Цилиндры двигателя: Цилиндры двигателя

Цилиндры двигателя

Цили́ндр  двигателя внутреннего сгорания является рабочей камерой объемного вытеснения. Во время работы двигателя внутренние и наружные части цилиндров испытывают различный нагрев.

Внутренняя часть цилиндра — втулка или гильза цилиндра.

Наружная часть — рубашка двигателя.

Внутренняя поверхность втулки или гильзы цилиндра называется зеркалом. Зеркало это рабочая часть цилиндра, поэтому она подвергается специальной обработке (хонингование, хромирование, азотирование) и поэтому выбирают следующие типы материалов для гильз цилиндров. На зеркале цилиндра наносится специальный рельеф, который способствует снижению трения между поршнем, поршневыми кольцами и цилиндром, благодаря удерживанию моторного масла на стенках.

В современных двигателях внутреннюю поверхность цилиндров подвергают отбеливающему переплаву лазером, что способствует образованию белого чугуна высокой твердости. Ресурс таких цилиндров намного выше и не требует ремонтных размеров.

Гильзы цилиндров отливают из чугуна высокой прочности или специальных сталей. Иногда на алюминиевые гильзы цилиндров наносят гальваническое покрытие хромом.

 

В одноцилиндровом четырехтактном двигателе коленчатый вал вращается неравномерно, поэтому маховик должен обладать большим моментом инерции. В многоцилиндровом двигателе вращение коленчатого вала происходит равномернее, так как рабочие ходы в различных цилиндрах не совпадают друг с другом. Чем больше цилиндров имеет двигатель, тем равномернее вращается коленчатый вал. Нагрузка на детали кривошипно-шатунного механизма в многоцилиндровом двигателе изменяется более плавно, чем в одноцилиндровом.

Цилиндры двигателя могут быть расположены следующим образом: вертикально в один ряд – однорядные, двигателя автомобилей ВАЗ-2107 «Жигули», ГАЗ-52-04, ГАЗ-3102 «Волга» и др., под углом a к вертикали, двигатель автомобиля Москвич 2140; в два ряда V-образные, двигателя автомобилей ГАЗ-53А,ЗИЛ-130, КаМаз 5320 и др.

Дефекты гильз цилиндров

Гильзы цилиндров изнашиваются вследствие трения между поршнем и зеркалом (внутренней стенкой цилиндра). Как правило повышенный износ может происходить вследствие таких причин:

— не достаточно масла на стенках цилиндров

-двигатель долго не работал, и все масло стекло в картер

-применение масла не соответствующей вязкости

— коррозия, возникает вследствии применения воды, как охлаждающей жидкости

-сколы, царапины возникают вследствие не правильного монтажа, демонтажа ( все действия по съемке гильз цилиндров нужно проводить согласно правил специальным съемником)

-при не правильной эксплуатации двигателя

 

Методы обработки для устранения дефектов

Дефекты устраняются такими методами обработки как: шлифовка, фрезировка, напыление, наплавка, хонингование.

Хонингование 

Хонингование — вид абразивной обработки материалов с применением хонинговальных головок (хонгов). В основном применяется для обработки внутренних цилиндрических отверстий (от 2 мм) путём совмещения вращательного и поступательно-возвратного движения хона с закреплёнными на нём раздвижными абразивными брусками с обильным орошением обрабатываемой поверхности смазочно-охлаждающей жидкостью. Один из видов чистовых и отделочных обработок резанием. Позволяет получить отверстие с отклонением от цилиндричности до 5 мкм и шероховатостью поверхности Ra=0.63÷0.04.

Обработка отверстий в различных деталях в том числе в деталях двигателя (отверстий блоков цилиндров, гильз цилиндров, отверстий кривошипной и поршневой головок шатунов, отверстий шестерен) и т. д. При обработке хонингованием обеспечивается стабильное получение точных отверстий и требуемых параметров шероховатости обработанной поверхности. Зеркало цилиндров должно иметь не совсем гладкую поверхность, так как масло будет стекать и не оставатся между парой трения, что будет приводить к износу, поэтому делается как бы меленькая насечка. В ней остаються частички масла , которые обеспечивают хорошую работу цилиндр-поршень и приводит к увеличению ресурса деталей.

Цилиндр

Цилиндр двигателя — обработанное отверстие в блоке цилиндров, внутри которого движется поршень. В случае, если блок цилиндров выполнен из алюминия, внутрь цилиндра впрессовывается вставка-гильза из тугоплавкого материала.

Классический пример цилиндра — оружейный ствол. Пуля, как поршень, движется вдоль его стенок под воздействием энергии расширяющихся газов

Двигатели, основанные на применении поршня, движущегося внутри закрытого ложа цилиндрической формы, известны с давних пор. На этом принципе еще два века назад строились «двигатели горячего воздуха», к примеру, двигатель Стирлинга, или еще более старые тепловые машины. Применительно к автомобилю мы знакомы с цилиндром как с частью двигателя внутреннего сгорания. Однако и таких двигателей разных конструкций наберется не менее двух десятков. Но, несмотря на явные различия во внешнем виде и конструкции, их объединяет одна общая исходная деталь – цилиндр. Она может быть разной формы, и даже не цилиндрической. Тем не менее, она есть всегда.

Цилиндр как основа двигателя

В цилиндре происходят все важнейшие процессы получения и преобразования энергии, необходимой для движения автомобиля. Цилиндр, по сути, связующее звено двух энергий: в нем энергия сгорания топлива переходит в энергию движения, вращающего коленчатый вал.

Поршень и цилиндр

Цилиндр во время работы испытывает колоссальные нагрузки.  С одной стороны это высокая температура и давление расширяющихся газов, с другой стороны высокая скорость движения поршня, которая достигает  8 метров в секунду.

При сгорании топлива в цилиндрах образуется такое огромное количество тепловой энергии, что двигатель приходится охлаждать даже когда на улице -25 градусов

Этот процесс можно сравнить с оружейным выстрелом, где пороховые газы толкают пулю, разгоняющуюся в стволе, (кстати, тоже имеющем форму цилиндра) до дульной скорости от 300 до 1000 метров в секунду, в зависимости от длины ствола. К тому же с огромной частотой, как, например, в пистолете-пулемете «Венус», до  2500 выстрелов в минуту.

И если на спортивном автомобиле группа цилиндров должна выдержать один рекордный заезд, то в обычном легковом автомобиле от цилиндров требуется работа в течение многих лет, без потери мощности, динамики и других показателей.

Поэтому инженеры автомобильных компаний вынуждены постоянно решать две основные проблемы, связанные с надежностью цилиндров – отвод тепла и смазывание поверхности, вдоль которой движется поршень.

Конструкция цилиндра

В первых двигателях внутреннего сгорания каждый цилиндр находился внутри отдельного корпуса. Такая конструкция сохранилась и в наши дни и используется, к примеру, при создании мотоциклетных двигателей. В этом случае она не утратила актуальности, потому что для охлаждения открытых со всех сторон двигателей мотоциклов применяется воздух. В автомобильных двигателях все цилиндры объединены в единый прочный корпус, который называется блоком цилиндров.

Для того, чтобы цилиндр двигателя мог выдерживать высоки нагрузки он выполняется из прочного материала — чугуна или специальной стали с различными присадками. Ради снижения веса современные блоки часто делают из алюминия. В этом случае внутренняя часть цилиндра выполняется в виде прочной стальной гильзы, запрессованной в блок.

Внутренняя поверхность цилиндра, непосредственно контактирующая с движущимся поршнем,  выполняется из металла со специальными добавками для повышения прочности.

Внешняя часть цилиндра, составляющая единое целое с корпусом блока, называется рубашкой. Внутри рубашки по каналам циркулирует охлаждающая жидкость.

Чтобы облегчить поршню скольжение внутри цилиндра, разработчики BMW предложили покрывать стенки цилиндров Никасилом — специальным сплавом, позволяющим обходиться без гильз в алюминиевом блоке

В двухтактных двигателях цилиндры имеют несколько иную конструкцию и отличаются от цилиндров четырехтактных двигателей наличием окон – впускных и продувочных. Помимо этого в нижней части цилиндра двухтактного двигателя имеется пластина для создания нижнего рабочего пространства под поршнем.

Системы охлаждения цилиндров

Для отвода избыточного тепла от цилиндра двигателя предусмотрена система охлаждения, которая может быть либо воздушной, либо жидкостной.

Воздушное охлаждение

Цилиндры двигателя с воздушным охлаждением снаружи покрыты множеством ребер, которые обдуваются встречным или созданным искусственно посредством воздухозаборников потоком воздуха, отводящим тепло от цилиндра.

Причудливый рисунок на внутренней поверхности цилиндра называется хоном, потому что для его нанесения используется хонинговальный станок

Жидкостное охлаждение

При жидкостном (чаще называемом водяным) охлаждении цилиндры снаружи  омываются циркулирующей в толще блока охлаждающей жидкостью. Нагретые цилиндры отдают часть тепла жидкости, которая в дальнейшем попадает в радиатор,  охлаждается и вновь подается к цилиндрам.

Система смазки цилиндров

Качественное смазывание стенок – вторая по значимости проблема после отвода тепла. Если цилиндр не смазывать изнутри, поршень попросту заклинит, что приведет к немедленному разрушению двигателя.

Для удержания стабильной масляной пленки на зеркале (внутренней поверхности) цилиндров, он подвергается хонингованию – нанесению микросетки на внутреннюю стенку. Благодаря наличию такой сетки на стенках всегда присутствует слой масла, что снижает трение (поршень-цилиндр), отводит излишки тепла и увеличивает в разы пробег до капитального ремонта.

Нестандартные покрытия цилиндра

Разработчики применяют новейшие технологии и материалы для упрочнения  зеркала цилиндра и его износостойкости.

Самый большой объем автомобильного двигателя – 117 литров. Такой огромный объем реализован в двигателе карьерного самосвала с 24 цилиндрами

Так внедрение кристаллов кремния в зеркало цилиндра многократно подняло ресурс двигателя, но одновременно и повысило требования к качеству масла и соблюдению температурного режима. Первые двигатели, созданные с применением этой технологии, были непригодными для ремонта и слишком дорогими. Дальнейшие разработки в этой области позволили несколько улучшить ситуацию в плане ремонтопригодности. Вместо того чтобы покрывать специальным составом поверхность цилиндров, выточенных в толще металла, в блок начали устанавливать подлежащие замене гильзы с напылением кремния.

Типовые технические характеристики цилиндров автомобильных двигателей

  • Диаметр цилиндра
  • Высота цилиндра
  • Рабочий объем – объем цилиндра от верхней мертвой точки до нижней мертвой точки движения поршня.
  • Полный объем цилиндра – объем камеры сгорания и рабочего объема вместе.
  • Степень сжатия — определяется делением  полного объема цилиндра на объем камеры сгорания.  Этот критерий показывает, во сколько раз сжата горючая смесь в цилиндре. От увеличения степени сжатия в цилиндре увеличивается давление на поршень  при сгорании топлива, а значит, возрастает мощность силовой установки в целом. Увеличение этого параметра очень выгодно, так как от такого же количества смеси можно получить больший КПД.

Что такое цилиндр в машине?

Перейти к содержимому

 

Цилиндр является жизненно важной частью двигателя. Это камера, в которой сгорает топливо и вырабатывается энергия. Цилиндр состоит из поршня и двух клапанов вверху; впускной и выпускной клапаны. Поршень движется вверх и вниз, а его возвратно-поступательное движение создает мощность, которая приводит в движение ваш автомобиль. Как правило, чем больше цилиндров в вашем двигателе, тем больше вырабатывается мощность. Большинство автомобилей имеют 4-, 6- или 8-цилиндровый двигатель. Цифры обозначают количество цилиндров, и они будут располагаться либо по прямой линии, либо в виде буквы V, либо в плоском расположении.

Чтобы понять, как работают цилиндры, нужно понять, как работает двигатель. Двигатель состоит из набора цилиндров и поршня. Двигатель должен пройти цепочку из четырех ступеней (четырехтактный), чтобы привести ваш автомобиль в движение; Впуск, сжатие, мощность и выпуск. Во время такта впуска поршень движется внутри цилиндра, и впускной клапан открывается, поэтому топливо смешивается с воздухом. Такт сжатия позволяет поршню сжимать топливно-воздушную смесь, делая ее горючей. Рабочий ход — это этап, на котором происходит сгорание, вызывающее искру. В такте выпуска выпускной клапан открывается, позволяя поршню вернуться вниз и выхлопным газам выйти через выпускное отверстие. Таким образом, цилиндры играют решающую роль в выработке энергии внутри вашего двигателя, указывая, какие поршни должны двигаться и когда топливо должно сгореть.

С момента изобретения двигателя внутреннего сгорания цилиндры двигателей стали широко использоваться производителями. Цилиндры двигателя обычно располагаются по прямой линии (рядный двигатель), V-образно или горизонтально.

 

В случае рядной конфигурации это то же самое расположение, которое они использовали в самом начале истории двигателя. Рядные цилиндры — одна из самых основных форм расположения цилиндров. Рядный 4-цилиндровый двигатель, например, имеет небольшие размеры и вес, поэтому его можно использовать с различными трансмиссиями. Кроме того, он вызывает меньше вибраций в вашем автомобиле по сравнению с другими компоновками, что способствует плавности хода и комфортному вождению.

 

Когда цилиндры двигателя имеют V-образную форму, они обычно используют 6 или более цилиндров. По сравнению с рядными двигателями двигатели V-6 намного компактнее, что позволяет легко устанавливать их на различные автомобильные платформы, что снижает стоимость производства. Двигатель V-8 работает так же, как V-6, но с двумя дополнительными цилиндрами. Основная цель установки V-8 — увеличение мощности. V-образный двигатель обычно намного короче рядного, так что даже двигатель V-6 может быть короче, чем рядный 4. Меньшая продольная длина является одним из самых больших преимуществ двигателей V-6 и V-8.

 

Двигатели с плоской компоновкой обычно используют четыре или шесть цилиндров. При таком расположении, как следует из названия, цилиндры лежат плоско на земле. Поскольку плоский двигатель значительно уменьшает центр тяжести по сравнению с рядными или V-образными двигателями, ваш автомобиль будет иметь более плавное управление и меньшую вибрацию.

Что такое автомобильные оси?

Что такое хорошие первые автомобили?

Цилиндр? Что такое цилиндр? — Врумдевочки

Учебник по всем вопросам, связанным с двигателем. Вы когда-нибудь задумывались, что означает смещение? А крутящий момент? Что это за фигня? Не волнуйтесь, мы все объясним.

Аарон Голд

Начинается занятие

Когда вы читаете об автомобилях, вы столкнетесь с техническими характеристиками двигателя, то есть с 2,0-литровым 4-цилиндровым двигателем с турбонаддувом мощностью 160 лошадиных сил и крутящим моментом 175 фунт-футов. Что означают все эти цифры? Это тема урока Университета VroomGirls.

Цилиндры

Цилиндр — силовая единица двигателя; это камера, где бензин сжигается и превращается в энергию. Большинство двигателей автомобилей и внедорожников имеют четыре, шесть или восемь цилиндров. Как правило, двигатель с большим количеством цилиндров производит больше мощности, а двигатель с меньшим количеством цилиндров лучше экономит топливо.

Цилиндры будут расположены либо по прямой линии (рядный двигатель, т. е. «рядный 4», «I4» или «L4»), либо в два ряда (V-образный двигатель, т. е. «V8»).

ОБЪЕМ (литры и кубические дюймы)

Двигатели измеряются рабочим объемом, обычно выражаемым в литрах (л) или кубических сантиметрах (см). Рабочий объем – это общий объем всех цилиндров двигателя. Двигатель с четырьмя цилиндрами по 569 куб. см каждый в сумме составляет 2276 куб. см, и будет называться 2,3-литровым двигателем. Большие двигатели, как правило, развивают большую мощность, особенно больший крутящий момент (см. ниже), но потребляют больше топлива.

Вплоть до начала 1980-х двигатели измерялись в кубических дюймах. Один литр равен примерно 61 кубическому сантиметру, поэтому двигатель объемом 350 кубических дюймов составляет около 5,7 литров.

ТУРБОКОМПЕНСАТОРЫ

Турбокомпрессор — это устройство, которое используется для повышения мощности двигателя. Четырехцилиндровый двигатель с турбонагнетателем может производить такую ​​же мощность, как и шестицилиндровый двигатель, но потребляет меньше топлива при плавной езде. (Дополнительную информацию см. в разделе «Как работают турбокомпрессоры и нагнетатели». Двигатели с турбонаддувом иногда получают букву «Т» после их рабочего объема; «2.0T» обозначает 2-литровый двигатель с турбокомпрессором.

МОЩНОСТЬ И КРУТЯЩИЙ МОМЕНТ

Мощность и крутящий момент измеряют мощность, развиваемую двигателем, причем наиболее часто используемой единицей измерения является лошадиная сила. Разница между лошадиными силами и крутящим моментом часто неправильно понимается (и трудно объяснима).

Крутящий момент, измеряемый в фунто-футах (lb-ft или ft-lbs), измеряет тяговое усилие; когда вы нажимаете на педаль газа и сиденье упирается вам в спину, вы чувствуете крутящий момент. Грузовикам требуется большой крутящий момент, чтобы привести в движение тяжелые грузы. Мощность в лошадиных силах зависит от крутящего момента и частоты вращения двигателя (об/мин) и показывает, какую длительную работу может выполнять автомобиль. Гоночным автомобилям нужна большая мощность, чтобы поддерживать высокие скорости. Как правило, двигатели с большим рабочим объемом развивают больший крутящий момент, но маленькие двигатели могут вращаться быстрее, что увеличивает их выходную мощность.

Автомобиль с высокой мощностью, но низким крутящим моментом может казаться вялым после остановки, но будет чувствовать себя сильнее по мере того, как двигатель будет вращаться все быстрее и быстрее. Двигатель с высоким крутящим моментом и малой мощностью будет сильно ускоряться с места, но будет останавливаться по мере увеличения оборотов двигателя (до тех пор, пока трансмиссия не переключит передачу).