Содержание
Энергетическое образование
3. Бензиновые двигатели
Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой.
Четырёхтактный бензиновый двигатель.
Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов. 1. Впуск. В течение этого такта поршень опускается из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ). При этом кулачки распредвала открывают впускной клапан, и через этот клапан в цилиндр засасывается свежая топливно-воздушная смесь. 2. Сжатие. Поршень идёт из НМТ в ВМТ, сжимая рабочую смесь. При этом значительно возрастает температура смеси. Отношение рабочего объёма цилиндра в НМТ и объёма камеры сгорания в ВМТ называется степенью сжатия. Степень сжатия — очень важный параметр, обычно, чем она больше, тем больше топливная экономичность двигателя. Однако, для двигателя с большей степенью сжатия требуется топливо с бо?льшим октановым числом, которое дороже. 3. Сгорание и расширение (рабочий ход поршня). Незадолго до конца цикла сжатия топливовоздушная смесь поджигается искрой от свечи зажигания. Во время пути поршня из ВМТ в НМТ топливо сгорает, и под действием тепла сгоревшего топлива рабочая смесь расширяется, толкая поршень. Степень «недоворота» коленчатого вала двигателя до ВМТ при поджигании смеси называется углом опережения зажигания. Опережение зажигания необходимо для того, чтобы основная масса бензовоздушной смеси успела воспламениться к моменту, когда поршень будет находиться в ВМТ (процесс воспламенения является медленным процессом относительно скорости работы поршневых систем современных двигателей). При этом использование энергии сгоревшего топлива будет максимальным. Сгорание топлива занимает практически фиксированное время, поэтому для повышения эффективности двигателя нужно увеличивать угол опережения зажигания при повышении оборотов.
В старых двигателях эта регулировка производилась механическим устройством (центробежным и вакуумным регулятором воздействующим на прерыватель). В более современных двигателях для регулировки угла опережения зажигания используют электронику. В этом случае используется датчик положения коленчатого вала, работающий обычно по емкостному принципу. 4. Выпуск. После НМТ рабочего цикла открывается выпускной клапан, и движущийся вверх поршень вытесняет отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл начинается сначала. Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.
youtube.com/embed/v29IZ4RFYSk» allowfullscreen=»»>
Устройство двигателя внутреннего сгорания
Рабочий цикл четырехтактного двигателя:
- Впуск. Длится от 0 до 180° поворота распредвала. Открыты впускные клапаны. При впуске поршень движется вниз от верхней мертвой точки, открыт впускной клапан. В цилиндре образуется разрежение, за счёт которого в него засасывается порция топливно-воздушной смеси. При наличии нагнетателя смесь нагнетается в цилиндр под давлением.
- Сжатие. 180 — 360° поворота распредвала. Все клапаны закрыты. Поршень движется вверх к так называемой «верхней мертвой точке» (ВМТ), при этом заряд сжимается поршнем до давления степени сжатия. За счёт сжатия достигается большая удельная мощность, чем могла бы быть у двигателя, работающего при атмосферном давлении, за счёт того, что в небольшом объёме заключен весь заряд рабочей смеси. Кроме того, повышение степени сжатия позволяет добиться повышения КПД двигателя.
- Рабочий ход. 360 — 540° распредвала. Свеча поджигает сжатую топливно-воздушную смесь, в результате происходит маленький взрыв, толкающий поршень вниз цилиндра. Происходит движение поршня в сторону нижней мёртвой точки (НМТ) под давлением горячих газов, передаваемого поршнем через шатун коленчатому валу.
- Выпуск. 540 — 720° поворота распредвала. Открываются выпускные клапаны, поршень движется в сторону верхней мёртвой точки, вытесняя выхлопные газы. Происходит очистка цилиндра от отработавшей смеси.
Рабочий цикл четырехтактного двигателя.
Ремень ГРМ. Это резиновый ремень, соединяющий коленвал и распредвалы двигателя. Распредвалов обычно два — впускной и выпускной. Впускной управляет открытием клапанов на впуск, выпускной соответственно — выхлоп. Коленвал вращается за счет поршней через связующие ремни. Это происходит по тому же принципу, что и вращение шестерни велосипеда. Распредвал открывает клапаны с помощью кулачкового механизма в верхней точке движения поршня (ВМТ), поэтому необходимо синхронизировать вращения распределительного и коленчатого валов. Этой цели служит ремень ГРМ. Посредствам зубцов он приводит в движение шкивы (распределительные шестерни) обоих валов и регламентирует их вращение. Ремень ГРМ меняется по регламенту производителя при пробеге, в зависимости от рекомендаций каждые 50000 км пробега. Обрыв ремня приводит к рассинхронизации работы клапанов и цилиндров, что приводит чаще всего к загибанию клапанов и выходу двигателя из строя. На некоторых моделях ремень заменяет цепь ГРМ. Замена цепи требуется обычно реже, чем замена ремня, поскольку цепь больше ресурсоемка, однако она имеет свойство растягиваться, что также приводит к рассинхронизации работы двигателя. Своевременная замена цепи или ремня ГРМ — важная и необходимая процедура обслуживания двигателя.
Головка блока цилиндров (ГБЦ) и блок цилиндров. Верхняя часть двигателя соединяется с блоком цилиндров по определенным точкам. Так как в места соединения очень сильно нагружены во время работы двигателя, то соединяются они через специальную прокладку, называемую прокладкой ГБЦ, во избежание повреждения корпуса двигателя. Со временем прокладка имеет теряет свои герметичные свойства и требуется ее замена. Для этого двигатель разбирается, старая прокладка удаляется, корпус чистится и устанавливается новая прокладка. Данная деталь одноразовая, ставится один раз и не подлежит ремонту, только замена. Протечка прокладки может привести к перегреву, попаданию лишнего воздуха в камеру сгорания, прогоранию клапанов и выходу двигателя из строя. Также может произойти смещение ГБЦ и блока цилиндров, что приводит к заклиниванию поршней. Восстановление двигателя после такой поломки — очень дорогостоящая операция.
Коленчатый вал. Основной вал двигателя, преобразующий толкающее движение поршней во вращение маховика, которое передается на колеса через трансмиссию. Находится чуть ниже блока цилиндров в картере, устанавливлен на так называемых вкладышах, которые предохраняют картер от механических повреждений. Наиболее распространенная поломка — прикипание вкладышей к коленвалу и последующее их проворачивание, что приводит к зазорам на валу и последующему разрушению картера. Наиболее частая причина — утечка масла.
Число оборотов в минуту (RPM). Если Ваш двигатель работает с частотой 3000 об/мин (по показаниям тахометра), это означает 50 полных оборотов коленчатого вала в секунду! Эксплуатация двигателя на повышенных оборотах приводит к перегреву и выходу его из строя.
Упрощенная схема работы четырехцилиндрового двигателя.
Топливные инжекторы (на старых автомобилях — карбюраторы) управляют впрыском топлива в цилиндры в определенный момент. Подача топлива в цилиндры управляется электронным блоком управления и различными датчиками, такими как датчик положения дроссельной заслонки, датчик коленвала, датчик температуры и другими. Основная задача — обеспечить впрыск определенного количества топлива в определенный цилиндр в момент, определенный зажиганием. Выход из строя одного из компонентов системы может привести к некорректной подаче топлива в цилиндры, что приводит в лучшем случае к остановке работы одного или нескольких цилиндров, а то и вовсе прекращению его работы.
Октановое число — показатель, характеризующий детонационную стойкость топлива (способность топлива противостоять самовоспламенению при сжатии) для ДВС. Если из выхлопной трубы валит черный дым, а двигатель издает резкие звуки, это означает, что бензин в цилиндрах вместо сгорания начинает взрываться. Стук в двигателе создаётся волнами давления, возникающими при быстром сгорании смеси и отражающимися от стенок цилиндра и поршня. При этом снижается мощность двигателя и ускоряется его износ, а при возникновении детонационных волн двигатель может быть повреждён или разрушен. Использование не рекомендуемого производителем автомобиля бензина может привести к печальным последствиям и выходу двигателя из строя. Бензин с высоким октановым числом обычно требуется для форсированных двигателей, с более высокой компрессией, для предотвращения самовозгорания топлива.
Топливная система.
Соотношение топлива к кислороду должно быть 1:14. Воздушный фильтр очищает входящий поток воздуха от грязи и пыли. Недостаток, как и переизбыток подачи воздуха в цилиндры приводит к ухудшению качества воздушно-топливной смеси, что может привести к неправильной работе двигателя и последующему выходу его из строя. Поэтому важна своевременная замена фильтра и недопущение засора впускного коллектора для нормальной работы двигателя. Турбинные двигатели отличаются тем, что нагнетание воздуха в цилиндры происходит принудительно.
Воздушная система.
Моторное масло смазывает движущиеся части, очищает, предотвращает коррозию и охлаждает детали двигателя, предотвращая перегрев и увеличивая износостойкость деталей. Маслонасос обеспечивает ток масла по масляным магистралям, поддерживая необходимое давление внутри магистралей. Масляный фильтр очищает масло от инородных элементов, предотвращая их попадание внутрь двигателя. Основная масса масла содержится в картере, или масляном поддоне. Именно там Вы проверяете уровень масла в Вашем двигателе. Поршневые кольца предотвращают попадание масла внутрь камеры сгорания, обеспечивая при этом смазку цилиндры тонким слоем масла. Появление черного дыма из выхлопной трубы и запаха горелого масла означает попадание масла в цилиндры, обычно это означает износ маслосъемных колпачков и поршневых колец. Выход из строя одного или нескольких компонентов масляной системы двигателя приводит к перегреву двигателя, снижению ресурса трущихся деталей и выходу двигателя из строя, что приводит к дорогостоящему капитальному ремонту.
Масляная система.
Во время работы двигатель сильно нагревается. Система охлаждения рассеивает выделяемое тепло, отводя его от двигателя. Теплоотводы представляют собой полости в ГБЦ и самом блоке цилиндров. Помпа (насос) системы охлаждения заставляет циркулировать охлаждающую жидкость по системе охлаждения. Радиатор состоит из металлических труб, окруженных плаcтинами. Горячая охлаждающая жидкость из двигателя попадает в трубы радиатора, где охлаждается воздухом от вентилятора радиатора. Из радиатора охлажденная жидкость подается обратно в двигатель, обеспечивая непрерывную циркуляцию и охлаждение. В качестве охлаждающей жидкости обычно используется антифриз, разбавленный с водой. (В магазинах обычно продается уже готовый раствор). Реже используется тосол. Температура кипения антифриза около 1973 градусов по Цельсию. Температура замерзания — минус 12.7 градусов по Цельсию. Антифриз позволяет предотвратить закипание и замерзание охлаждающей жидкости в двигателе. Остановка вентилятора, пробитый радиатор и, как следствие — утечка антифриза и прекращение циркуляции охлаждающей жидкости в двигателе ведет к быстрому перегреву и выходу двигателя из строя, что в свою очередь приводит к дорогостоящему капитальному ремонту.
Система охлаждения.
Распределитель зажигания управляет подачей заряда на свечи в определенный период времени в определенном порядке, обеспечивая последовательную работу цилиндров. В каждый момент времени срабатывает зажигание только в одном цилиндре. Свечи накаливания передают электрическую искру в цилиндры, поджигая воздушно-топливную смесь. Свеча состоит из внешнего и внутреннего электродов, разделенных керамическим изолятором. Искра возникает в нижней части свечи между двумя электродами. Стартер запускает двигатель, проворачивая маховик, что приводит в движение цилиндры. В это же время подается зажигание и начинается работа двигателя. Генератор конвертирует механическую энергию в электричество, заряжая аккумулятор и поддерживает электрические системы автомобиля в рабочем состоянии во время работы двигателя. Аккумулятор питает электрические системы автомобиля и служит для запуска двигателя. Выход из строя одного или нескольких компонентов системы электрообеспечения приводит к прекращению подачи электричества двигателю, что приводит к его остановке.
Система зажигания.
Выхлопной коллектор отводит отработанные газы от двигателя. Катализатор снижает выброс вредных веществ в отработанных газах. Глушитель гасит шум, производимы двигателем.
Выхлопная система.
Наружный ремень двигателя используется для управления и питания периферийного оборудования двигателя, такого как водяная помпа, генератор, система охлаждения и многого другого. Обрыв ремня чаще всего приводит к прекращению работы генератора, что приводит к обесточиванию автомобиля, поскольку аккумулятор перестает заряжаться во время работы двигателя.
Общая модель.
Рабочий цикл двухтактного двигателя.
В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи НМТ поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра. Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработанные газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх часть свежей смеси вытолкнутой из выпускного коллектора засасывается назад в кривошипную камеру. Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако, полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском.
Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза. Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.
Процесс сгорания топлива в двигателе
СОДЕРЖАНИЕ:
- Сгорание рабочей смеси в двигателях с искровым зажиганием
- Влияние степени сжатия
- Влияние угла опережения зажигания
- Влияние состава рабочей смеси
- Влияние частоты вращения коленчатого вала
- Детонация
- Преждевременное воспламенение рабочей смеси
- Воспламенение от сжатия при выключенном зажигании
- Сгорание рабочей смеси в дизелях
- Период задержки воспламенения
При сгорании рабочей смеси в поршневых двигателях увеличивается температура и повышается давление в цилиндрах. Для повышения эффективности работы двигателя желательно, чтобы сгорание происходило вблизи в. м.т. поршня, когда рабочая смесь занимает минимальный объем, имеет наименьшую поверхность соприкосновения со стенками цилиндра. Чем меньше поверхность теплоотвода, тем меньше тепла уходит в окружающую среду и тем большая доля его превращается в полезную работу.
Смесь сгорает не мгновенно, а в течение некоторого времени. Продолжительность и характер протекания процесса сгорания зависят от типа смесеобразования. Рассмотрим процесс сгорания рабочей смеси для двигателей с искровым зажиганием и для дизелей.
Сгорание рабочей смеси в двигателях с искровым зажиганием
О протекании процесса сгорания можно судить по индикаторным диаграммам, показывающим графически изменение давления Р в цилиндре в зависимости от угла ф поворота коленчатого вала. Площадь индикаторной диаграммы пропорциональна работе, совершенной при сгорании рабочей смеси внутри цилиндра за один цикл. Если зажигание выключено, то давление в цилиндре при вращении коленчатого вала изменяется почти симметрично относительно в. м.т. (нижняя кривая). Для нормальной работы двигателя зажигание должно включаться тогда, когда должна возникнуть искра между электродами свечи. Момент искрообразования соответствует положению точки 1 на диаграмме, а давление в камере сжатия — ординате P1.
Рис. Индикаторная диаграмма карбюраторного двигателя: ф3 — угол опережения зажигания; Q1 — начальная фаза сгорания; Q2 — основная фаза сгорания; Q3 — завершающая фаза сгорания; 1 — начало образования искры; 2 — начало отрыва линии сгорания от линии сжатия; 3 — момент достижения максимального давления в цилиндре.
Процесс сгорания условно делят на три фазы.
Начальная фаза — Q1 начинается в момент образования искры. Возле электродов свечи зажигания воспламеняется небольшой объем рабочей смеси. Она горит сравнительно медленно. Давление в цилиндре на протяжении этого периода остается практически таким же, как и при выключенном зажигании.
Заканчивается первая фаза тогда, когда сгорает 6…8% общего объема смеси, находящейся в камере сгорания. Температура повышается настолько, что начиная от точки 2 давление резко возрастает, наступает основная фаза быстрого сгорания (участок 2… 3). Скорость распространения пламени в средней части камеры сгорания достигает 60…80 м/с. Вдоль стенок камеры скорость сгорания ниже, а сгорание — неполное. Продолжительность второй фазы для быстроходных двигателей составляет 25…30° угла поворота коленчатого вала. В этой фазе выделяется основная часть тепла.
Третья фаза Q3 — фаза сгорания смеси на периферийных участках камеры в такте расширения. За начало этой фазы принимают точку 3. Давление в цилиндре в этот момент будет максимальным.
От интенсивности тепловыделения в основной фазе зависит скорость нарастания давления по углу поворота коленчатого вала, или, иначе, жесткость работы двигателя. В современных автомобильных двигателях скорость повышения давления колеблется в пределах 0,12…0,25 МПа на 1° угла поворота вала. Чем круче нарастает давление на участке 2..3, тем жестче работает двигатель и тем больше износ кривошипно-шатунного механизма.
Продолжительность первой фазы зависит от ряда факторов.
Чем ближе величина коэффициента избытка воздуха а к оптимальному значению, тем лучше состав смеси и тем короче продолжительность первой фазы. При значительном обеднении смеси воспламенение ее ухудшается и экономичность работы двигателя снижается. Чем мощнее искровой разряд, тем интенсивнее распространение пламени и тем короче первая фаза.
На продолжительность второй фазы сгорания оказывают влияние те же факторы, что и на продолжительность первой фазы. Кроме того, вторая фаза зависит от величины угла опережения зажигания и частоты вращения коленчатого вала.
Влияние степени сжатия
При изменении степени сжатия Е изменяется качество подготовленности рабочей смеси к сгоранию. Степень сжатия может быть нарушена неправильно подобранной толщиной прокладки, устанавливаемой между головкой цилиндров и блоком, при срезании плоскости головки цилиндра или поршня, изменении длины шатуна или радиуса кривошипа в процессе ремонта.
Увеличение степени сжатия по сравнению с оптимальным значением сопровождается повышением жесткости работы двигателя и максимального давления сгорания.
Снижение величины Е замедляет процесс сгорания и ухудшает экономичность работы.
Влияние угла опережения зажигания
Рис. Влияние угла фз, опережения зажигания на форму индикаторной диаграммы карбюраторного двигателя: 1 — ф1 = 0°; 2 — ф2 = 7°; 3 — ф3 = 22°; 4 — ф4 = 27°.
Величину угла опережения зажигания фз устанавливают при конструировании двигателя. Оптимальное его значение указывают в руководстве по эксплуатации. Нарушение этого угла ведет к ухудшению процесса сгорания и снижению эксплуатационных показателей двигателя.
При уменьшении угла опережения (запаздывании зажигания) период задержки воспламенения увеличивается. В результате этого рабочая смесь сгорает после прохождения поршнем в.м.т., когда объем над ним увеличится. Это приводит к увеличению поверхности теплоотдачи и снижению вихревых движений в камере. Так, например, при оптимальном значении угла фз опережения зажигания, равном 27° до в.м.т., максимальное давление сгорания Pz равно 4 МПа и находится у в.м.т. По мере запаздывания зажигания, в нашем случае при фз = 0°, давление сгорания снижается до 2,6 МПа и смещается в сторону запаздывания.
Вследствие этого двигатель перегревается, а мощность и экономичность его снижаются. Оптимальное значение угла опережения зажигания для данного двигателя составляет 22° (кривая 5). При этом ф3 рабочая смесь хорошо подготовлена к сгоранию, вихревые движения обеспечивают перемешивание горючей смеси. Все это способствует наиболее полному сгоранию топлива вблизи в.м.т., когда объем камеры минимальный.
Влияние состава рабочей смеси
Состав рабочей смеси оценивается коэффициентом избытка воздуха а. Состав влияет на скорость сгорания, количество выделяемого тепла, вследствие чего изменяются давление и температура газов в цилиндре. Минимальное значение угла опережения зажигания, периода задержки воспламенения и максимальное давление в цилиндре достигаются при а =0,85…0,9. При этом значении коэффициента избытка воздуха двигатель развивает максимальную мощность. По мере обеднения состава смеси (а>0,9) изменяется величина оптимального значения Фз, уменьшается величина максимального давления сгорания.
Для каждого двигателя принят свой оптимальный состав рабочей смеси, при котором на данном режиме достигается минимальный удельный расход топлива. Для двигателей со степенью сжатия около 8 при почти полном открытии дроссельной заслонки экономичный состав смеси получается при и =1,15…1,2. Для каждого скоростного и нагрузочного режима работы двигателя с искровым зажиганием существует также свое оптимальное значение угла опережения зажигания. Поэтому в конструкции таких двигателей предусмотрено устройство, обеспечивающее автоматически в зависимости от режима работы двигателя оптимальное значение ф3.
Влияние частоты вращения коленчатого вала
Рис. Влияние частоты вращения n и угла фз, опережения зажигания на характер индикторных диаграмм карбюраторного двигателя: а — угол фз — неизменный на всех скоростных режимах; б — углы ф2 и ф3 — подобраны для каждого скоростного режима: 1 — n = 1000 об/мин; 2 — n = 2000 об/мин; 3 — n = 3000 об/мин.
При увеличении частоты вращения n коленчатого вала увеличивается скорость движения топливовоздушной смеси во впускном трубопроводе и усиливаются вихревые движения смеси в камере сжатия. Опыты показывают, что с увеличением n длительность первой фазы Q1 сгорания, выраженная в градусах угла поворота коленчатого вала Ф, возрастает, процесс сгорания развивается с запаздыванием. Максимальное давление Р цикла снижается и все больше смещается на такт расширения. Экономичность двигателя ухудшается. Если же при увеличении n увеличить на определенную величину фз, то основная фаза сгорания приблизится к в.м.т., давление Р цикла увеличится, и несмотря на то, что третья фаза сгорания (догорание) заканчивается позже, чем при меньших значениях n, экономичность цикла улучшается (кривые 3 к 1, рис. б). Следовательно, для получения максимальной мощности и эффективности двигателя необходимо автоматически обеспечивать оптимальное значение угла опережения зажигания для каждого скоростного режима.
Детонация
В двигателях с искровым зажиганием при определенных условиях работы двигателя возникает быстрый, приближающийся к взрыву процесс сгорания рабочей смеси. Называется он детонацией. Признаки, указывающие на детонацию при работе двигателя: звонкие металлические стуки в цилиндрах, перегрев двигателя, снижение мощности, появление черного дыма (сажи) в отработавших газах.
Основные причины появления детонации:
- применение топлива, октановое число которого ниже рекомендованного для данного двигателя;
- повышение степени сжатия, вызванное низким качеством ремонта или обслуживания;
- увеличение угла опережения зажигания; качество рабочей смеси не соответствует требованиям, которые предъявляются к топливу для данного двигателя. Наиболее склонна к детонации рабочая смесь при а = 0,9.
На появление детонации также влияет материал головки цилиндров и поршней. Двигатели, у которых эти детали изготовлены из алюминиевых сплавов, меньше склонны к детонации, чем двигатели, у которых эти детали изготовлены из чугуна. Так как чугун обладает худшей теплоотдачей, то в жаркую погоду детали перегреваются, и это приводит к детонации.
Детонация повышает давление и температуру в цилиндрах, вызывает вибрацию двигателя. Вследствие этого ухудшается смазка трущихся поверхностей, обгорают клапаны, поршни, разрушаются подшипники коленчатого вала.
Преждевременное воспламенение рабочей смеси
В процессе работы двигателя иногда возникают такие условия, при которых отдельные детали внутри камеры сгорания (электроды свечи зажигания, клапаны) нагреваются выше 700…800°С. Соприкасаясь с нагретыми деталями, рабочая смесь воспламеняется раньше, чем возникает искра зажигания. Сгорание начинается до прихода поршня в в.м.т. Происходит так называемое калильное зажигание. Детали при калильном зажигании нагреваются еще больше. Воспламенение смеси при последующих циклах начинается еще раньше. В результате детали настолько перегреваются, что начинают оплавляться, увеличивается сопротивление их движению, и двигатель теряет мощность. Одной из причин возникновения калильного зажигания является применение свечей зажигания, не соответствующих конструкции двигателя.
Воспламенение от сжатия при выключенном зажигании
При работе двигателей наблюдаются случаи, когда после того, как выключено зажигание, двигатель продолжает некоторое время работать. Объясняется это тем, что при прикрытой дроссельной заслонке температура рабочей смеси в конце такта сжатия повышается и смесь самовоспламеняется, если частота вращения коленчатого вала прогретого двигателя составляет 300…400 об/мин. Чтобы предотвратить это явление, в конструкцию карбюратора вводят устройство, которое автоматически прекращает подачу топлива при выключении зажигания.
Сгорание рабочей смеси в дизелях
Рис. Индикаторная диаграмма дизеля: Q1 , Q2 и Q3 — фазы сгорания топлива; Фвц — угол опережении впрыска топлива.
Топливо впрыскивается в камеру сгорания дизеля за несколько градусов угла фвп поворота коленчатого вала до прихода поршня в в. м.т. К этому времени воздух в камере сжимается до 3…4 МПа и нагревается в результате этого до 450…550°С. Заканчивается подача топлива после в.м.т. На участке 1…2 давление в камере изменяется за счет сжатия воздуха поршнем — горение топлива еще не началось. Температура в камере немного понижается вследствие ввода в камеру холодного топлива. Затем топливо самовоспламеняется, пламя начинает распространяться по камере, и давление, начиная от точки 2, повышается за счет горения топлива. Угол фвп между началом впрыска (точка 1) и в.м.т. называется углом опережения впрыска. Угол Qi между началом впрыска и моментом начала подъема давления (точка 2) называется периодом задержки воспламенения. В этот период топливо под действием температуры и вихревых движений в камере переходит из жидкого состояния в газообразное, появляются отдельные очаги самовоспламенения.
Период сгорания топлива в цилиндре дизеля условно делят на три фазы:
- первая фаза Q1 — фаза быстрого сгорания. Начинается в момент начала повышения давления (точка 2) и кончается в момент достижения максимального давления в цилиндре (точка 3).
В этот период выделяется около 30% общего тепла, заключенного во впрыскиваемом в цилиндр дизеля топливе;
- вторая фаза Q2 — фаза замедленного горения (участок 3…4). Она заканчивается в момент достижения максимальной температуры в цилиндре (точка 4). К этому периоду выделяется 70…80% тепла;
- третья фаза Q3 — фаза догорания. Условно она заканчивается в пределах 70° угла поворота коленчатого вала после в.м.т. К этому периоду выделяется около 97% тепла. Процесс является наиболее экономичным, если давление цикла в дизеле достигает своего максимума при повороте коленчатого вала на 6…10° после в.м.т.
Величина максимального давления Pz и момент достижения его зависят от того, как протекает сгорание в первой и во второй фазах.
Экономичность цикла зависит от характера и продолжительности протекания процесса подготовки топлива к самовоспламенению (период Qi — задержки самовоспламенения) и характера сгорания (первая Q1, вторая Q2 и третья Q3 фазы сгорания).
Период задержки воспламенения
За этот период в камеру сгорания поступает незначительная часть впрыскиваемого за цикл топлива. На индикаторной диаграмме в течение этого периода не наблюдается заметных изменений в протекании линии сжатия: давление в цилиндре продолжает увеличиваться так, как будто топливо не поступает в него. При увеличении Qi в камере сгорания к моменту воспламенения накапливается много топлива. Это повышает жесткость работы дизеля. Продолжительность периода задержки воспламенения зависит от следующих основных факторов: качества топлива, угла опережения впрыска топлива, давления и температуры сжатого воздуха в момент начала впрыска топлива, давления начала впрыска, нагрузки на дизель и частоты вращения коленчатого вала.
Рассмотрим влияние каждого фактора на величину Qi.
Химический состав дизельного топлива сильно влияет на продолжительность Qi. Лучшими дизельными топливами являются топлива парафинового ряда, обладающие более высоким цетановым числом и обеспечивающие наименьшую продолжительность Qi и мягкую работу дизеля.
Для каждой конструкции дизеля принят свой угол опережения впрыска топлива фвп. Оптимальное его значение зависит от нагрузки, теплового режима, частоты вращения коленчатого вала, давления и температуры воздуха. При увеличении фвп топливо, впрыскиваемое в камеру сгорания, попадает в холодную среду с низким давлением, т. е. меньшей объемной концентрацией кислорода. Воспламенение топлива вследствие этого задерживается. В цилиндре накапливается топливо, которое сгорает до прихода поршня в в.м.т. Это вызывает повышение жесткости работы дизеля и давления Pz. При малой величине фвп топливо сгорает не полностью, ббльшая его часть сгорает в процессе расширения (в третьей фазе), увеличивается теплоотдача в стенки цилиндров, мощность дизеля снижается.
Увеличение давления и температуры сжатого воздуха в момент начала впрыска способствуют более раннему самовоспламенению топлива, сокращению периода задержки воспламенения, более мягкой работе двигателя.
Увеличение давления начала впрыска приводит к дополнительному запаздыванию начала впрыска, сокращается продолжительность впрыска. При уменьшении давления начала впрыска ухудшается качество распыливания топлива и смесеобразования, что приводит к ухудшению рабочего процесса.
Увеличение нагрузки сопровождается большей подачей топлива за цикл, улучшаются условия подготовки рабочей смеси к сгоранию. Следовательно, продолжительность Qi с увеличением нагрузки сокращается.
Частота вращения коленчатого вала n влияет следующим образом на величину Qi. При изменении n изменяются фвп, давление и продолжительность впрыска топлива, качество его распыливания. Давление и температура воздуха в камере сжатия к моменту начала впрыска также изменяются. На быстроходных дизелях, предназначенных для работы с часто меняющимися скоростными режимами, устанавливают устройства, обеспечивающие автоматическое изменение величины фвп при изменении n.
Из сказанного видно, что момент начала впрыска и период задержки воспламенения оказывают большое влияние на процесс сгорания, на мощность и экономичность дизелей. Поэтому при их эксплуатации эти показатели надо поддерживать в заданных пределах.
Средняя скорость нарастания давления на участке 2…3 определяет жесткость работы дизеля. Ее считают нежесткой, если средняя скорость нарастания давления дельта_Р/дельта_ф не превышает 0,5 МПа на 1° угла поворота коленчатого вала.
Чем больше поступает топлива в цилиндр в течение периода Qi задержки воспламенения, тем жестче работа двигателя и тем большей величины достигает максимальное давление сгорания Рz.
Характер поступления топлива определяется профилем кулачка, диаметром и величиной хода плунжера топливного насоса, конструкцией дизеля и качеством топлива. Так, например, применение бензина вместо дизельного топлива вызывает появление ударных волн и вибрацию давления в цилиндре дизеля.
Основы работы с поршневыми двигателями — Учебная академия FSAC
Необходимые знания:
Нет
Поршневые двигатели используются в самых разных самолетах, от однодвигательных самолетов авиации общего назначения до четырехдвигательных коммерческих самолетов. Они бывают разных аранжировок, но все они имеют одни и те же основные принципы. В этой статье мы рассмотрим, как работают поршневые двигатели и какие формы они могут принимать.
Цилиндр
Сердцем всех поршневых двигателей являются цилиндры. В цилиндрах генерируется вся мощность двигателя, и они содержат несколько ключевых компонентов. Внутри цилиндра воспламеняются топливо и воздух, и сила сгорания используется для приведения в действие пропеллера. Важно отметить, что когда топливо и воздух сгорают внутри цилиндра, это не взрыв, а постепенное и прогрессирующее сгорание топлива. Явление взрыва топлива/воздуха, а не контролируемого сгорания, известно как детонация, и оно обсуждается ниже.
|
- Коленчатый вал: Вал, приводимый в движение поршнем, обычно соединенный с гребным винтом и другими вспомогательными системами.
- Поршень: Часть узла, которая перемещается вверх и вниз. Сила сгорания — это то, что заставляет цилиндр опускаться, что затем вращает коленчатый вал. Поршень соединен с коленчатым валом через Шатун, кривошип, шатун и поршневой палец .
- Поршневые кольца: Кольца, расширяющиеся для герметизации зазора между поршнем и стенкой цилиндра, чтобы удерживать продукты сгорания, содержащиеся в камере сгорания.
- Картер: Нижняя часть всего узла, в которой находятся коленчатый вал, кривошип и шатун.
- Свечи зажигания: Создают искру, которая используется для воспламенения топливно-воздушной смеси в определенное время.
При работающем двигателе в цилиндре одновременно происходит множество процессов. Ниже приводится хронологическое объяснение того, что именно происходит внутри цилиндра:
Современные авиационные двигатели классифицируются как четырехтактные двигатели , что означает, что каждый «цикл» в цилиндре состоит из четырех основных ходов поршня (два, когда поршень движется вниз, и два, когда он движется вверх ). Эти четыре штриха следующие:
- Впуск: Во время такта впуска поршень движется вниз. Впускной кулачок толкает впускной клапан в открытое положение, и топливно-воздушная смесь всасывается в камеру сгорания, пока поршень продолжает двигаться вниз.
- Сжатие : Во время такта сжатия впускной клапан закрывается. Поршень начинает подниматься и сжимает топливно-воздушную смесь в камере сгорания.
- Мощность: Рабочий такт — это когда свеча зажигания генерирует искру, которая воспламеняет воздушно-топливную смесь сразу после того, как поршень снова начинает двигаться вниз. Когда газы сгорают, они расширяются, толкая поршень вниз.
- Выхлоп: Когда поршень снова начинает двигаться вверх, выпускной кулачок открывает выпускной клапан, позволяя отработавшим газам выйти из камеры сгорания. Когда поршень снова начинает двигаться вниз, выпускной клапан закрывается, и снова начинается четырехтактный цикл.
Поршневые двигатели также известны как «поршневые» из-за всего этого (движение поршней вверх и вниз).
Во время каждого четырехтактного цикла коленчатый вал совершает два оборота, а распределительный вал — один оборот. Это означает, что когда двигатель работает со скоростью двенадцать сотен оборотов в минуту (об/мин), коленчатый вал вращается двадцать раз в секунду. Распределительный вал будет вращаться со скоростью десять раз в секунду, и за эту секунду произойдет десять из четырех тактов (что соответствует сорока тактам за эту секунду).
Дело в том, что все происходит очень быстро, и время должно быть точным, чтобы все шло гладко.
В большинстве самолетов с поршневыми двигателями коленчатый вал соединен непосредственно с воздушным винтом, что означает, что воздушный винт вращается с той же скоростью, что и коленчатый вал.
Устройство двигателя
Одного цилиндра недостаточно для выработки мощности, достаточной для вращения гребного винта и питания любых вспомогательных устройств (например, генератора переменного тока для выработки электроэнергии). Большинство самолетов авиации общего назначения имеют двигатели с четырьмя цилиндрами. DC-6 имел четыре двигателя по восемнадцать цилиндров в каждом. Производители могут расположить цилиндры в двигателе несколькими способами.
Горизонтально-противоположные: В горизонтально-противоположном расположении половина цилиндров размещена с одной стороны, а остальные цилиндры расположены с другой стороны. Все цилиндры находятся в одной плоскости (все горизонтальны, следовательно, горизонтально, напротив). Справа изображение четырехцилиндрового двигателя Lycoming O-235, используемого для установки на Cessna 152. В O-235 используется горизонтально-оппозитный двигатель с двумя цилиндрами с одной стороны и двумя с другой. |
Радиальный: В радиальных двигателях все цилиндры установлены по кругу. Это позволяет установить больше цилиндров, чем при горизонтально расположенном расположении, а тот факт, что все цилиндры расположены спереди, означает, что все они лучше охлаждаются (двигатели с воздушным охлаждением, расположенные горизонтально-оппозитно, могут иметь проблемы с перегревом цилиндров сзади из-за они не получают большого потока воздуха). |
Ненормальная работа поршневого двигателя
Детонация
Детонация происходит, когда топливно-воздушная смесь сгорает взрывообразно, а не постепенно в камерах сгорания. При нормальной работе горение топливно-воздушной смеси представляет собой контролируемое поступательное горение, начинающееся с верхней части камеры сгорания у свечи зажигания и двигающееся вниз. Детонация — это когда топливно-воздушная смесь воспламеняется одновременно, создавая чрезмерную силу, которая может повредить компоненты двигателя и в конечном итоге привести к катастрофическому отказу двигателя.
Детонация может быть вызвана несколькими факторами, такими как перегрев двигателя или неправильное топливо. Топливо обычно классифицируется по октановому числу . Топливо с более высоким октановым числом может выдерживать более высокое давление в камере сгорания и, следовательно, с меньшей вероятностью детонирует.
Предварительное зажигание
Преждевременное зажигание происходит, когда топливно-воздушная смесь воспламеняется преждевременно, когда поршень еще находится в такте сжатия. Во время такта сжатия поршень движется вверх, поэтому наличие топливно-воздушной смеси в этой точке приведет к удару поршня вниз, пока он все еще пытается двигаться вверх. Это также может привести к резкому отказу двигателя.
Преждевременное зажигание может быть вызвано перегревом двигателя, некачественным топливом или минеральными отложениями в двигателе. Со временем углерод, свинец и другие минералы могут накапливаться внутри цилиндров, которые сильно нагреваются во время работы двигателя. Эти горячие точки могут воспламенить топливо до того, как сработает свеча зажигания, вызывая преждевременное зажигание. Эти минеральные наросты обсуждаются более подробно в следующей статье.
Вот и все основы работы с поршневыми двигателями! В следующей статье системы зажигания будут рассмотрены более подробно.
Узнайте, как работают поршневые двигатели Знание некоторых общих принципов работы двигателя эксплуатация помогает пилотам эффективно управлять двигателями, продлевает срок службы силовой установки и помогает избежать отказов двигателя. Основные принципы работы поршневых двигателей Наиболее распространены поршневые двигатели с возвратно-поступательным движением. силовые установки на самолетах авиации общего назначения. Эти двигатели практически идентичны автомобильным двигателям, за тремя важными исключениями:
Четырехтактный цикл Типичный поршневой двигатель работает по четырехтактный цикл. Впуск: Поршень движется вниз в цилиндр, всасывающий воздух и топливо через открытый впускной клапан. Компрессия: Клапаны впускные и выпускные в цилиндр закрывается и поршень движется вверх в цилиндр, сжимающий топливно-воздушную смесь. Мощность: Когда поршень приближается к верхней части цилиндра на такте сжатия, разрыв электричество от системы зажигания генерирует искру в свечах зажигания. смесь, которая быстро расширяется при горении. Сила этого расширения толкает поршень обратно вниз в цилиндр. При движении поршня вниз он поворачивает коленчатый вал, который вращает гребной винт. Выхлоп: Когда поршень достигает дна цилиндра открывается выпускной клапан. поршень затем возвращается в цилиндр, выталкивая сгоревший топливно-воздушной смеси из цилиндра. Каждый цилиндр выполняет эти четыре такта за оборот, следя за тем, чтобы хотя бы один поршень всегда производящая мощность. Карбюраторы и топливные форсунки Большинство поршневых двигателей, используемых в самолетах, имеют карбюратор или система впрыска топлива для подачи топлива и воздуха в цилиндры. Карбюратор смешивает топливо и воздух до того, как он попадет в цилиндры. на меньших двигателях, потому что они относительно недорогой. Более крупные двигатели обычно имеют впрыск топлива. системы, которые впрыскивают топливо прямо в цилиндры, где он смешивается с воздухом во время всасывания гладить. Системы зажигания Система зажигания обеспечивает искру для воспламенения воздушно-топливной смеси в цилиндрах поршневого двигателя. Большинство современных авиационных двигателей используют магнето для генерации Искра. Хотя и не такой изощренный, как электронные системы зажигания, применяемые в новейших автомобилях, Магнето полезны в самолетах, потому что:
Начало работы Магнето вырабатывают электричество при вращении. Итак, чтобы запустить двигатель, пилот должен включить аккумуляторный стартер, который вращает коленчатый вал. После того, как магнето начинают вращаться, они подают искра на каждый цилиндр для воспламенения воздушно-топливной смеси и система запуска отключена. Батарея нет больше не принимает участия в работе двигателя. Если выключатель батареи (или главный) выключен, двигатель продолжает работать. Двойное зажигание Большинство авиационных двигателей оснащены двойным зажиганием. система — два магнето, питающих электричеством тока на две свечи зажигания на каждый цилиндр. Один система магнето подает ток на один набор заглушки; вторая система подает ток на другой комплект заглушек. Cessna Skyhawk SP Model 172 (отмечен как MAGNETO на некоторых самолетах) имеет пять позиций: ВЫКЛ , л ( слева ), р ( справа ), ОБА , и СТАРТ . С переключатель в положении L или R , только один магнето подает ток и только один комплект искры пробки загораются. С выключателем ОБА положение, оба магнето подают ток и оба набора свечи горят. Преимущества двойного зажигания Самолеты имеют двойную систему зажигания для безопасности и эффективность.
Управление системой зажигания Вы должны повернуть ключ зажигания в положение ОБА после запуска двигателя и оставить на ОБА во время полета. Выключите его OFF после выключения двигатель. Если оставить зажигание включенным ОБА (или L или R ), двигатель может возгорание, если винт перемещается снаружи самолете, даже если главный выключатель выключенный. Проверка перед взлетом Чтобы убедиться, что обе системы зажигания работают должным образом, проверьте каждую систему во время запуска двигателя перед взлетом. мощность около 1700 об/мин. Поверните ключ зажигания из ОБА до R , затем обратно к ОБА , затем до L , а потом обратно до ОБЕ . Вам следует наблюдайте небольшое падение оборотов каждый раз, когда вы переключаетесь с ОБА или R или L . Если оба магнето работают нормально, капля должна быть не более 75 об/мин. Выключение двигателя Вы не должны останавливать поршневой двигатель, поворачивая замок зажигания на ВЫКЛ . Вместо этого переместите регулятор смеси в положение отсечки холостого хода для выключения подача топлива в цилиндры. После двигателя останавливается, поверните ключ зажигания в положение OFF . процедура гарантирует, что топливо не останется в цилиндрах и что двигатель не запустится случайно, если кто-то поворачивает винт или если нагар внутри цилиндры создают горячие точки, которые воспламеняют остаточные топливо. Органы управления поршневым двигателем Большинство современных поршневых двигателей имеют два или три основных контролирует.
Карбюраторные двигатели также имеют подогрев карбюратора для предотвращения образования или таяния льда в карбюраторе. Двигатели мощностью около 200 лошадиных сил и более обычно имеют закрылки капота, чтобы позволить пилоту регулировать количество охлаждающий воздух, обтекающий двигатель. Открытие заслонки капота особенно важно во время большой мощности операций, таких как взлет и продолжительное поднимается. Воздушные винты Поршневые двигатели обычно подключаются к винт фиксированного шага или винт постоянной скорости. Гребные винты с фиксированным шагом крепятся болтами непосредственно к коленчатый вал двигателя и поэтому всегда поворачивайте с той же скоростью, что и двигатель. Винт с фиксированным шагом что-то вроде коробки передач только с одной передачей. конфигурация компенсирует свою неэффективность за счет будучи очень простым в эксплуатации. Единственный датчик, который вы нужно следить за тахометром. Винт постоянной скорости имеет регулятор который регулирует угол лопастей, чтобы поддерживать выбранных вами оборотов. Этот тип пропеллера делает гораздо больше эффективное использование мощности двигателя. На малой скорости, когда требуется максимальная мощность (как при взлете), вы выберите максимальные обороты или «полное увеличение» с помощью управление винтом, а лопасти винта соответствуют воздуха под небольшим углом. Во время круиза вы регулируете обороты на более низкую настройку, и лезвия кусают больше воздуха при уменьшении скорости. Управление мощностью С винтом фиксированного шага управление мощностью простой. увеличивается. Вытяните дроссельную заслонку, и обороты уменьшатся. Быть известно, однако, что с увеличением воздушной скорости число оборотов в минуту стремится тоже подползти. Внимательно следите за тахометром при спусках на высокой скорости убедиться, что обороты остается в пределах. Винт с постоянной скоростью вращения делает управление мощностью немного сложнее. Вы должны следить за коллектором манометр, управляемый дроссельной заслонкой, и тахометр, показывающий обороты винта. Вы корректируете об/мин с управлением пропеллером. При установке мощности с винтом постоянной скорости, запомнить эти основные правила, чтобы не перенапрягать двигатель:
Двигатели с карбюраторами Многие авиационные поршневые двигатели используют карбюраторы для смешивание воздуха и топлива для создания горючей смеси что горит в цилиндрах. Как работает карбюратор Наружный воздух проходит через воздушный фильтр, затем в карбюратор. Воздух проходит через трубку Вентури, узкое горло в карбюраторе. Воздух ускоряется в трубку Вентури и давление в ней падает в соответствии с Принцип Бернулли. втекать через струю в воздушный поток, где он смешивается с набегающим воздухом. Затем воздушно-топливная смесь течет во впускной коллектор, который направляет его к каждому цилиндр. Правильное соотношение Карбюратор смешивает воздух и топливо по весу. Поршень двигатели обычно развивают максимальную мощность, когда смесь воздух/топливо составляет около 15:1.Карбюраторы откалиброван при давлении на уровне моря для измерения правильного количество топлива при контроле смеси в полном объеме богатое положение. С увеличением высоты плотность воздуха уменьшается. Чтобы компенсировать эту разницу, пилот использует регулятор смеси для регулировки воздушно-топливной смеси попадание в камеру сгорания. Для контроля количества топлива, смешиваемого с воздуха, в большинстве карбюраторов используется поплавок в топливной камере. игла, прикрепленная к поплавку, открывает и закрывает отверстие в топливопроводе, дозирование правильного количества топлива в карбюратор. Положение поплавка, контролируется уровнем топлива в поплавковой камере, определяет, когда клапан открывается и закрывается. Running Rich Слишком богатая топливно-воздушная смесь, т.е. он содержит слишком много топлива — вызывает чрезмерное количество топлива расход, неровная работа двигателя и потеря мощности. Работа двигателя на слишком богатой смеси также приводит к охлаждению двигателя. что приводит к снижению температуры горения ниже нормы. камеры, что приводит к загрязнению свечей зажигания, среди другие проблемы. Работа на обедненной смеси Работа со слишком бедной смесью — слишком мало топлива на нынешний вес воздуха — получается неровная работа двигателя, детонация, перегрев и потеря мощности. Карбюратор Ice Испарение топлива и расширение воздуха в карбюратор вызывает резкое охлаждение воздуха/топлива смесь. Температура может упасть до 60 F (15 в) за долю секунды. Это охлаждение вызывает водяной пар в воздухе конденсируется, и если температура в карбюраторе достигает 32 градусов по Фаренгейту (0 в) вода замерзает в каналах карбюратора. Даже незначительное накопление этого депозита может ограничить поступление воздуха в карбюратор, снижение мощности. Обледенение карбюратора также может привести к полной поломке двигателя. неисправности, особенно когда дроссельная заслонка частично или полностью закрыт. Условия обледенения В сухие дни или когда температура значительно ниже мороза, влага в воздухе обычно не привести к обледенению карбюратора. Но если температура между 20 F (-7 C) и 70 F (21 C), с видимой влажностью или высокая влажность, пилот должен постоянно находиться на оповещение об обледенении карбюратора. Признаки обледенения карбюратора Для самолетов с винтами фиксированного шага первый Признаком обледенения карбюратора является падение оборотов на тахометр. Для самолетов с регулируемым шагом (постоянной скорости) пропеллеры, первое указание обычно падение давления в коллекторе. В обоих случаях двигатель может начать работать с перебоями. В самолетах с гребные винты с постоянной скоростью вращения, число оборотов в минуту остается постоянным. Оттаивание Для предотвращения образования льда в карбюраторе и для устранить образующийся лед, карбюраторы оснащены обогреватели. Подогреватель карбюратора предварительно нагревает воздух перед доходит до карбюратора. Этот предварительный нагрев растапливает лед или снег, попадая в водозабор, растапливает лед, образующийся в проходы карбюратора (при условии, что скопление не слишком большой) и удерживает воздушно-топливную смесь выше замораживание для предотвращения образования льда в карбюраторе. Использование обогрева карбюратора При полете в условиях, благоприятных для карбюратора обледенения, следите за приборами двигателя, чтобы следить за признаки образования льда. Если вы подозреваете, что обледенение карбюратора, включить полный обогрев карбюратора немедленно. Оставьте его включенным до тех пор, пока не убедитесь, что весь лед снят. Применение частичного нагрева или оставлять тепло на слишком короткое время может усугубить ситуация. При первом включении подогрева карбюратора ожидайте падения в об/мин на самолетах с фиксированным шагом пропеллеры; в самолетах с постоянной скоростью гребные винты, ожидайте падения давления в коллекторе. Если нет наличие льда в карбюраторе, обороты или давление во впускном коллекторе останется ниже нормы, пока карбюратор не нагреется. выключен. повышение оборотов или давления в коллекторе после первоначального падения (часто сопровождается периодическими неровностями двигателя). Когда вы отключаете обогрев карбюратора, обороты или коллектор давление поднимается выше значения до подачи тепла. Двигатель также должен работать более плавно после гололеда. растаял. В крайних случаях обледенения карбюратора, после обледенения был удален, вам может потребоваться применить достаточно обогрев карбюратора для предотвращения дальнейшего образования льда. Нагрев карбюратора как мера предосторожности Всякий раз, когда дроссель закрыт во время полета, особенно когда готовишься к посадке двигатель остывает быстро и испарение топлива менее полное чем если двигатель прогрет. Если вы подозреваете карбюратор обледенения, включите полный обогрев карбюратора перед закрыть дроссельную заслонку и оставить обогрев включенным. Повышенная мощность Использование тепла карбюратора снижает мощность двигатель и увеличить работу двигателя температура. Поэтому не используйте обогрев карбюратора, когда нужна полная мощность (как при взлете) или во время нормальную работу двигателя, за исключением проверки наличие или удаление льда из карбюратора. Двигатели с впрыском топлива Поршневые двигатели мощностью более 200 л.с. часто используют систему впрыска топлива, а не карбюратор. Система впрыска топлива впрыскивает топливо непосредственно в цилиндров или непосредственно перед впускным клапаном. затем топливо смешивается с воздухом в цилиндрах. Потому что это тип системы требует насосов высокого давления, блок управления воздухом/топливом, распределитель топлива и нагнетательные форсунки для каждого цилиндра, это вообще дороже карбюратора. Как и в случае двигателя с карбюратором, пилот контролирует подачу топлива, регулируя контроль смеси. Преимущества впрыска топлива Впрыск топлива имеет ряд преимуществ перед карбюраторная топливная система, которые компенсируют его большая стоимость и сложность.
Недостатки впрыска топлива Впрыск топлива имеет некоторые недостатки, самое важное из них:
|