Содержание
Температура в камере сгорания дизельного двигателя и давление
Дизельный двигатель сегодня является вторым по степени распространенности типом ДВС после бензинового агрегата. Конструктивно дизельный мотор похож на бензиновый аналог, так как имеет все те же цилиндры, шатуны, поршни, коленвал и т.д. При этом все детали более массивные и тяжелые, ведь они должны выдерживать повышенные нагрузки.
Дело в том, что степень сжатия в дизеле выше, чем в агрегатах на бензине. Если в бензиновом моторе указанный средний показатель составляет от 9-и до 11-и единиц, то в дизельном уже целых 20-24. По этой причине дизельный двигатель тяжелее и крупнее бензинового агрегата.
Главным же отличием является способ приготовления, подачи и воспламенения топливно-воздушной смеси. В большинстве моторов на бензине рабочая смесь образуется во впускном коллекторе и «засасывается» в цилиндры.
После подачи в цилиндры рабочая смесь воспламеняется в камере сгорания от искры. При этом в дизельном двигателе топливо и воздух подаются отдельно, при этом смесь воспламеняется самостоятельно от резкого сжатия и нагрева.
Далее мы поговорим о том, какие процессы протекают в камере сгорания дизельного двигателя, как реализована подача дизтоплива, каким образом происходит смесеобразование и воспламенение заряда, а также какое давление и температура в камере сгорания дизеля.
Содержание статьи
- Камеры сгорания дизельных двигателей и особенности работы такого ДВС
- Как сгорает топливо в дизельном двигателе
- Частые проблемы дизелей: момент впрыска и компрессия
- Что в итоге
Камеры сгорания дизельных двигателей и особенности работы такого ДВС
Начнем с того, что камеры сгорания дизельных двигателей несколько отличаются от бензиновых. Существует два основных типа камер:
- неразделенная камера сгорания дизельного мотора;
- разделенная камера сгорания дизельного ДВС;
Неразделенный тип является однообъемной камерой, как правило, простой формы, которая согласована с расположением форсунок. Такие камеры обычно выполняются в днище поршней, также могут быть изготовлены частично в днище и частично в ГБЦ, редко только в головке блока.
Разделенный тип камеры сгорания предполагает два отдельных друг от друга объема, которые соединены посредством особых каналов. Таких каналов может быть от одного и больше.
Если говорить о плюсах и минусах, первый тип позволяет обеспечить двигателю лучший КПД, однако температуры в такой камере сгорания выше. Также растут и ударные нагрузки. Что касается разделенных камер сгорания, КПД меньше, однако удается реализовать более полноценное сгорание топлива, такой дизель меньше коксуется, дымит и т.д.
Как сгорает топливо в дизельном двигателе
Теперь давайте рассмотрим сам процесс горения. Как известно, для горения топлива необходимо определенное количество кислорода, а также источник, который позволит смеси воспламениться.
В дизеле вместо внешней искры таким источником является высокая температура, то есть нагрев.
Указанный нагрев достигается благодаря тому, что воздух в цилиндре сильно сжимается, а дизтопливо подается в самый последний момент. Это обусловлено тем, что температура, необходимая для воспламенения, растет с ростом давления, при этом температура самовоспламенения топлива в подобных условиях понижается.
Другими словами, топливно-воздушная смесь в дизельном двигателе самовоспламеняется от высокого давления и нагрева. При этом нормальная работа мотора сильно зависит от правильно настроенного впрыска, качественного сжатия смеси, а также от полноты сгорания заряда в цилиндрах.
В самом начале в цилиндр подается воздух, сжимается и нагревается. Далее топливо впрыскивается в камеру сгорания дизельного двигателя, во время впрыска происходит его распыление.
Затем возникает самовоспламенение, пламя распространяется по цилиндру. Впрыск горючего останавливается, а остатки топлива продолжают гореть. Далее процесс повторяется.
Как видно, хотя подача и горение заряда в дизеле протекает за очень короткий промежуток времени, этот отрезок можно разделить на этапы:
- Первый этап- впрыск топлива до начала его воспламенения (задержка воспламенения). Форсунки на данном этапе подают солярку, причем в распыленном виде. Образуется топливный «туман», который распространяется в сильно сжатом и нагретом воздухе.
Фактически туман представляет собой мельчайшие капли топлива, но они не воспламеняются. Дело в том, что сначала горючее должно испариться.
Только после этого произойдет смешивание испаренного дизтоплива с воздухом, а сама смесь нагреется до температуры, необходимой для самостоятельного воспламенения. Отметим, что задержка воспламенения должна быть короткой.
- Второй этап-воспламенение и распространение фронта пламени по цилиндру. Дело в том, что после воспламенения сразу горит не весь объем, а возникают точечные «очаги» возгорания. Они локализуются в местах, где топливо наиболее качественно смешалось с воздухом, а температура в камере около 1700 К.
Такое начальное горение приводит к повышению температуры и давления в цилиндре. В результате топливо, которое еще не загорелось, активно испаряется и смешивается с воздухом. В этот момент фактически происходит полное возгорание смеси в цилиндре, при этом резко увеличивается давление.
- Наступает третий этап, года топливо непосредственно сгорает.
Инжекторная форсунка еще впрыскивает солярку, горючее уже сразу загорается от контакта с пламенем в камере сгорания. Пламя в этот момент эффективно распространяется по всему объему, давление также максимально.
Именно на данном этапе давление в результате сгорающего топлива с большой силой толкает поршень, заставляя двигатель совершать полезную работу. Что касается температуры, показатель растет до 2200 К.
- Завершающий четвертый этап является моментом, когда остатки топлива догорают в цилиндре. В это время поршень уже перемещается вниз, что означает падение давления и температуры.
Как видно, давление в камере сгорания дизельного двигателя играет первостепенную роль для реализации самовоспламенение топлива. Что касается впрыска, необходимо, чтобы солярка подавалась в строго определенный момент, в нужном количестве, а также качественно распылялась.
Если возникнут сбои, распространение пламени будет нарушено, температура в камере сгорания дизельного двигателя повышается, возникает риск детонации, топливо не сгорает в полном объеме и т. д.
Частые проблемы дизелей: момент впрыска и компрессия
Если сжатие смеси в цилиндре оказывается недостаточным, во время работы двигателя можно услышать шумы и металлические стуки. Дело в том, что в таком случае смеси нужно больше времени, чтобы нагреться до температуры воспламенения.
Получается, снижение компрессии дизельного двигателя увеличивает время до воспламенения заряда.
При этом в цилиндре несгоревшей смеси будет больше, чем нужно. В результате в момент возгорания такого заряда процесс горения приобретает взрывной характер, давление резко увеличивается, появляется ударная волна и детонация, разрушая ЦПГ и оказывая значительные нагрузки на детали мотора.
Также снижение компрессии приводит к тому, что дизель начинает дымить. Выхлоп может быть черным или серовато-белым. В случае с белым дымом из выхлопной трубы, дизтопливо попросту неэффективно воспламеняется в момент, когда поршень доходит до ВМТ.
Затем поршень идет вниз, температура и давление дополнительно снижаются, нет условий для горения. Получается, несгоревшая солярка испаряется и далее попадает в выпускную систему
То же самое происходит и в том случае, если впрыск дизтоплива слишком поздний. Другими словами, компрессия в цилиндрах нормальная, но подача топлива с опозданием приводит к тому, что поршень уже идет вниз, нет нужного сжатия и давления для самовоспламенения.
Если же выхлоп черный, это может указывать на то, что форсунки «переливают», то есть подача горючего происходит в большем объеме, чем необходимо. Простыми словами, дизтоплива много, а кислорода просто недостаточно на такое количество горючего.
Имеющийся кислород позволяет выгореть только части топлива, а несгоревшие остатки превращаются в углерод, что и проявляется в виде характерного черного дыма из выхлопной трубы.
Рекомендуем также прочитать статью о том, что такое степень сжатия двигателя. Из этой статьи вы узнаете о данном параметре применительно к двигателю внутреннего сгорания и особенностям его работы.
Еще отметим, что к похожим проблемам может приводить недостаточная подача воздуха (например, забит воздушный фильтр), завоздушивание системы питания дизельного двигателя и т. д.
В итоге, если нарушается нормальный процесс смесеобразования, это закономерно влияет на момент воспламенения и последующую эффективность сгорания топливного заряда в цилиндрах.
Что в итоге
С учетом вышесказанного становится понятно, что дизель особенно нуждается в высокоточном топливном впрыске. От этого напрямую завит КПД, ресурс мотора, экономичность, уровень токсичности отработавших газов и ряд других важных параметров.
По этой причине дизельные форсунки на современных типах указанных моторов способны обеспечить так называемый фазированный (многофазный) впрыск, подавая дизтопливо до 10 раз за один рабочий такт мотора.
Напоследок отметим, что сегодня привычный ТНВД с механическими форсунками активно заменяется насос-форсунками или системой Common Rail, позволяя добиться максимальной эффективности впрыска горючего на всех этапах подачи топлива в камеру сгорания.
Подобные решения в сочетании с турбокомпрессором позволяют современному дизельному мотору уверенно конкурировать на рынке с бензиновыми аналогами, при этом высокая топливная экономичность остается главным преимуществом дизельного двигателя.
Принцип работы ДВС. Рабочие циклы двигателя
На автомобилях устанавливают двигатели внутреннего сгорания (ДВС), у которых топливо сгорает внутри цилиндра. В основу их действия положено свойство газов расширяться при нагревании.
Рассмотрим принцип устройства и работы двигателя внутреннего сгорания, а также его рабочие циклы.
Рабочий цикл четырехтактного бензинового двигателя
Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу. Если рабочий цикл совершается за два хода поршня, т. е. за один оборот коленчатого вала, то такой двигатель называется двухтактным.
Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения (рабочего хода) и выпуска.
Принцип работы ДВС (для просмотра нажмите на кнопку иллюстрации)
Крайние положения поршня, при которых он наиболее удален от оси коленчатого вала или приближен к ней, называются верхней и нижней «мертвыми» точками (ВМТ и НМТ). Подробнее в статье как устроен двигатель внутреннего сгорания.
Впуск. По мере того, как коленчатый вал двигателя делает первый полуоборот, поршень перемещается от ВМТ к НМТ, впускной клапан открыт, выпускной клапан закрыт. В цилиндре создается разряжение, вследствие чего свежий заряд горючей смеси, состоящий из паров бензина и воздуха, засасывается через впускной газопровод в цилиндр и, смешиваясь с остаточными отработавшими газами, образует рабочую смесь.
Сжатие. После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала (второй полуоборот) поршень перемещается от НМТ к ВМТ при закрытых клапанах. По мере уменьшения объема температура и давление рабочей смеси повышаются.
Расширение или рабочий ход. В конце такта сжатия рабочая смесь воспламеняется от электрической искры и быстро сгорает, вследствие чего температура и давление образующихся газов резко возрастает, поршень при этом перемещается от ВМТ к НМТ. В процессе такта расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип приводит во вращение коленчатый вал.
При расширении газы совершают полезную работу, поэтому ход поршня при третьем полуобороте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня, при нахождении его около НМТ открывается выпускной клапан, давление в цилиндре снижается до 0.3 — 0.75 МПа, а температура до 950 — 1200оС.
Выпуск. При четвертом полуобороте коленчатого вала поршень перемещается от НМТ к ВМТ. При этом выпускной клапан открыт, и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной газопровод.
Рабочий цикл четырехтактного дизеля
В отличие от бензинового двигателя, при такте ‘впуск’ в цилиндры дизеля поступает чистый воздух. Во время такта ‘сжатие’ воздух нагревается до 600оС. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.
Впуск. При движении поршня от ВМТ к НМТ вследствие образующегося разряжения из воздушного фильтра в цилиндр через открытый впускной клапан поступает атмосферный воздух. Давление воздуха в цилиндре составляет 0.08 — 0.095 МПа, а температура 40 — 60°С.
Сжатие. Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты, вследствие этого перемещающийся вверх поршень сжимает поступивший воздух. Для воспламенения топлива необходимо, чтобы температура сжатого воздуха была выше температуры самовоспламенения топлива. При ходе поршня к ВМТ цилиндр через форсунку впрыскивается дизельное топливо, подаваемое топливным насосом.
Расширение или рабочий ход. Впрыснутое в конце такта сжатия топливо, перемешиваясь с нагретым воздухом, воспламеняется, и начинается процесс сгорания, характеризующийся быстрым повышением температуры и давления. При этом максимальное давление газов достигает 6 — 9 МПа, а температура 1800 — 2000°С. Под действием давления газов поршень перемещается от ВМТ в НМТ — происходит рабочий ход. Около НМТ давление снижается до 0.3 — 0.5 МПа, а температура до 700 — 900оС.
Выпуск. Поршень перемещается от НМТ в ВМТ и через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра. Давление газов снижается до 0.11 — 0.12 МПа, а температура до 500-700оС. После окончания такта выпуска при дальнейшем вращении коленчатого вала рабочий цикл повторяется в той же последовательности.
Более подробно про работу дизеля в статье Дизельные двигатели. Устройство и принцип работы.
Принцип работы многоцилиндровых двигателей
На автомобилях устанавливают многоцилиндровые двигатели. Чтобы многоцилиндровый двигатель работал равномерно, такты расширения должны следовать через равные углы поворота коленчатого вала (т. е. через равные промежутки времени).
Последовательность чередования одноименных тактов в цилиндрах называют порядком работы двигателя. Порядок работы большинства четырехцилиндровых двигателей 1-3-4-2 или 1-2-4-3. Это означает, что после рабочего хода в первом цилиндре следующий рабочий ход происходит в третьем, затем в четвертом и, наконец, во втором цилиндре. Определенная последовательность соблюдается и в других многоцилиндровых двигателях.
Диаграмма работы двигателя по схеме 1-2-4-3

Общий | давление в цилиндрах газовых двигателей | Практик-механик
Билл D
Алмаз
#1
немного не по теме Я знаю, что давление сжатия в двигателе составляет 100-200 фунтов на квадратный дюйм, понятия не имею о дизелях, так сколько давления в цилиндре при работающем двигателе? Я никогда не находил хороших цифр для фактически работающих давлений.
Я видел по телевизору кое-что о маленьком фургончике, который работал на сжатом воздухе, кажется, на французском языке. Идея аналогична аккумуляторной машине, но гораздо быстрее заправляется. Я знаю, что они делали «паровые» двигатели, в которых не было огня, только воздух или пар в котле для заводского использования, где открытое пламя было небезопасно.
Билл Д.
А_Пмех
Нержавеющая сталь
#2
Мне кажется, вы хотите знать Среднее эффективное давление в тормозной системе
Это должно объяснить, как оно меняется и как его рассчитать:
http://www.epi-eng.com/piston_engine_technology/bmep_performance_yardstick.htm
Это отправная точка. Фактическое давление в цилиндрах значительно выше, поскольку двигатели не лишены трения, и для сжатия горючей смеси перед воспламенением требуется значительная мощность.
Дэйв Д
Горячекатаный
#3
Билл, для грубых расчетов я полагаю, что среднее давление обычно примерно в 3 раза превышает давление сжатия. Очевидно, что другие переменные будут влиять на это. Если вы выполните поиск локомотивов на сжатом воздухе на форуме антикварной техники на этом сайте, вы найдете сообщения / изображения шахтных локомотивов с пневматическим двигателем, давление воздуха вверх по холму и, в основном, гравитацию вниз, очень круто. Вот если бы я работал на вершине холма Дейв
Хдпг
Нержавеющая сталь
#4
Давление в цилиндре от такта сжатия, приблизительное максимальное значение при полностью открытой дроссельной заслонке, когда двигатель едва движется, представляет собой степень сжатия, умноженную на атмосферное давление; 8 : 1 дает что-то вроде 130 фунтов на квадратный дюйм; дизель в соотношении 24 : 1 примерно в три раза больше.
«Приблизительно» и «приблизительно» необходимы, потому что цилиндр не обязательно заполняется до давления в одну атмосферу, и уж точно не на частичном дросселе на газовом двигателе, поэтому фактическое давление всегда будет ниже, чем на дизельном двигателе. сжатый воздух нагревается из-за сжатия, что может увеличить давление выше теоретического, рассчитанного на основе степени сжатия.
Пиковое давление в обоих двигателях может достигать многих сотен фунтов на квадратный дюйм, я думаю, что дизельные двигатели могут достигать тысяч, но они существуют только в течение короткого периода времени.
Колеса Тома
Титан
#5
Давление в бензиновом двигателе после запуска составляет 1200 фунтов на квадратный дюйм+, дизельные двигатели начинаются с 2000 фунтов на квадратный дюйм и выше. Информация из колледжа 40-летней давности. Скорее всего, они не уменьшились.
ДэйвE907
Титан
#6
Насколько я понимаю, вас интересует пиковое давление в цилиндре, а не среднее эффективное давление в тормозной системе. Здесь есть хорошее обсуждение этой темы для двигателей SI и CI:
http://www.eng-tips.com/viewthread.cfm?qid=215499&page=7
Двигатели разработки обычно оснащены приборами для непосредственного измерения давления в цилиндре.
Тонитн36
Алмаз
#7
Пиковое давление в автомобильных бензиновых двигателях обычно находится в диапазоне от 7 до 10,5 МПа (1015-1523 фунтов на кв. дюйм). Двигатели разработки теперь намного выше, но мне не разрешено говорить, что это такое. Я не знаю, какие дизели ходят сейчас навскидку, но за последние несколько лет она значительно увеличилась и будет продолжать расти в будущем. Дошло до того, что внутренние компоненты цилиндров теперь облагают налогом науку о материалах.
Карл Дарнелл
Титан
#8
А я думал, что они понизили степень сжатия из-за выбросов и более низкого октанового числа топлива. Хм, так теперь они поднимают comp ratio.
Время
Нержавеющая сталь
#9
Исходя из вашего первоначального вопроса, похоже, вы рассматриваете возможность запуска двигателя на сжатом воздухе.
Я помню экспериментальный автомобиль, который был подключен к баллонам со сжатым воздухом, чтобы заставить его двигаться. Я видел его только один раз по телевизору и больше никогда о нем не слышал. Я помню, что они пустили выхлоп двигателя в машину и использовали его для переменного тока!
Кажется, что объем сжатого воздуха с поршнем в ВМТ был бы небольшим, и преобразовать распределитель в переключатели для включения и выключения воздуха было бы просто. Компрессию можно увеличить сальниками вместо колец при снятии тепла.
Билл D
Алмаз
#10
Помню, лет десять назад мой племянник купил игрушечный самолетик. Корпус был из жесткого пластика, который накачивался воздухом. затем переверните клапан поршневого двигателя, и он полетит. Я помню водяные ракеты, я думаю, ответственность убила их.
Билл Д.
Тонитн36
Алмаз
#11
Карл Дарнелл сказал:
А я думал они степень сжатия понизили из-за токсичности выхлопа и бензина с более низким октановым числом. Хм, так теперь они поднимают comp ratio.
Нажмите, чтобы развернуть…
Новые двигатели GDI (Gasoline Direct Injection) могут работать со значительно более высокой степенью сжатия, чем обычные двигатели с портом или центральным впрыском. Когда вы непосредственно впрыскиваете бензин в камеру сгорания, внутри цилиндра возникает огромный охлаждающий эффект, поскольку топливо поглощает значительную энергию для испарения. Кроме того, большая часть топлива испаряется, что приводит к значительному уменьшению количества капель сырого топлива, остающихся в цилиндре при воспламенении.
Первый пункт, охлаждение, напрямую влияет на то, насколько допустимо сжатие до того, как преждевременное зажигание станет проблемой, поскольку преждевременное зажигание происходит в основном из-за горячих точек внутри камеры сгорания.
Второй элемент, испарение, приводит к значительному сокращению выбросов, основной причиной которых является сырое несгоревшее топливо.
Дополнительным преимуществом является то, что для эффективного сгорания требуется меньше топлива, поскольку большая часть топлива находится в сгораемом состоянии, что способствует экономии топлива.
Последнее редактирование:
9100
Алмаз
#12
Hdpg сказал:
Давление в цилиндре от такта сжатия, приблизительное максимальное значение при полностью открытой дроссельной заслонке, когда двигатель едва движется, представляет собой степень сжатия, умноженную на атмосферное давление; 8 : 1 дает что-то вроде 130 фунтов на квадратный дюйм; дизель в соотношении 24 : 1 примерно в три раза больше.
Нажмите, чтобы развернуть…
На самом деле, давление немного выше, чем это. Вы сжимаете адиабатически, более или менее, поэтому воздух нагревается, что повышает давление. Вся картина намного сложнее, чем может показаться. Если он хочет запустить двигатель на сжатом воздухе, у него не будет давления подачи на протяжении большей части хода, если только он не хочет тратить большую часть энергии впустую. Наилучшая эффективность зависит от расширения газа, чтобы он заканчивал ход при атмосферном давлении. Паровые двигатели оснащены индикаторами, которые отображают давление в течение хода. Некоторые турбины на самом деле выбрасывают газ при давлении ниже атмосферного, потому что они работают против вакуума, создаваемого конденсатором, а не атмосферой.
Простой ответ, как говорит Тонитн, от 1000 до 1500 PSI. Оттуда вы должны указать гораздо больше деталей.
Билл
Хдпг
Нержавеющая сталь
№13
9100 сказал:
На самом деле, давление немного выше….Счет
Нажмите, чтобы развернуть…
Отсюда моя квалификация с «приблизительным» и «около».
Использование простого бензинового двигателя в качестве двигателя на сжатом воздухе было бы ужасно неэффективным.
Билл D
Алмаз
№14
Спасибо за ответы, ребята. Никаких реальных планов что-либо делать, просто было интересно узнать об износе цилиндров/колец воздушного компрессора и двигателя.
Билл Д.
Сгорание в дизельных двигателях
Сгорание в дизельных двигателях
Ханну Яаскеляйнен, Магди К. Хайр
Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.
- Приготовление и смешивание дизельного топлива
- Исследовательские двигатели для оптической диагностики
Abstract : В дизельных двигателях топливо впрыскивается в цилиндр двигателя ближе к концу такта сжатия. Во время фазы, известной как задержка воспламенения, топливная струя распыляется на мелкие капли, испаряется и смешивается с воздухом. По мере того, как поршень продолжает двигаться ближе к верхней мертвой точке, температура смеси достигает температуры воспламенения топлива, вызывая воспламенение некоторого количества предварительно перемешанного количества топлива и воздуха. Остаток топлива, не участвовавший в предварительном сгорании, расходуется на фазе сжигания с регулируемой скоростью.
- Компоненты процесса горения
- Скорость тепловыделения в двигателях с прямым впрыском
- Три фазы сгорания дизельного топлива
- Концептуальная модель сжигания дизельного топлива
- Шум, создаваемый горением
Сгорание в дизельных двигателях очень сложное, и до 1990-х годов его подробные механизмы не были хорошо изучены. В течение десятилетий его сложность, казалось, не позволяла исследователям раскрыть его многочисленные секреты, несмотря на доступность современных инструментов, таких как высокоскоростная фотография, используемая в «прозрачных» двигателях, вычислительная мощность современных компьютеров и множество математических моделей, разработанных для имитации сгорания в дизельном топливе. двигатели. Применение лазерной визуализации к обычному процессу сгорания дизельного топлива в 1990-е годы стали ключом к значительному расширению понимания этого процесса.
В этой статье будет рассмотрена наиболее известная модель сгорания для обычного дизельного двигателя . Это «обычное» дизельное сгорание в первую очередь контролируется смешиванием с, возможно, сгоранием с предварительным смешиванием, которое может происходить из-за смешивания топлива и воздуха перед воспламенением. Это отличается от стратегий сжигания, которые пытаются значительно увеличить долю происходящего сжигания предварительно смешанного топлива, например, различные ароматы низкотемпературного сгорания.
Основной предпосылкой дизельного сгорания является его уникальный способ высвобождения химической энергии, содержащейся в топливе. Чтобы выполнить этот процесс, кислород должен быть доступен для топлива определенным образом, чтобы облегчить горение. Одним из наиболее важных аспектов этого процесса является смешивание топлива и воздуха, которое часто называют приготовлением смеси .
В дизельных двигателях топливо часто впрыскивается в цилиндр двигателя ближе к концу такта сжатия, всего за несколько градусов угла поворота коленчатого вала до верхней мертвой точки 9. 0424 [391] . Жидкое топливо обычно впрыскивается с высокой скоростью в виде одной или нескольких струй через небольшие отверстия или форсунки в наконечнике форсунки. Он распыляется на мелкие капли и проникает в камеру сгорания. Распыленное топливо поглощает тепло окружающего нагретого сжатого воздуха, испаряется и смешивается с окружающим высокотемпературным воздухом высокого давления. По мере того, как поршень продолжает двигаться ближе к верхней мертвой точке (ВМТ), температура смеси (в основном воздуха) достигает температуры воспламенения топлива. Быстрое воспламенение некоторых предварительно смешанного топлива и воздуха происходит после периода задержки воспламенения. Это быстрое воспламенение считается началом сгорания (а также концом периода задержки воспламенения) и характеризуется резким повышением давления в цилиндре по мере того, как происходит сгорание топливно-воздушной смеси. Повышенное давление, возникающее в результате сжигания предварительно смешанной смеси, сжимает и нагревает несгоревшую часть заряда и сокращает время задержки перед его воспламенением.
Это также увеличивает скорость испарения оставшегося топлива. Распыление, испарение, смешение паров топлива с воздухом и горение продолжаются до тех пор, пока не сгорит все впрыскиваемое топливо.
Сгорание дизельного топлива характеризуется обедненным общим соотношением A/F. Самое низкое среднее отношение A/F часто наблюдается в условиях максимального крутящего момента. Чтобы избежать чрезмерного дымообразования, соотношение A/F при пиковом крутящем моменте обычно поддерживается на уровне выше 25:1, что значительно выше стехиометрического (химически правильного) отношения эквивалентности, равного примерно 14,4:1. В дизельных двигателях с турбонаддувом соотношение A/F на холостом ходу может превышать 160:1. Поэтому избыточный воздух, находящийся в цилиндре после сгорания топлива, продолжает смешиваться с горящими и уже сгоревшими газами на протяжении всего процесса сгорания и расширения. При открытии выпускного клапана избыток воздуха вместе с продуктами сгорания выбрасывается, что объясняет окислительный характер дизельного выхлопа. Хотя сгорание происходит после того, как испарившееся топливо смешивается с воздухом, образуя локально богатую, но горючую смесь, и достигается надлежащая температура воспламенения, общее соотношение воздух/топливо обеднено. Другими словами, большая часть воздуха, поступающего в цилиндр дизельного двигателя, сжимается и нагревается, но никогда не участвует в процессе сгорания. Кислород в избыточном воздухе помогает окислять газообразные углеводороды и окись углерода, уменьшая их концентрацию в выхлопных газах до чрезвычайно малых концентраций.
Следующие факторы играют основную роль в процессе сгорания дизельного топлива:
- Модель инжектировала наддувочный воздух , его температуру и кинетическую энергию в нескольких измерениях.
- Распыление впрыскиваемого топлива , проникающая способность, температура и химические характеристики.
Хотя эти два фактора являются наиболее важными, существуют и другие параметры, которые могут сильно на них влиять и, следовательно, играть второстепенную, но все же важную роль в процессе горения. Например:
- Конструкция впускного отверстия , которая оказывает сильное влияние на движение наддувочного воздуха (особенно когда он входит в цилиндр) и, в конечном счете, на скорость смешивания в камере сгорания. Конструкция впускного отверстия также может влиять на температуру наддувочного воздуха. Это может быть достигнуто за счет передачи тепла от водяной рубашки к наддувочному воздуху через площадь поверхности впускного отверстия.
- Впускной клапан размера , который регулирует общую массу воздуха, нагнетаемого в цилиндр за конечное время.
- Степень сжатия , которая влияет на испарение топлива и, следовательно, на скорость смешивания и качество сгорания.
- Давление впрыска , которое определяет продолжительность впрыска для заданного размера отверстия сопла.
- Геометрия отверстия сопла (длина/диаметр), которая контролирует проникновение струи, а также распыление.
- Геометрия распыления , которая напрямую влияет на качество сгорания за счет использования воздуха.
Например, больший угол конуса распыления может поместить топливо на верхнюю часть поршня и за пределы камеры сгорания в дизельных двигателях с прямым впрыском с открытой камерой сгорания. Это условие привело бы к чрезмерному дымлению (неполному сгоранию) из-за лишения топлива доступа к воздуху, находящемуся в камере сгорания (камере). Большие углы конуса также могут привести к распылению топлива на стенки цилиндра, а не внутрь камеры сгорания, где это требуется. Топливо, распыляемое на стенку цилиндра, в конечном итоге будет стекать в масляный картер, что сократит срок службы смазочного масла. Поскольку угол распыления является одной из переменных, влияющих на скорость смешивания воздуха с топливной струей вблизи выходного отверстия форсунки, он может оказывать значительное влияние на общий процесс сгорания.
- Конфигурация клапана , который управляет положением форсунки. Двухклапанные системы заставляют форсунку располагаться под наклоном, что подразумевает неравномерное распыление, что приводит к ухудшению смешивания топлива и воздуха.