Электрической схемой называют: ЭЛЕКТРИЧЕСКАЯ СХЕМА | это… Что такое ЭЛЕКТРИЧЕСКАЯ СХЕМА?

Схемы электрические. Типы схем / Хабр

Привет Хабр!

Чаще в статьях приводят вместо электрических схем красочные картинки, из-за этого возникают споры в комментариях.

В связи с этим, решил написать небольшую статью-ликбез по типам электрических схем, классифицируемых в Единой системе конструкторской документации (ЕСКД).


На протяжении всей статьи буду опираться на ЕСКД.

Рассмотрим ГОСТ 2.701-2008 Единая система конструкторской документации (ЕСКД). Схемы. Виды и типы. Общие требования к выполнению.

Данный ГОСТ вводит понятия:

  • вид схемы — классификационная группировка схем, выделяемая по признакам принципа действия, состава изделия и связей между его составными частями;
  • тип схемы — классификационная группировка, выделяемая по признаку их основного назначения.


Сразу договоримся, что вид схем у нас будет единственный — схема электрическая (Э).

Разберемся какие типы схем описаны в данном ГОСТе.











Тип схемыОпределениеКод типа схемы
Схема структурнаяДокумент, определяющий основные функциональные части изделия, их назначение и взаимосвязи1
Схема функциональнаяДокумент, разъясняющий процессы, протекающие в отдельных функциональных цепях изделия (установки) или изделия (установки) в целом2
Схема принципиальная (полная)Документ, определяющий полный состав элементов и взаимосвязи между ними и, как правило, дающий полное (детальное) представления о принципах работы изделия (установки)3
Схема соединений (монтажная)Документ, показывающий соединения составных частей изделия (установки) и определяющий провода, жгуты, кабели или трубопроводы, которыми осуществляются эти соединения, а также места их присоединений и ввода (разъемы, платы, зажимы и т. п.)4
Схема подключенияДокумент, показывающий внешние подключения изделия5
Схема общаяДокумент, определяющий составные части комплекса и соединения их между собой на месте эксплуатации6
Схема расположенияДокумент, определяющий относительное расположение составных частей изделия (установки), а при необходимости, также жгутов (проводов, кабелей), трубопроводов, световодов и т.п.7
Схема объединеннаяДокумент, содержащий элементы различных типов схем одного вида0
Примечание — Наименования типов схем, указанные в скобках, устанавливают для электрических схем энергетических сооружений.


Далее рассмотрим каждый тип схем более подробно применительно для электрических схем.

Основной документ: ГОСТ 2.702-2011 Единая система конструкторской документации (ЕСКД). Правила выполнения электрических схем.

Так, что же такое и с чем «едят» эти схемы электрические?

Нам даст ответ ГОСТ 2.702-2011: Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи.

Схемы электрические в зависимости от основного назначения подразделяют на следующие типы:

Схема электрическая структурная (Э1)


На структурной схеме изображают все основные функциональные части изделия (элементы, устройства и функциональные группы) и основные взаимосвязи между ними. Графическое построение схемы должно обеспечивать наилучшее представление о последовательности взаимодействия функциональных частей в изделии. На линиях взаимосвязей рекомендуется стрелками обозначать направление хода процессов, происходящих в изделии.

Пример схемы электрической структурной:

Схема электрическая функциональная (Э2)


На функциональной схеме изображают функциональные части изделия (элементы, устройства и функциональные группы), участвующие в процессе, иллюстрируемом схемой, и связи между этими частями. Графическое построение схемы должно давать наиболее наглядное представление о последовательности процессов, иллюстрируемых схемой.

Пример схемы электрической функциональной:

Схема электрическая принципиальная (полная) (Э3)


На принципиальной схеме изображают все электрические элементы или устройства, необходимые для осуществления и контроля в изделии установленных электрических процессов, все электрические взаимосвязи между ними, а также электрические элементы (соединители, зажимы и т.д.), которыми заканчиваются входные и выходные цепи. На схеме допускается изображать соединительные и монтажные элементы, устанавливаемые в изделии по конструктивным соображениям. Схемы выполняют для изделий, находящихся в отключенном положении.

Пример схемы электрической принципиальной:

Схема электрическая соединений (монтажная) (Э4)


На схеме соединений следует изображать все устройства и элементы, входящие в состав изделия, их входные и выходные элементы (соединители, платы, зажимы и т.д.), а также соединения между этими устройствами и элементами. Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии. Расположение изображений входных и выходных элементов или выводов внутри графических обозначений и устройств или элементов должно примерно соответствовать их действительному размещению в устройстве или элементе.

Пример схемы электрической соединений:

Схема электрическая подключения (Э5)


На схеме подключения должны быть изображены изделие, его входные и выходные элементы (соединители, зажимы и т. д.) и подводимые к ним концы проводов и кабелей (многожильных проводов, электрических шнуров) внешнего монтажа, около которых помещают данные о подключении изделия (характеристики внешних цепей и (или) адреса). Размещение изображений входных и выходных элементов внутри графического обозначения изделия должно примерно соответствовать их действительному размещению в изделии. На схеме следует указывать позиционные обозначения входных и выходных элементов, присвоенные им на принципиальной схеме изделия.

Пример схемы электрической подключений:

Схема электрическая общая (Э6)


На общей схеме изображают устройства и элементы, входящие в комплекс, а также провода, жгуты и кабели (многожильные провода, электрические шнуры), соединяющие эти устройства и элементы. Расположение графических обозначений устройств и элементов на схеме должно примерно соответствовать действительному размещению элементов и устройств в изделии.

Пример схемы электрической общей:

Схема электрическая расположения (Э7)


На схеме расположения изображают составные части изделия, а при необходимости связи между ними — конструкцию, помещение или местность, на которых эти составные части будут расположены.

Пример схемы электрической расположения:

Схема электрическая объединенная (Э0)


На данном виде схем изображают различные типы, которые объединяются между собой на одном чертеже.

Пример схемы электрической объединенной:

PS

Это моя первая статья на Хабре не судите строго.

Электрические схемы. Соединение проводников — Умскул Учебник

На этой странице вы узнаете

  • Нужен ли блендер, чтобы попить чай?
  • Куда идет ток?
  • Когда “сопротивление бесполезно”?

Всем приготовиться к погружению в мир электрических соединений и схем. Сопротивление бесполезно! 

Условное обозначение элементов электрической цепи

Есть история о том, как одного физика-теоретика током ударило. Конечно, в теории он был силен, но знать — одно, а применять знания в жизни — совсем другое дело. Вот и получилось у него всякое, странное. Не советуем повторять: опасно для жизни!

А с чего вся история началась?

Когда мы говорим об электрических приборах, мы понимаем, что сам по себе прибор работать не будет. Его нужно подключить, к источнику тока. А если схема сложная, в которой несколько приборов? И как изобразить цепь на рисунке? Всеми этими вопросами задался наш герой.

Для решения умные люди придумали условные обозначения, которые уже много лет используются в электромире:

Итак, наш физик-теоретик решил по схеме собрать гирлянду. Всё как положено. Лампочки подобрал все одинаковые. И даже соединения между ними учел.

Соединения проводников

Проводники в электрических цепях могут соединяться последовательно и параллельно. Давайте разберем, чем отличаются эти два вида соединений и чем они полезны.

Последовательное соединениеПараллельное соединение
Соединение проводников без разветвлений, когда конец одного проводника соединен с началом другого.Соединение, в котором начала и концы проводников соединены вместе.
R1 и R2 — сопротивления проводников,
R— общее сопротивление, 
I1 и I2— сила тока на каждом проводнике,
I — общая сила тока, 
U1 и U2 — напряжение на каждом проводнике, 
U — общее напряжение цепи.
R1 и R2 — сопротивления проводников,
R— общее сопротивление, 
I1 и  I2— сила тока на каждом проводнике, 
I — общая сила тока, 
U1 и  U2 — напряжение на каждом проводнике, 
U — общее напряжение цепи.
Схема последовательного соединения проводников.Схема параллельного соединения проводников.
I1 = I2 = I
Сила тока, протекающего через каждый проводник, одна и та же (I = const).
I = I1 + I2
Сила тока, протекающего в  неразветвлённой части цепи, равна сумме сил токов, протекающих по каждому из проводников.
U1 = IR1, U2 = IR2;
U = U1 + U2
Общее напряжение равно сумме напряжений на отдельных участках цепи.
U1 = I1R1, U2 = I2R2;
U = U1 = U2
Напряжение на каждом из проводников одинаково (U = const).
R = R1 + R2
Общее сопротивление цепи равно сумме сопротивлений отдельных участков.
\(\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}\)
Проводимость равна сумме проводимостей каждого из проводников.
\(\frac{U_1}{U_2} = \frac{R_1}{R_2}\)\(\frac{I_1}{I_2} = \frac{R_2}{R_1}\)
Если все сопротивления одинаковы, то:

R = nr и U = nu,

где r и u — соответственно сопротивление одного элемента и  напряжение на нём,
n — количество одинаковых проводников в соединении.

Если все сопротивления одинаковы, то:

\(R = \frac{r}{n}\) и U = u,

где r и u — соответственно сопротивление одного элемента и  напряжение на нём,
n — количество одинаковых проводников в соединении.

Общее сопротивление цепи больше наибольшего сопротивления, входящего в  эту цепь.Общее сопротивление цепи меньше наименьшего сопротивления, входящего в  эту цепь.
Количество теплоты, выделяемое на каждом проводнике, пропорционально их сопротивлениям
\(\frac{Q_1}{Q_2} = \frac{R_1}{R_2}\)
Количество теплоты, выделяемое на каждом проводнике, обратно пропорционально их сопротивлениям
\(\frac{Q_1}{Q_2} = \frac{R_2}{R_1}\)
Мощность, выделяемая в проводниках, пропорциональна их сопротивлению
\(\frac{P_1}{P_2} = \frac{R_1}{R_2}\)
Мощность, выделяемая в проводниках, обратно пропорциональна их сопротивлению
\(\frac{P_1}{P_2} = \frac{R_2}{R_1}\)

При последовательном соединении проводников общее сопротивление участка цепи увеличивается, при параллельном соединении — уменьшается.

Важно учитывать, какие приборы, как подключать. Например, елочная гирлянда является примером последовательного соединения. Если одна лампочка перегорит, то вся гирлянда работать перестанет. Это, кстати, относится к недостаткам такого вида соединения. Наш физик-теоритк был в курсе этой особенности.

Тогда зачем такое соединение нужно?

Когда необходимо целенаправленно подключить какой-то один прибор. Например, карманный фонарик. Он будет работать только тогда, когда включена кнопка.

А вот в люстре лучше использовать параллельное соединение. И когда одна лампочка перегорит, все остальные по-прежнему будут светить.

Нужен ли блендер, чтобы попить чай?

Бытовые приборы на кухне соединены параллельно. Это значит, что чайник может спокойно работать без микроволновки. И чтобы поджарить тосты, блендер включать необязательно. Но если все эти приборы соединить последовательно, защитный выключатель может не выдержать, и произойдет перегрузка. Что может привести к возгоранию. И не будет нам ни чая, ни взбитого теста для блинчиков, ни тостов.

Задачи на комбинированное соединение проводников удобно решать, используя эквивалентные схемы.

Смешанное (комбинированное) соединение проводников

Комбинированным называется соединение, при котором некоторые проводники соединены последовательно, а некоторые — параллельно.

Куда идет ток?

Ток не любит напрягаться. Поэтому ток течёт по пути наименьшего сопротивления.

Рассмотрим пример задачи.

Вопрос: Каким будет сопротивление участка цепи (см. рисунок), если ключ К замкнуть? Каждый из резисторов имеет сопротивление 2R.

Ответ: если ключ К замкнуть, то сопротивление станет равным нулю.

Когда “Сопротивление бесполезно”?

После замыкания ключа участок схемы окажется закороченным; ток пойдёт через ключ, минуя резисторы. Сопротивление участка станет равным нулю, как показано на рисунке:

Виды соединения источников тока

Что же произошло к нашим физиком-теоретиком? Он даже соединения источников учел. Только забыл он самое главное правило: сначала собери схему, а только потом подключи ее к источнику. 

Вот он подключил один конец провода с лампочками к источнику, другой конец взял в руку… И навсегда запомнил технику безопасности при работе c электричеством: не стоит человеку становиться звеном цепи, подключенной к источнику.

Источники тока соединяют между собой для совместного питания всей цепи. 

Последовательное соединениеПараллельное соединение
Схема
Эквивалентное внутреннее сопротивлениеrэ = r1 + r2\(\frac{1}{r_э} = \frac{1}{r_1} + \frac{1}{r_2}\)
Эквивалентное ЭДС\(\varepsilon_э = \pm \varepsilon_1 \pm \varepsilon_2\)

знаки зависят от направления подключения источников

\(\frac{\varepsilon_э}{r_э} = \pm \frac{\varepsilon_1}{r_1} \pm \frac{\varepsilon_2}{r_2}\)

знаки зависят от направления подключения источников

Закон Ома для полной цепи\(I = \frac{\varepsilon_э}{r_э + R}\)\(I = \frac{\varepsilon_э}{r_э + R}\)
Закон Ома для n одинаковых источников\(I = \frac{n \varepsilon}{R + nr}\)\(I = \frac{\varepsilon}{R + rn}\)

Чем отличаются понятия “соединения резисторов” и “соединения источников тока”? Пример резистора — чайник, простой проводник электрического тока. Если чайник подключить параллельно, это никак не повлияет на работу всей цепи. А источник тока — это розетка. Она дает “питание” всей цепи. Без источника тока не будет работать ни один прибор.

Правила подключения амперметра и вольтметра

Важно запомнить правила подключения амперметра и вольтметра. Это необходимо для того, что приборы не перегорели и показывали корректные значения при измерении.

АмперметрВольтметр
Амперметр подключается последовательно участку цепи.
Соблюдаем полярность: “+” амперметра подключают к “+” источника тока, а “−” подключают к “−” источника тока.
Вольтметр подключается параллельно участку цепи.
Соблюдаем полярность: “+” вольтметра подключают к “+” источника тока, а “−” подключают к “−” источника тока.
Шунт  — проводник, присоединяемый параллельно амперметру для увеличения предела его измерений.

\(R_ш = \frac{R_A}{n — 1}\),

где Rш  — сопротивление шунта,
RA  — сопротивление амперметра, 
n  — число, показывающее, во сколько раз увеличивается предел измерений прибора.

Добавочное сопротивление  — проводник, присоединяемый последовательно с  вольтметром для увеличения предела его измерений.

Rд = RV(n-1),

где Rд  — добавочное сопротивление,
RV  — сопротивление вольтметра, 
n  — число, показывающее, во сколько раз увеличивается предел измерений прибора.

Научиться читать электрические схемы важно для любителей электроники. Ведь если правильно ее прочитать, можно спаять что-то интересное, например, карманный фонарик.

Фактчек

  • Проводники в электрических цепях могут соединяться последовательно и параллельно.
  • При последовательном соединении проводников общее сопротивление участка цепи увеличивается, при параллельном соединении — уменьшается.
  • Комбинированным называется соединение, при котором некоторые проводники соединены последовательно, а некоторые — параллельно.
  • При подключении приборов обязательно нужно учитывать их полярность.

Проверь себя

Задание 1.
Какие существуют соединения проводников?

  1. Последовательное
  2. Параллельное
  3. Смешанное
  4. Все варианты верны

Задание 2.
При последовательном соединении проводников общее сопротивление участка цепи:

  1. Увеличивается
  2. Уменьшается
  3. Не изменяется

Задание 3.
При параллельном соединении проводников общее сопротивление участка цепи:

  1. Увеличивается
  2. Уменьшается
  3. Не изменяется

Задание 4.
Как подключается амперметр в цепи?

  1. Последовательно
  2. Параллельно
  3. Не имеет значения

Задание 5.
Как подключается вольтметр в цепи?

  1. Последовательно
  2. Параллельно
  3. Не имеет значения

Ответы: 1. — 4; 2. — 1; 3. — 2; 4. — 1; 5. — 2

Электрическая цепь — Простая английская Википедия, бесплатная энциклопедия

Из Простая английская Википедия, бесплатная энциклопедия

Цепь представляет собой замкнутый контур , состоящий из компонентов цепи, по которым могут течь электроны от источника напряжения или тока. Если цепь состоит из электрических компонентов, таких как резистор, конденсатор, катушка индуктивности и т. д., то она будет называться Электрическая цепь , а если цепь состоит из любого из компонентов электронной схемы, таких как диод, транзистор и т. д., то она будет называться Электронная схема . Таким образом, электронные схемы могут состоять как из электрических компонентов, так и из электронных схем , но электрическая схема будет состоять только из электрических компонентов.

Точка, в которой электроны входят в электрическую цепь, называется «источником» электронов. Точка, в которой электроны покидают электрическую цепь, называется «возвратом» или «землей». Точка выхода называется «возвратом», потому что электроны всегда оказываются в источнике, когда завершают путь электрической цепи.

Часть электрической цепи, которая находится между начальной точкой электронов и точкой, в которой они возвращаются к источнику, называется «нагрузкой» электрической цепи. Нагрузка электрической цепи может быть простой, как те, которые питают бытовые приборы, такие как холодильники, телевизоры или лампы, или более сложной, например, нагрузка на выходе гидроэлектростанции.

В цепях используются две формы электроэнергии: переменный ток (AC) и постоянный ток (DC). Переменный ток часто питает большие приборы и двигатели и вырабатывается электростанциями. Постоянный ток питает автомобили с батарейным питанием и другие машины и электронику. Преобразователи могут преобразовывать переменный ток в постоянный и наоборот. В высоковольтной передаче постоянного тока используются большие преобразователи.

Экспериментальная электронная схема

Электронные схемы обычно используют источники постоянного тока. Нагрузка электронной схемы может состоять из нескольких резисторов, конденсаторов и лампы, соединенных вместе для создания вспышки в камере. Или электронная схема может быть сложной, соединяя тысячи резисторов, конденсаторов и транзисторов. Это может быть интегральная схема, такая как микропроцессор в компьютере.

Резисторы и другие элементы схемы могут быть соединены последовательно или параллельно. Сопротивление в последовательных цепях равно сумме сопротивлений.

Принципиальная или электрическая схема представляет собой визуальное отображение электрической цепи. Электрические и электронные схемы могут быть сложными. Создание чертежа соединений со всеми составными частями нагрузки схемы облегчает понимание того, как компоненты схемы соединены. Чертежи электронных схем называются принципиальными схемами. Чертежи электрических цепей называются «электросхемами». Как и другие схемы, эти схемы обычно рисуются чертежниками, а затем распечатываются. Диаграммы также могут быть созданы в цифровом виде с использованием специализированного программного обеспечения.

Схема — это схема электрической цепи. Схемы — это графические изображения основных соединений в цепи, но они не являются реалистичными изображениями цепи. Схемы используют символы для представления компонентов в схеме. Условные обозначения используются в схемах для представления того, как течет электричество. Обычное соглашение, которое мы используем, это от положительного к отрицательному терминалу. Реалистичный способ прохождения электричества — от отрицательного полюса к положительному.

На принципиальных схемах используются специальные символы. Символы на чертежах показывают, как компоненты, такие как резисторы, конденсаторы, изоляторы, двигатели, розетки, лампы, выключатели и другие электрические и электронные компоненты, соединяются друг с другом. Диаграммы очень помогают, когда рабочие пытаются выяснить, почему схема работает неправильно.

Ток, протекающий в электрической или электронной цепи, может резко увеличиться при выходе из строя компонента. Это может привести к серьезному повреждению других компонентов цепи или создать опасность возгорания. Чтобы защититься от этого, в цепь можно включить предохранитель или устройство, называемое «автоматический выключатель». Автоматический выключатель разомкнет или «разорвет» цепь, когда ток в этой цепи станет слишком высоким, или предохранитель «перегорит». Это дает защиту.

Устройства прерывания замыкания на землю (G.F.I.)[изменить | изменить источник]

Основная статья: GFCI

Стандартным возвратом для электрических и электронных цепей является заземление. Когда электрическое или электронное устройство выходит из строя, оно может разомкнуть цепь возврата на землю. Пользователь устройства может стать частью электрической цепи устройства, обеспечив обратный путь для электронов через тело пользователя вместо заземления цепи. Когда наше тело становится частью электрической цепи, пользователь может получить серьезный удар током или даже умереть от удара током.

Чтобы предотвратить опасность поражения электрическим током и возможность поражения электрическим током, устройства прерывания замыкания на землю обнаруживают обрыв цепи на землю в подключенных электрических или электронных устройствах. При обнаружении обрыва цепи на землю G.F.I. устройство немедленно открывает источник напряжения на устройстве. Г.Ф.И. устройства похожи на автоматические выключатели, но предназначены для защиты людей, а не компонентов цепи.

Короткие замыкания — это замыкания, которые возвращаются к источнику питания неиспользованными или с той же мощностью, что и на выходе. При их использовании обычно перегорает предохранитель, но иногда это не так. Это может привести к электрическому возгоранию.

  • Компоненты схемы и их применение — резистор, конденсатор, катушка индуктивности, диод, транзистор. Трансформер.
  • Электрическая цепь

Электрическая цепь — Простая английская Википедия, бесплатная энциклопедия

Из Простая английская Википедия, бесплатная энциклопедия

источник тока может течь. Если цепь состоит из электрических компонентов, таких как резистор, конденсатор, катушка индуктивности и т. д., то она будет называться 9.0005 Электрическая схема , и если схема состоит из любых компонентов электронной схемы, таких как диод, транзистор и т. д., то она будет называться Электронная схема . Таким образом, электронные схемы могут состоять как из электрических компонентов, так и из электронных схем , но электрическая схема будет состоять только из электрических компонентов.

Точка, в которой электроны входят в электрическую цепь, называется «источником» электронов. Точка, в которой электроны покидают электрическую цепь, называется «возвратом» или «землей». Точка выхода называется «возвратом», потому что электроны всегда оказываются в источнике, когда завершают путь электрической цепи.

Часть электрической цепи, которая находится между начальной точкой электронов и точкой, в которой они возвращаются к источнику, называется «нагрузкой» электрической цепи. Нагрузка электрической цепи может быть простой, как те, которые питают бытовые приборы, такие как холодильники, телевизоры или лампы, или более сложной, например, нагрузка на выходе гидроэлектростанции.

В цепях используются две формы электроэнергии: переменный ток (AC) и постоянный ток (DC). Переменный ток часто питает большие приборы и двигатели и вырабатывается электростанциями. Постоянный ток питает автомобили с батарейным питанием и другие машины и электронику. Преобразователи могут преобразовывать переменный ток в постоянный и наоборот. В высоковольтной передаче постоянного тока используются большие преобразователи.

Экспериментальная электронная схема

Электронные схемы обычно используют источники постоянного тока. Нагрузка электронной схемы может состоять из нескольких резисторов, конденсаторов и лампы, соединенных вместе для создания вспышки в камере. Или электронная схема может быть сложной, соединяя тысячи резисторов, конденсаторов и транзисторов. Это может быть интегральная схема, такая как микропроцессор в компьютере.

Резисторы и другие элементы схемы могут быть соединены последовательно или параллельно. Сопротивление в последовательных цепях равно сумме сопротивлений.

Принципиальная или электрическая схема представляет собой визуальное отображение электрической цепи. Электрические и электронные схемы могут быть сложными. Создание чертежа соединений со всеми составными частями нагрузки схемы облегчает понимание того, как компоненты схемы соединены. Чертежи электронных схем называются принципиальными схемами. Чертежи электрических цепей называются «электросхемами». Как и другие схемы, эти схемы обычно рисуются чертежниками, а затем распечатываются. Диаграммы также могут быть созданы в цифровом виде с использованием специализированного программного обеспечения.

Схема — это схема электрической цепи. Схемы — это графические изображения основных соединений в цепи, но они не являются реалистичными изображениями цепи. Схемы используют символы для представления компонентов в схеме. Условные обозначения используются в схемах для представления того, как течет электричество. Обычное соглашение, которое мы используем, это от положительного к отрицательному терминалу. Реалистичный способ прохождения электричества — от отрицательного полюса к положительному.

На принципиальных схемах используются специальные символы. Символы на чертежах показывают, как компоненты, такие как резисторы, конденсаторы, изоляторы, двигатели, розетки, лампы, выключатели и другие электрические и электронные компоненты, соединяются друг с другом. Диаграммы очень помогают, когда рабочие пытаются выяснить, почему схема работает неправильно.

Ток, протекающий в электрической или электронной цепи, может резко увеличиться при выходе из строя компонента. Это может привести к серьезному повреждению других компонентов цепи или создать опасность возгорания. Чтобы защититься от этого, в цепь можно включить предохранитель или устройство, называемое «автоматический выключатель». Автоматический выключатель разомкнет или «разорвет» цепь, когда ток в этой цепи станет слишком высоким, или предохранитель «перегорит». Это дает защиту.

Устройства прерывания замыкания на землю (G.F.I.)[изменить | изменить источник]

Основная статья: GFCI

Стандартным возвратом для электрических и электронных цепей является заземление. Когда электрическое или электронное устройство выходит из строя, оно может разомкнуть цепь возврата на землю. Пользователь устройства может стать частью электрической цепи устройства, обеспечив обратный путь для электронов через тело пользователя вместо заземления цепи. Когда наше тело становится частью электрической цепи, пользователь может получить серьезный удар током или даже умереть от удара током.

Чтобы предотвратить опасность поражения электрическим током и возможность поражения электрическим током, устройства прерывания замыкания на землю обнаруживают обрыв цепи на землю в подключенных электрических или электронных устройствах.