потому что фронт пламени мог бы погаснуть (погаснуть) при ударе о поверхность ротора.
Если сейчас повернуть двигатель на 20 градусов BTC, открывается путь для сгорания смеси в разрежении ротора.
Это важная часть причины, по которой почти все двигатели 1974 года и более поздних версий могут работать с опережением зажигания не более чем на 20–25 градусов при высокой мощности (у двигателей более ранних моделей США была очень длинная и неглубокая депрессия, которая позволяла увеличить опережение). Как я объяснял ранее, здесь есть некоторые параллели между роторными двигателями и реципиентами — камера сгорания и конструкция верхней части поршня являются главными проблемами в реципиентах — но есть некоторые отличительные особенности, которые следует учитывать при работе с роторными двигателями.
По правде говоря, вы мало что можете сделать, чтобы изменить форму депрессии сгорания, особенно в двигателях 1989 года и позже с тонкими стенками литья, но вы можете сделать кое-что полезное. Во-первых, вы можете гарантировать, что расстояние от канавки уплотнения вершины до передней кромки углубления сгорания будет одинаковым на всех боковых сторонах всех роторов, чтобы все допускали одинаковое опережение зажигания (отшлифуйте переднюю кромку углубления как надо).
Затем вы можете попытаться уменьшить теплопередачу в ротор, отполировав углубление сгорания и/или покрыв его «теплозащитным» покрытием (Примечание. ротор может удариться о корпус ротора). Многие реципиентные гонщики делают то же самое с поршнями и камерами сгорания по тем же причинам. Я знаю, что тем из вас, кто не очень хорошо знаком с роторными двигателями, будет нелегко разобраться в этой информации, но если вы не понимаете этих основных понятий, другие вопросы (например, синхронизация портов и опережение зажигания) не будут иметь смысла. позже.
Я дам вам еще один предмет для размышления — свечу зажигания. О зажигании роторных двигателей написаны книги, поэтому я коснусь только одной области — теплового диапазона. Для тех, кто этого не знает, роторные двигатели, как правило, используют очень холодные свечи зажигания, то есть свечи, которые хорошо охлаждают свои электроды через водяную рубашку. Этому есть много причин, но одна из наиболее очевидных заключается в том, что, хотя поршневой двигатель имеет горящую смесь вокруг свечи зажигания в течение номинальных 180 градусов (рабочий ход) из 720 полных градусов (или 25% термодинамического цикла время), роторный двигатель имеет горящую смесь вокруг своей ведущей свечи зажигания в течение примерно 70% времени цикла.